The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads

The use of various materials in brake pad compositions is widely studied. In this study, the borax powders or the copper or bronze fibres are added in non-asbestos organic brake pad composition to examine the effects of type and quantity of additive on the friction and wear characteristics of brake...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Металлофизика и новейшие технологии
Datum:2017
Hauptverfasser: İrem Burcu Algan, Adem Kurt
Format: Artikel
Sprache:English
Veröffentlicht: Інститут металофізики ім. Г.В. Курдюмова НАН України 2017
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/130463
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-130463
record_format dspace
spelling İrem Burcu Algan
Adem Kurt
2018-02-13T18:34:19Z
2018-02-13T18:34:19Z
2017
1024-1809
PACS: 61.72.Ff, 61.72.Qq, 62.20.Qp, 68.37.Hk, 81.05.Ni, 81.20.Ev, 81.40.Pq, 82.80.Pv
DOI: doi.org/10.15407/mfint.39.11.1511
https://nasplib.isofts.kiev.ua/handle/123456789/130463
The use of various materials in brake pad compositions is widely studied. In this study, the borax powders or the copper or bronze fibres are added in non-asbestos organic brake pad composition to examine the effects of type and quantity of additive on the friction and wear characteristics of brake pads. Firstly, three different specimen groups are developed by powder metallurgy method, which contain various amounts (1.5, 3, 4.5 and 6% weight) of borax powder, copper fibre, and bronze fibre.
Изучено использование различных материалов в композициях тормозных дисков. Порошки буры, медные или бронзовые волокна добавлялись в состав безасбестового органического тормозного диска, и исследовалось влияние типа и количества добавки на характеристики трения и износа тормозных дисков. Впервые методом порошковой металлургии были разработаны три разных группы образцов, содержащих различное количество порошка буры, медных и бронзовых волокон (1,5, 3, 4,5 и 6% веса).
Досліджено використання різних матеріялів у композиціях гальмівних дисків. Порошки бури, мідні чи то бронзові волокна додавалися до складу безазбестового органічного гальмівного диску з метою дослідження впливу типу та кількости добавки на характеристики тертя та зносу гальмівних дисків. Вперше методою порошкової металурґії було розроблено три різних групи зразків, що містять різну кількість порошку бури, мідних і бронзових волокон (1,5, 3, 4,5 і 6% ваги).
en
Інститут металофізики ім. Г.В. Курдюмова НАН України
Металлофизика и новейшие технологии
Физика прочности и пластичности
The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads
Влияние металлических волокон и порошков буры на характеристики трения и износа тормозных накладок на органической основе
Вплив металевих волокон і порошкової бури на характеристики тертя та зношування гальмових накладок на органічній основі
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads
spellingShingle The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads
İrem Burcu Algan
Adem Kurt
Физика прочности и пластичности
title_short The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads
title_full The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads
title_fullStr The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads
title_full_unstemmed The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads
title_sort effect of metal fibres and borax powders on the wear and friction performances of the organic based brake pads
author İrem Burcu Algan
Adem Kurt
author_facet İrem Burcu Algan
Adem Kurt
topic Физика прочности и пластичности
topic_facet Физика прочности и пластичности
publishDate 2017
language English
container_title Металлофизика и новейшие технологии
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
format Article
title_alt Влияние металлических волокон и порошков буры на характеристики трения и износа тормозных накладок на органической основе
Вплив металевих волокон і порошкової бури на характеристики тертя та зношування гальмових накладок на органічній основі
description The use of various materials in brake pad compositions is widely studied. In this study, the borax powders or the copper or bronze fibres are added in non-asbestos organic brake pad composition to examine the effects of type and quantity of additive on the friction and wear characteristics of brake pads. Firstly, three different specimen groups are developed by powder metallurgy method, which contain various amounts (1.5, 3, 4.5 and 6% weight) of borax powder, copper fibre, and bronze fibre. Изучено использование различных материалов в композициях тормозных дисков. Порошки буры, медные или бронзовые волокна добавлялись в состав безасбестового органического тормозного диска, и исследовалось влияние типа и количества добавки на характеристики трения и износа тормозных дисков. Впервые методом порошковой металлургии были разработаны три разных группы образцов, содержащих различное количество порошка буры, медных и бронзовых волокон (1,5, 3, 4,5 и 6% веса). Досліджено використання різних матеріялів у композиціях гальмівних дисків. Порошки бури, мідні чи то бронзові волокна додавалися до складу безазбестового органічного гальмівного диску з метою дослідження впливу типу та кількости добавки на характеристики тертя та зносу гальмівних дисків. Вперше методою порошкової металурґії було розроблено три різних групи зразків, що містять різну кількість порошку бури, мідних і бронзових волокон (1,5, 3, 4,5 і 6% ваги).
issn 1024-1809
url https://nasplib.isofts.kiev.ua/handle/123456789/130463
work_keys_str_mv AT iremburcualgan theeffectofmetalfibresandboraxpowdersonthewearandfrictionperformancesoftheorganicbasedbrakepads
AT ademkurt theeffectofmetalfibresandboraxpowdersonthewearandfrictionperformancesoftheorganicbasedbrakepads
AT iremburcualgan vliâniemetalličeskihvolokoniporoškovburynaharakteristikitreniâiiznosatormoznyhnakladoknaorganičeskoiosnove
AT ademkurt vliâniemetalličeskihvolokoniporoškovburynaharakteristikitreniâiiznosatormoznyhnakladoknaorganičeskoiosnove
AT iremburcualgan vplivmetalevihvolokoníporoškovoíburinaharakteristikitertâtaznošuvannâgalʹmovihnakladoknaorganíčníiosnoví
AT ademkurt vplivmetalevihvolokoníporoškovoíburinaharakteristikitertâtaznošuvannâgalʹmovihnakladoknaorganíčníiosnoví
AT iremburcualgan effectofmetalfibresandboraxpowdersonthewearandfrictionperformancesoftheorganicbasedbrakepads
AT ademkurt effectofmetalfibresandboraxpowdersonthewearandfrictionperformancesoftheorganicbasedbrakepads
first_indexed 2025-11-25T21:07:31Z
last_indexed 2025-11-25T21:07:31Z
_version_ 1850550997146927104
fulltext 1511 PACS numbers: 61.72.Ff, 61.72.Qq, 62.20.Qp, 68.37.Hk, 81.05.Ni, 81.20.Ev, 81.40.Pq, 82.80.Pv The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads İrem Burcu Algan and Adem Kurt Gazi University, Faculty of Technology, Department of Materials and Metallurgy, 06500 Ankara, Turkey The use of various materials in brake pad compositions is widely studied. In this study, the borax powders or the copper or bronze fibres are added in non- asbestos organic brake pad composition to examine the effects of type and quantity of additive on the friction and wear characteristics of brake pads. Firstly, three different specimen groups are developed by powder metallurgy method, which contain various amounts (1.5, 3, 4.5 and 6% weight) of borax powder, copper fibre, and bronze fibre. The mixtures are blended with an in- dustrial-type mixer, pressed by hydraulic press, and then they are post- sintered at 185 C for 24 hours. The friction–wear tests of specimens are per- formed by means of the Chase Machine according to the SAE-661 test stand- ard, and then friction surfaces of the specimens are analysed with a scanning electron microscope. Hardness tests are performed according to the Brinell Scale test method. Test results show that, while addition of different amounts of borax powder enhances the wear resistance of brake pads, addi- tion of copper and bronze fibres increases recovery, normal and hot friction coefficients’ values with increasing amount of metallic fibre. Key words: non-asbestos organic brake pads, borax, metallic fibre, wear re- sistance, friction coefficient. Досліджено використання різних матеріялів у композиціях гальмівних дисків. Порошки бури, мідні чи то бронзові волокна додавалися до складу безазбестового органічного гальмівного диску з метою дослідження впли- ву типу та кількости добавки на характеристики тертя та зносу гальмів- Corresponding author: Adem Kurt E-mail: ademkurt@gazi.edu.tr Please cite this article as: İrem Burcu Algan and Adem Kurt, The Effect of Metal Fibres and Borax Powders on the Wear and Friction Performances of the Organic Based Brake Pads, Metallofiz. Noveishie Tekhnol., 39, No. 11: 1511–1523 (2017), DOI: 10.15407/mfint.39.11.1511. Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol. 2017, т. 39, № 11, сс. 1511–1523 / DOI: 10.15407/mfint.39.11.1511 Îòòèñêè äîñòóïíû íåïîñðåäñòâåííî îò èçäàòåëÿ Ôîòîêîïèðîâàíèå ðàçðåøåíî òîëüêî â ñîîòâåòñòâèè ñ ëèöåíçèåé 2017 ÈÌÔ (Èíñòèòóò ìåòàëëîôèçèêè èì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàèíû) Íàïå÷àòàíî â Óêðàèíå. https://doi.org/10.15407/mfint.39.11.1511 https://doi.org/10.15407/mfint.39.11.1511 1512 İrem Burcu ALGAN and Adem KURT них дисків. Вперше методою порошкової металурґії було розроблено три різних групи зразків, що містять різну кількість порошку бури, мідних і бронзових волокон (1,5, 3, 4,5 і 6% ваги). Суміші готувалися за допомо- гою мішалки промислово типу, пресувалися гідравлічним пресом, а потім спікалися за температури 185 С протягом 24 годин. Тестування зразків на тертя–знос проводили за допомогою Chase Machine відповідно до стандар- ту SAE 661; потім поверхні тертя зразків досліджувалися сканівним еле- ктронним мікроскопом. Випробування на твердість проводили за Бри- неллевою методою. Результати випробувань свідчать, що, у той час як до- давання різної кількости порошку бури підвищує зносостійкість гальмів- них дисків, додавання мідних та бронзових волокон збільшує показники відновлення, значення коефіцієнтів нормального та гарячого тертя зі збі- льшенням кількости металевого волокна. Ключові слова: безазбестові органічні гальмівні диски, бура, металеве волокно, зносостійкість, коефіцієнт тертя. Изучено использование различных материалов в композициях тормоз- ных дисков. Порошки буры, медные или бронзовые волокна добавлялись в состав безасбестового органического тормозного диска, и исследовалось влияние типа и количества добавки на характеристики трения и износа тормозных дисков. Впервые методом порошковой металлургии были раз- работаны три разных группы образцов, содержащих различное количе- ство порошка буры, медных и бронзовых волокон (1,5, 3, 4,5 и 6% веса). Смеси готовились с помощью мешалки промышленно типа, прессовались гидравлическим прессом, а затем спекались при температуре 185 C в те- чение 24 часов. Тестирование образцов на трение–износ проводили с по- мощью Chase Machine в соответствии со стандартом SAE 661; затем по- верхности трения образцов исследовались сканирующим электронным микроскопом. Испытания на твёрдость проводили по методике Бринелля. Результаты испытаний показывают, что, в то время как добавление раз- ного количества порошка буры повышает износостойкость тормозных дисков, добавление медного и бронзового волокон увеличивает показате- ли восстановления, значения коэффициентов нормального и горячего трения с увеличением количества металлического волокна. Ключевые слова: безасбестовые органические тормозные диски, бура, металлическое волокно, износостойкость, коэффициент трения. (Received October 5, 2017) 1. INTRODUCTION Brake pad is a member of the brake system and formed by a combina- tion of numerous components, and it is used to decelerate/stop vehi- cles. Brake pad components transform physically and chemically dur- ing braking, which identifies the friction–wear behaviour. For this reason, the selection of components based on their characteristics in macro- and microlevels is crucial. Braking-related friction and wear THE EFFECT OF FIBRES AND POWDERS ON THE WEAR AND FRICTION 1513 behaviour change depending upon driving conditions, the composition of brake pads, production parameters, and friction film interfaces be- tween the friction material and the rotor. Therefore, in the last decade, experimental studies have aimed to provide stable friction, durability, equal abrasion resistance, and low noise and vibration [1, 2]. Brake pads are classified according to the type of base material such as metallic, carbon, and non-asbestos organic pads. Metallic-based pads consist of metallic components, such as steel and copper, carbon based pads have graphite, and non-asbestos organic pads have non- ferrous metals, Kevlar, and fiberglass. Studies on organic-based brake pads have increased due to wide availability of the organic materials used in such pads and also because their density is much lower com- pared to that of metallic pads. The use of steel, brass, and copper in brake pad compositions provides an efficient heat transfer from the friction surface because of their high thermal conductivity [3]. In re- cent years, researchers have been conducting investigations to find new materials to maintain the friction coefficient stability. As boron and its compounds have high physical and mechanical properties, they are utilized in many applications, including brake pad compositions [4–7]. The present study aims to investigate the effects of borax pow- der (a compound of boron) and copper and bronze fibres on friction and wear characteristic of non-asbestos organic brake pads. 2. EXPERIMENTAL DETAILS 2.1. Specimens Three types of ingredients (borax powder, copper and bronze fibres) were added with different rates in the commercial organic based brake pad composition. Firstly, base specimen and three different specimen groups were prepared by powder metallurgy method that contain 1%, 3%, and 5% borax powder (Na2B4O7 10H2O), 1.5%, 3%, 4.5%, and 6% copper fibres, and 1.5%, 3%, 4.5%, and 6% bronze fibres (86% Cu– 14% Sn) by weight. Copper and bronze fibres were 1 mm in size. The mixtures were blended with an industrial type mixer for 3 min, pressed in mould (86 mm 55 mm) under 15 MPa pressure, and post- sintered at 185 C for 24 hours. Table 1 shows the ingredients of the composition. Sintered samples were resized with an ATM Brilliant 250 abrasive cutting device according to the SAE 661 test standard (25 mm 5 mm 7 mm). Then, their densities were calculated according to the Archi- medes principle. Samples were named according to type of additive: BX indicates bo- rax powder, CF indicates copper fibre, and BF indicates bronze fibre. Density values were given in Table 2. 1514 İrem Burcu ALGAN and Adem KURT 2.2. Characterizations of Composites Friction tests were performed using a Chase Machine friction–wear test (Pyramid Engineering, Serial Number: 120302) according to the SAE 661 test standard. After brake pad specimens were cut in sizes of 25 mm 25 mm 7 mm, they were scrubbed with grey cast iron drum to simulate driving conditions, then friction force and temperature were measured, and data were transferred to the computer. Hardness values of the specimens were measured by means of the Emco Test Duravision 2000 hardness test machine before and after the test with the Brinell Scale (Brinell-S) test method. Surface characteristics of the brake pad specimens were analysed TABLE 1. Ingredients in brake pad composition. Classification Materials Binder Phenolic resin Fillers Barite, calcium carbonate Reinforcements Glass fibre, steel fibre, Aramid fibre, PAN Abrasives Aluminium oxide, iron oxide Friction modifiers Metal oxide, metal sulphide, borax powder, bronze fibre, copper fibre Lubricant Graphite TABLE 2. Density values according to ingredient type and percentage. Samples Density (g/cm3) Base (non-asbestos organic pad composition) 2.1 BX1 2.1 BX3 2.2 BX5 2.3 CF1.5 2.1 CF3 2 CF4.5 1.9 CF6 2 BF1.5 2.1 BF3 2 BF4.5 2 BF6 2 THE EFFECT OF FIBRES AND POWDERS ON THE WEAR AND FRICTION 1515 using a Jeol JEM 6060 LV SEM, and energy dispersive x-ray spectros- copy (EDX) was performed on the specimens. 3. RESULTS 3.1. Friction–Wear Behaviour The SAE-J661 standard is given in Table 3. According to this standard, friction coefficient values at the fade and recovery stages have differ- ent features. For example, fade stage starts when the temperature of the drum is 82 C, the heater gets activated until the temperature reaches at 345 C, and then friction coefficient values were recorded. After this stage completion, heater stops and cooler steps in. Tem- perature decreases gradually at the recovery stage, and friction coeffi- cient values are recorded. To understand the friction–wear characteristic of the specimens at the fade and recovery stages clearly, some of performance parameters were identified [8–10]. These parameters are following: normal fric- tion coefficient ( ): average value at 93, 121, 149, and 205 C; hot friction coefficient ( ) for fade: average value at 345, 317, 289, 261, and 233 C; hot friction coefficient ( ) for recovery: average value at 261, 205, and 149 C; -fade: minimum value at the fade stage % fade rate 100( min max); -recovery: maximum value at the recovery stage % recovery rate 100( min max); TABLE 3. Stages of SAE-J661 test standard. Name Speed Load On time Off time App. Temp. L Temp. H Temp. Mode Burnish 308 45 1200 0 1 0 93 Strict Reset 205 23 300 0 1 0 93 Strict Baseline-1 411 67 10 20 20 82 104 Auto Fade-1 411 67 600 0 1 82 289 Heater Recovery-1 411 67 10 0 4 261 93 Blower Wear 411 67 20 10 100 193 205 Auto Fade-2 411 67 600 0 1 82 345 Heater Recovery-2 411 67 10 0 5 317 93 Blower Baseline-2 411 67 10 20 20 82 104 Auto 1516 İrem Burcu ALGAN and Adem KURT %thickness loss rate thickness before test thickness after test 100. thickness before test As seen in Figure 1, the highest value at the fade stage is BX1 and the friction coefficient increased with temperature increase up to 205 C. At the recovery stage, the friction characteristics of the samples changed and the base sample had the highest value. The cause of fluctu- ation at this stage was attributed to non-uniform thermal loads [7]. Figure 1, a shows fade, recovery, normal and hot friction coefficients. The desired values of industrial brake pads are between 0.3 and 0.4. Standard test stages involve three basic parameters: load, tempera- ture, and speed [11, 12]. According to these parameters, -fade and normal µ values of borax-added specimens are low; however, - recovery and hot friction coefficients are average in present study. The BX5 has higher performance than other borax-added specimens do; however, base sample has the highest performance. Results indicate that the addition of borax powder does not increase the brake pad per- formance. The copper-fibre-added samples generally have good fric- Fig. 1. Friction test results at the fade (a) and recovery (b) stages, and general characteristics of fade, recovery, normal and hot friction coefficient values (c). THE EFFECT OF FIBRES AND POWDERS ON THE WEAR AND FRICTION 1517 tion characteristics because the thermal conductivity coefficient of copper is high ( 401 W/(m K)) and the generated heat is transferred efficiently for this reason. This situation improves organic brake pad friction coefficient. Furthermore, normal and hot friction coefficients increase with increasing copper fibre rate, thus CF6 (copper 6% wt.) has the highest performance. Fade and recovery characteristics of the bronze fibre-added specimens are nearly same with the copper fibre- added specimens, however, the addition of copper enhanced the -fade values unlike bronze, which has lower thermal conductivity than bronze (kbronze 354.3 W/(m K)). The rest results indicate that friction coefficient values increase with temperature up to 205 C, and then de- crease from this temperature, which is similar to resin behaviours at high temperature and bond strengths between brake pad components as described in the literature [5]. Figure 2 shows wear behaviour and fade and recovery rates for all samples. Bijwe et al. stated that acceptable % fade rate between 80 and 100 and recovery rate between 75% and 100% [11]. Although the fade Fig. 2. Fade and recovery rate (a), wear rate and thickness loss (b). 1518 İrem Burcu ALGAN and Adem KURT rate of borax powder-added specimens is below the industrial expecta- tion, their recovery rate is high. The addition of borax improves the recovery performance of organic brake pads slightly; however, their fade characteristic was substantially inadequate. The examination of the wear behaviour of borax-added specimens showed that wear rate and thickness loss decreased with increasing rate of borax weight, which indicates that wear resistance increased partially with increas- ing borax rate as the composite density (Table 2) increased. Metallic- fibre addition in the brake pad composition results in inclusions, which increases the thermal conductivity and provides effective heat removal as reported in the literature. Furthermore, metallic materials exhibit aggressive behaviour that abrades and renews the layer on the inter- face between brake pad and disc. Thereby, both thermophysical proper- ties and the tribofilm quality improve the fade resistance of the brake pad [9]. Based on this characteristic, wear rate and thickness loss in- crease with increasing copper and bronze rates, as seen in Fig. 2. Even though fade rate is low, recovery rate is high for copper-added and bronze-added specimens. 3.2. Hardness Results Figure 3 shows the hardness values of specimens obtained by the fric- tion test based on the Brinell-S method. Borax-added specimens exhib- it higher hardness values than the base specimen, and BX3 has the highest hardness due to the work hardening caused by the increasing temperature during friction. Hardness values of copper-added and Fig. 3. Brinell-S hardness results of specimens after friction test. THE EFFECT OF FIBRES AND POWDERS ON THE WEAR AND FRICTION 1519 bronze-added specimens are high because metallic fibres increase wear and deformation. The increase of hardness leads to noise, thus bronze- added specimens appear to be more advantageous than the other groups. 3.3. SEM Observations The friction surface was analysed using SEM in combination with en- ergy dispersive x-ray spectroscopy (EDS) mapping analysis to under- stand the relationship between worn surfaces and friction–wear char- acteristics of organic-based brake pads. Micrographs clearly show four distinct regions for all the specimen groups, which are black, white, grey, and wear debris. The EDS analysis indicates for all groups that the black region involves substantial amount of C, O, and S as well as a slight amount of B, Cu, or Sn (according to type of addition); the white region involves O, Ca; the grey region involves C, Ca, O, and Fe; and wear debris region involves Fe, O, Al, Si, and Ca. Regional EDS results were given in Table 4 for some specimens. Figure 4 shows micrographs Fig. 4. SEM micrographs ( 200) of borax powder-added specimens BX1 (a), BX3 (b), and BX5 (c). 1520 İrem Burcu ALGAN and Adem KURT of borax-added specimens, where black-white regions take a large pro- portion. According to the EDS results, the existing boron–oxygen com- pounds appear to have improved the wear resistance of brake pads as seen in Fig. 2. In Figure 4, b, it is observed that undistracted glass fi- bres are perpendicularly oriented towards the sliding direction due to the adhesive bonding of glass fibres at high temperatures. The EDS results of the wear debris region indicate that this region TABLE 4. Regional EDS results for certain samples. Regions Samples BX3 BX5 CF3 CF4.5 CF6 BF3 BF4.5 BF6 Black C O S B Fe Cu Sn 76.8 5.8 – 15.7 – – – – 5.1 – 92.5 – – – 85.8 6.6 – – – – – 84 11.2 3 – – – – 94 3 – – – – – 94 – – – – – 2.4 38 20.4 – – 24.8 – 4.2 90 4 – – – – 2 White C O Ca Fe B Sn Si Ti Al 74.1 5.8 – – 16 – – – – – – 28.2 14 – – 43 – 10.4 69.4 27.2 – – – – – – – 73.7 20.2 – – – – – – – 11.5 28 40.4 – – – – 5 – 80 15 – – – – – – – 41 19 17 12.4 – – – – – – 29.3 23 – – 8 27 – – Wear debris O Al Fe Ca O Cu Sn Si 7.7 – 84.6 – – – – 3 – – 91.3 2.7 – – – 3.1 – – 86.8 – – 4.1 – – – – 88.4 – – 5.4 – – – – 85.7 – 5.1 4.1 – – – – 79 – 7 – 3.5 – – – 85 – – – 6 – – – 10.5 – 17 – 53.5 – Grey O Fe C Ca Si Sn Al Mg Cu 31.4 14 30.5 – – – – – – – 41.9 – 27 15 – 6.1 – – – 92.7 – – – – – – 3.2 33.4 8.7 43.2 9.3 – – – – – 21.1 – 65.4 – – – – 5.7 – 20 12.3 50.1 – – – – – – 23.3 21 37 5 – – – – – 32 – 27 27.3 – 6 – – – THE EFFECT OF FIBRES AND POWDERS ON THE WEAR AND FRICTION 1521 involves Fe, and O, as well as Ca, Si, and Al, as reported in the litera- ture. The amount of this region is higher in BX1 compared to the other borax powder-added specimens. Larger wear debris regions are caused by the numerous contact points in the friction interfaces [13, 14]. For this reason, BX1 appears to have the highest hot friction coefficient, normal friction coefficient, and -fade. A sample EDS mapping image provided in Fig. 5 clearly shows that the components of the composite are dispersed homogeneously. Wear debris are fragmented and spread on the wear surface and also embedded into the matrix as shown in Fig. 6, c, which was considered to be a factor increasing the friction coefficient. Table 4 shows clearly that the amounts of Fe and O are high in wear debris region for certain sample, and they control the wear–friction behaviour as reported in the literature [13, 16, 17]. Since broken parti- cles coming from the grey cast iron disc accumulate in wear surfaces, the amount of Fe is the highest in this region [18]. As apparent in Figs. 6, a and 7, d, the long and large wear debris regions are secondary re- gions consisting of graphite and aramid fibres, which appear to be leading to a decrease in the friction coefficient. BF4.5 and BF6 involve substantial amount of Fe and Cu elements, which appears to be provid- ing an increase in -recovery (0.36–0.41) and recovery rate. Addition- ally, Figure 7 shows that wear debris regions are much larger in BF6 because its normal , hot , and recovery values are high. Moreover, wear rate and thickness loss increased especially for BF4.5. 4. DISCUSSION In the present study, the effect of type and quantity of additive on the wear and friction behaviours of non-asbestos commercial organic brake pad compositions was examined. The important conclusions resulting from the above present study are as follow. Fig. 5. EDS mapping image of BX3. 1522 İrem Burcu ALGAN and Adem KURT Fig. 6. SEM micrographs ( 200) of copper fibre-added specimens CF1.5 (a), CF3 (b), CF4.5 (c), and CF6 (d). Fig. 7. SEM micrographs ( 200) of bronze fibre-added specimens BF1.5 (a), BF3 (b), BF4.5 (c), and BF6 (d). THE EFFECT OF FIBRES AND POWDERS ON THE WEAR AND FRICTION 1523 1. Addition of different amounts of borax powder enhances the wear resistance of brake pads, where thought in that, and the minimum wear rate and thickness loss were observed in BX5. 2. Friction test results show that fade and normal friction coefficient values are low; however, yet recovery and hot friction coefficients are within the desired range due to borax, and other components were not observed to be not forming a compatible compound, where thought. 3. The addition of copper and bronze fibre increased recovery, normal, and hot friction coefficient values with increasing amount of metallic fibre, that e.g. CF6 and BF6 has have the maximum values. Consider- ing test results and similar studies in the literature, 6% and above of metallic fibres’ addition increases and improves the friction coeffi- cient, while it increases the wear rate, where thought. REFERENCES 1. R. Ertan and N. Yavuz, Wear, 268: 11 (2010). 2. S. J. Kim, K. S. Kim, and H. Jang, J. Mater. Process. Technol., 136, Nos. 1–3: 202 (2003). 3. H. Jang, K. Ko, S. J. Kim, R. H. Basch, and J. W. Fash, Wear, 256, Nos. 3–4: 406 (2004). 4. T. R. Chapman, D. E. Niesz, R. T. Fox, and T. Fawcett, Wear, 236, Nos. 1–2: 81 (1999). 5. U. S. Hong, S. L. Jung, K. H. Cho, M. H. Cho, S. J. Kim, and H. Jang, Wear, 266, Nos. 7–8: 739 (2009). 6. I. Mutlu, C. Oner, and F. Findik, Materials and Design, 28, No. 2: 480 (2007). 7. I. Sugözü, I. Can, and C. Oner, Industrial Lubrication and Tribology, 66: 6 (2014). 8. M. Kumar and J. Bijwe, Wear, 269, Nos. 11–12: 826 (2010). 9. M. Kumar and J. Bijwe, Wear, 303, Nos. 1–2: 569 (2013). 10. M. Kumar and J. Bijwe, Tribology International, 44, No. 2: 106 (2011). 11. M. Kumar and J. Bijwe, Wear, 270, Nos. 3–4: 269 (2011). 12. P. Filip, Z. Weiss, and D. Rafaja, Wear, 252, Nos. 3–4: 189 (2002). 13. M. Eriksson and S. Jacobson, Tribology International, 33, No. 12: 817 (2000). 14. T. Singh and A. Patnaik, Archives of Civil and Mechanical Engineering, 15, No. 1: 142 (2015). 15. M. Kchaou, A. Sellami, R. Elleuch, and H. Singh, Materials and Design, 52: 533 (2013). 16. A. Sellami, M. Kchaou, R. Elleuchi, A.-L. Cristol, and Ya. Desplanques, Materials and Design, 59: 84 (2014). 17. B. Öztürk and S. Öztürk, Tribology Letters, 42: 339 (2011). 18. B. Öztürk, S. Öztürk, and A. Adigüzel, Tribology Transactions, 56: Iss. 3: 428 (2013). https://doi.org/10.1016/j.wear.2010.02.026 https://doi.org/10.1016/S0924-0136(03)00159-6 https://doi.org/10.1016/S0924-0136(03)00159-6 https://doi.org/10.1016/S0043-1648(03)00445-9 https://doi.org/10.1016/S0043-1648(03)00445-9 https://doi.org/10.1016/S0043-1648(99)00259-8 https://doi.org/10.1016/S0043-1648(99)00259-8 https://doi.org/10.1016/j.wear.2008.08.008 https://doi.org/10.1016/j.wear.2008.08.008 https://doi.org/10.1016/j.matdes.2005.09.002 https://doi.org/10.1108/ILT-03-2012-0029 https://doi.org/10.1108/ILT-03-2012-0029 https://doi.org/10.1016/j.wear.2010.08.011 https://doi.org/10.1016/j.wear.2013.03.053 https://doi.org/10.1016/j.triboint.2010.09.013 https://doi.org/10.1016/j.wear.2010.10.068 https://doi.org/10.1016/S0043-1648(01)00873-0 https://doi.org/10.1016/S0301-679X(00)00127-4 https://doi.org/10.1016/j.acme.2014.01.009 https://doi.org/10.1016/j.acme.2014.01.009 https://doi.org/10.1016/j.matdes.2013.05.015 https://doi.org/10.1016/j.matdes.2013.05.015 https://doi.org/10.1016/j.matdes.2014.02.025 https://doi.org/10.1007/s11249-011-9779-5 https://doi.org/10.1080/10402004.2012.758333 https://doi.org/10.1080/10402004.2012.758333