Magnetic phase transitions in the system La₁₋xBixMnO₃₊λ
The crystal structure and magnetic properties of the La₁₋xBixMnO₃₊λ system (0⩽x⩽1;λ⩽0.08) are studied as functions of the oxygen and bismuth contents. In oxidized samples La₁₋xBixMnO₃₊λ a phase transition from a ferromagnetic state (rhombohedric phase) to a state of the spin glass type (quasitetrago...
Saved in:
| Published in: | Физика низких температур |
|---|---|
| Date: | 2002 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2002
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/130236 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Magnetic phase transitions in the system La₁₋xBixMnO₃₊λ / I.O. Troyanchuk, O.S. Mantytskaja, H.Szymczak, M.Yu. Shvedun // Физика низких температур. — 2002. — Т. 28, № 7. — С. 790-795. — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | The crystal structure and magnetic properties of the La₁₋xBixMnO₃₊λ system (0⩽x⩽1;λ⩽0.08) are studied as functions of the oxygen and bismuth contents. In oxidized samples La₁₋xBixMnO₃₊λ a phase transition from a ferromagnetic state (rhombohedric phase) to a state of the spin glass type (quasitetragonal phase) is observed with increase of the bismuth concentration. The reduced samples La₁₋xBixMnO₃ are weak ferromagnets down to x⩽0.6 and then transform into a ferromagnetic state. It is supposed that the Bi³⁺ ions stabilize the dx2−y2 orbitals in the nearest Mn³⁺ ions whereas the dz2 orbitals of the La³⁺ ions are stabilized. The orbitally disordered phases and dx2−y2-orbitally ordered phases are ferromagnetic, the dz2-orbitally ordered phases show antiferromagnetic ordering, and the state of the orbital glass type corresponds to a state of the spin glass type.
The crystal structure and magnetic properties of the La₁₋xBixMnO₃₊λ system (0⩽x⩽1;λ⩽0.08) are studied as functions of the oxygen and bismuth contents. In oxidized samples La₁₋xBixMnO₃₊λ a phase transition from a ferromagnetic state (rhombohedric phase) to a state of the spin glass type (quasitetragonal phase) is observed with increase of the bismuth concentration. The reduced samples La₁₋xBixMnO₃ are weak ferromagnets down to x⩽0.6 and then transform into a ferromagnetic state. It is supposed that the Bi³⁺ ions stabilize the dx2−y2 orbitals in the nearest Mn³⁺ ions whereas the dz2 orbitals of the La³⁺ ions are stabilized. The orbitally disordered phases and dx2−y2-orbitally ordered phases are ferromagnetic, the dz2-orbitally ordered phases show antiferromagnetic ordering, and the state of the orbital glass type corresponds to a state of the spin glass type.
|
|---|---|
| ISSN: | 0132-6414 |