On melting of boron phosphide under pressure

Melting of cubic boron phosphide has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa boron phosphide melts congruently, and the melting curve exhibits negative slope (–60±7 K/GPa), which is indicativ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Solozhenko, V.L., Mukhanov, V.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України 2015
Назва видання:Сверхтвердые материалы
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/129924
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On melting of boron phosphide under pressure / V.L. Solozhenko, V.A. Mukhanov // Сверхтвердые материалы. — 2015. — № 6. — С. 98-100. — Бібліогр.: 144 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-129924
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1299242025-02-23T18:31:56Z On melting of boron phosphide under pressure Solozhenko, V.L. Mukhanov, V.A. Письма в редакцию Melting of cubic boron phosphide has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa boron phosphide melts congruently, and the melting curve exhibits negative slope (–60±7 K/GPa), which is indicative of a higher density of the melt as compared to the solid phase. Плавление кубического фосфида бора было изучено при давлениях до 9 ГПа методами дифракции синхротронного излучения и измерения электрического сопротивления. Было установлено, что выше 2,6 ГПа фосфид бора плавится конгруэнтно, и кривая плавления имеет отрицательный наклон (-60±7 K/ГПа), что свидетельствует о более высокой плотности расплава по сравнению с твердой фазой. Плавлення кубічного фосфіду бору було вивчено при тисках до 9 ГПа методами дифракції синхротронного випромінювання і вимірювання електричного опору. Було встановлено, що вище 2,6 ГПа фосфід бору плавиться конґруентно і крива плавлення має негативний нахил (-60±7 K/ГПа), що свідчить про більш високої щільності розплаву в порівнянні з твердою фазою. 2015 Article On melting of boron phosphide under pressure / V.L. Solozhenko, V.A. Mukhanov // Сверхтвердые материалы. — 2015. — № 6. — С. 98-100. — Бібліогр.: 144 назв. — англ. 0203-3119 https://nasplib.isofts.kiev.ua/handle/123456789/129924 546.27:661.636:536.421.1 en Сверхтвердые материалы application/pdf Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Письма в редакцию
Письма в редакцию
spellingShingle Письма в редакцию
Письма в редакцию
Solozhenko, V.L.
Mukhanov, V.A.
On melting of boron phosphide under pressure
Сверхтвердые материалы
description Melting of cubic boron phosphide has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa boron phosphide melts congruently, and the melting curve exhibits negative slope (–60±7 K/GPa), which is indicative of a higher density of the melt as compared to the solid phase.
format Article
author Solozhenko, V.L.
Mukhanov, V.A.
author_facet Solozhenko, V.L.
Mukhanov, V.A.
author_sort Solozhenko, V.L.
title On melting of boron phosphide under pressure
title_short On melting of boron phosphide under pressure
title_full On melting of boron phosphide under pressure
title_fullStr On melting of boron phosphide under pressure
title_full_unstemmed On melting of boron phosphide under pressure
title_sort on melting of boron phosphide under pressure
publisher Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
publishDate 2015
topic_facet Письма в редакцию
url https://nasplib.isofts.kiev.ua/handle/123456789/129924
citation_txt On melting of boron phosphide under pressure / V.L. Solozhenko, V.A. Mukhanov // Сверхтвердые материалы. — 2015. — № 6. — С. 98-100. — Бібліогр.: 144 назв. — англ.
series Сверхтвердые материалы
work_keys_str_mv AT solozhenkovl onmeltingofboronphosphideunderpressure
AT mukhanovva onmeltingofboronphosphideunderpressure
first_indexed 2025-11-24T10:18:13Z
last_indexed 2025-11-24T10:18:13Z
_version_ 1849666561110966272
fulltext www.ism.kiev.ua/stm 98 Письма в редакцию UDC 546.27:661.636:536.421.1 V. L. Solozhenko*, V. A. Mukhanov *vladimir.solozhenko@univ-paris13.fr On melting of boron phosphide under pressure Melting of cubic boron phosphide has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa boron phosphide melts congruently, and the melt- ing curve exhibits negative slope (–60±7 K/GPa), which is indicative of a higher den- sity of the melt as compared to the solid phase. Keywords: boron phosphide, melting, high pressure, high tempe- rature. Cubic boron phosphide, BP, is refractory wide bandgap semicon- ductor [1, 2] characterized by a unique combination of mechanical [3, 4], thermal and electrical properties, excellent thermal conductivity [5], and high thermo- electric power [6] that could make it a material of choice for a wide range of engi- neering applications [7]. At ambient pressure decomposition of boron phosphide is observed already at 1400 K [8, 9], and the melting point of BP is not established. The BP decomposi- tion temperature is expected to be higher under pressure, however, so far the high- pressure behavior of boron phosphide is studied only at room temperature [10]. In the present work melting of boron phosphide at pressures to 9 GPa was studied for the first time. Polycrystalline BP (99.8 %) produced by self-propagating high-temperature re- action between boron phosphate and magnesium according to the method de- scribed elsewhere [4] was used in the experiments. The lattice parameter of the sample was a = 4.5356(9) Å, which is close to the literature value (4.537 Å [9]). The BP melting at ~ 5.3 GPa was studied in situ by energy-dispersive synchro- tron X-ray diffraction using MAX80 multianvil system at F2.1 beamline of the DORIS III storage ring (HASYLAB-DESY). The experimental details are de- scribed elsewhere [11, 12], the data obtained are shown by circles in figure. The angle-dispersive X-ray diffraction probing of BP melting at 6.2 and 8.9 GPa was performed in a Paris-Edinburgh press with T-cup module at ID30 beamline, ESRF. The experimental details are described elsewhere [12]; the corresponding data are presented in figure as triangles. © V. L. SOLOZHENKO, V. A. MUKHANOV, 2015 ISSN 0203-3119. Сверхтвердые материалы, 2015, № 6 99 Melting of boron phosphide in the 2.6–7.7 GPa pressure range was studied in situ by electrical resistivity measurements [13] in a specially designed high- temperature cell [14] of a toroid-type high-pressure apparatus. The cell was pres- sure-calibrated at room temperature using phase transitions in Bi (2.55 and 7.7 GPa), PbSe (4.2 GPa), and PbTe (5.2 GPa). The temperature calibration under pressure was made using well-established reference points: melting of Si, NaCl, CsCl, Pt, Rh, Al2O3, Mo and Ni–Mn–C ternary eutectic. No signs of chemical in- teraction between BP and graphite electrical inputs were observed over the whole pressure–temperature range under study. The experimental data are presented by squares in figure. 0 2 4 6 8 2200 2300 2400 2500 2600 2700 2800 T, K p, GPa Pressure dependence of BP melting temperature. The results of synchrotron X-ray diffraction experiments are presented by circles (HASYLAB-DESY) and triangles (ESRF). The open sym- bols correspond to the melt, solid symbols – to its absence. Half-filled squares indicate the onset of melting registered in situ by electrical resistivity measurements. Dashed line is the linear approximation of the melting curve defined by least-squares method. The BP melting curve (dashed line obtained by the least-squares method from the results of all experiments) exhibits negative slope –60(7) K/GPa, which points to the higher density of BP melt as compared to the solid phase in the pressure range under study. Extrapolation of the melting line to the low-pressure region allows us to estimate the melting point of BP at ambient pressure as 2840(40) K. The lattice parameters of the samples quenched from different pressures and temperatures are very close to the literature value, and no lines of other phases (B12P2, boron, phosphorus, etc.) are present in the diffraction patterns, which indicate the congruent type of BP melting at pressures above 2.6 GPa. Synchrotron X-ray diffraction experiments were carried out during beam time allocated to Project DESY-D-I-20090172 EC at HASYLAB-DESY and Proposal HS-2532 at ESRF. The authors thank Drs. Christian Lathe and Yann Le Godec for assistance. This work was financially supported by the Agence Nationale de la Recherche (grant ANR-2011-BS08-018). Плавление кубического фосфида бора было изучено при давлениях до 9 ГПа методами дифракции синхротронного излучения и измерения электрического со- противления. Было установлено, что выше 2,6 ГПа фосфид бора плавится конгруэнтно, и www.ism.kiev.ua/stm 100 кривая плавления имеет отрицательный наклон (-60±7 K/ГПа), что свидетельствует о более высокой плотности расплава по сравнению с твердой фазой. Ключевые слова: фосфид бора, плавление, высокое давление, высокая температура. Плавлення кубічного фосфіду бору було вивчено при тисках до 9 ГПа методами дифракції синхротронного випромінювання і вимірювання електричного опору. Було встановлено, що вище 2,6 ГПа фосфід бору плавиться конґруентно і крива плавлення має негативний нахил (-60±7 K/ГПа), що свідчить про більш високої щільності розплаву в порівнянні з твердою фазою. Ключові слова: фосфід бору, плавлення, високий тиск, висока темпе- ратура. 1. Stone B., Hill D. Semiconducting properties of cubic boron phosphide // Phys. Rev. Lett. – 1960. – 4, N 6. – P. 282–284. 2. Kumashiro Y. Refractory semiconductor of boron phosphide // J. Mater. Res. – 1990. – 5, N 12. – P. 2933–2947. 3. Mukhanov V. A., Kurakevych O. O., Solozhenko V. L. Thermodynamic model of hardness: Particular case of boron-rich solids // J. Superhard Mater. – 2010. – 32, N 3. – P. 167–176. 4. Mukhanov V. A., Sokolov P. S., Le Godec Y., Solozhenko V. L. Self-propagating high- temperature synthesis of boron phosphide // Ibid. – 2013. – 35, N 6. – P. 415–417. 5. Kumashiro Y., Mitsuhashi T., Okaya S. et al. Thermal conductivity of a boron phosphide single-crystal wafer up to high temperature // J. Appl. Phys. – 1989. – 65, N 5. – P. 2147– 2148. 6. Yugo S., Kimura T. Thermoelectric power of boron phosphide at high temperatures // Phys. Status Solidi (a). – 1980. – 59, N 1. – P. 363–370. 7. Popper P., Ingles T. A. Boron phosphide, a III–V compound of zinc-blende structure // Na- ture. – 1957. – 179, N 4569. – P. 1075–1075. 8. Williams F. V., Ruehrwein R. A. The preparation and properties of boron phosphides and arsenides // J. Amer. Chem. Soc. – 1960. – 82, N 6. – P. 1330–1332. 9. Peret J. L. Preparation and properties of the boron phosphides // J. Amer. Ceram. Soc. – 1964. – 47, N 1. – P. 44–46. 10. Solozhenko V. L., Kurakevych O. O., Le Godec Y. et al. Boron phosphide under pressure: in situ study by Raman scattering and X-ray diffraction // J. Appl. Phys. – 2014. – 116, N 3, art. 033501. 11. Solozhenko V. L., Lathe C. On the melting temperature of B6O // J. Superhard Mater. – 2007. – 29, N 4. – P. 259–260. 12. Solozhenko V. L., Kurakevych, O. O., Le Godec Y., Brazhkin V. V. Thermodynamically con- sistent p-T phase diagram of boron oxide B2O3 by in situ probing and thermodynamic analy- sis // J. Phys. Chem. C. – 2015. – 119, N 35. – P. 20600–20605. 13. Mukhanov V. A., Solozhenko V. L. On electrical conductivity of melts of boron and its com- pounds under pressure // J. Superhard Mater. – 2015. – 37, N 4. – P. 289–291. 14. Mukhanov V. A., Sokolov P. S., Solozhenko V. L. On melting of B4C boron carbide under pressure // Ibid. – 2012. – 34, N 3. – P. 211–213. LSPM–CNRS, Université Paris Nord, France Received 04.11.15