Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines

The influence of electrode material on the state of build-up layer of steam turbine rotor blades is investigated. The strengthening layer is formed by means of the electrospark alloying with use of alloy Т15К6 and steel 15Х11МФШ. Microstructure, microhardness, and thickness of build-up layer are inv...

Full description

Saved in:
Bibliographic Details
Published in:Металлофизика и новейшие технологии
Date:2017
Main Authors: Glushkova, D.B., Grinchenko, E.D., Kostina, L.L., Demchenko, S.V., Ryzhkov, Yu.V.
Format: Article
Language:English
Published: Інститут металофізики ім. Г.В. Курдюмова НАН України 2017
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/130470
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines / D.B. Glushkova, E.D. Grinchenko, L.L. Kostina, S.V. Demchenko, Yu.V. Ryzhkov // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 12. — С. 1647-1654. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-130470
record_format dspace
spelling Glushkova, D.B.
Grinchenko, E.D.
Kostina, L.L.
Demchenko, S.V.
Ryzhkov, Yu.V.
2018-02-13T20:14:40Z
2018-02-13T20:14:40Z
2017
Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines / D.B. Glushkova, E.D. Grinchenko, L.L. Kostina, S.V. Demchenko, Yu.V. Ryzhkov // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 12. — С. 1647-1654. — Бібліогр.: 5 назв. — англ.
1024-1809
PACS: 62.20.Qp, 68.35.Gy, 68.55.J-, 68.55.Ln, 68.60.Bs, 81.15.Cd, 81.65.Lp
DOI: doi.org/10.15407/mfint.39.12.1647
https://nasplib.isofts.kiev.ua/handle/123456789/130470
The influence of electrode material on the state of build-up layer of steam turbine rotor blades is investigated. The strengthening layer is formed by means of the electrospark alloying with use of alloy Т15К6 and steel 15Х11МФШ. Microstructure, microhardness, and thickness of build-up layer are investigated. The advantages of steel 15Х11МФШ for the strengthening of leading edges of steam turbine rotor blades are substantiated.
Исследовано влияние материала электрода на состояние наплавленного слоя рабочих лопаток паровых турбин. Упрочнённый слой формировался электроискровым легированием сплавом Т15К6 и сталью 15X11МФШ. Исследовались микроструктура, микротвёрдость и толщина наплавленного слоя. Обоснованы преимущества стали 15X11МФШ для упрочнения входных кромок рабочих лопаток паровых турбин.
Досліджено вплив матеріялу електроди на стан натопленого шару робочих лопаток парових турбін. Зміцнений шар формувався електроіскровим леґуванням стопом Т15К6 і крицею 15Х11МФШ. Досліджувалися мікроструктура, мікротвердість і товщина натопленого шару. Обґрунтовано переваги криці 15Х11МФШ для зміцнення вхідних крайок робочих лопаток парових турбін.
en
Інститут металофізики ім. Г.В. Курдюмова НАН України
Металлофизика и новейшие технологии
Физика прочности и пластичности
Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines
Материал для упрочнения входных кромок рабочих лопаток паровых турбин
Матеріял для зміцнення вхідних крайок робочих лопаток парових турбін
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines
spellingShingle Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines
Glushkova, D.B.
Grinchenko, E.D.
Kostina, L.L.
Demchenko, S.V.
Ryzhkov, Yu.V.
Физика прочности и пластичности
title_short Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines
title_full Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines
title_fullStr Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines
title_full_unstemmed Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines
title_sort material for strengthening of entrance edges of work blades of stream turbines
author Glushkova, D.B.
Grinchenko, E.D.
Kostina, L.L.
Demchenko, S.V.
Ryzhkov, Yu.V.
author_facet Glushkova, D.B.
Grinchenko, E.D.
Kostina, L.L.
Demchenko, S.V.
Ryzhkov, Yu.V.
topic Физика прочности и пластичности
topic_facet Физика прочности и пластичности
publishDate 2017
language English
container_title Металлофизика и новейшие технологии
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
format Article
title_alt Материал для упрочнения входных кромок рабочих лопаток паровых турбин
Матеріял для зміцнення вхідних крайок робочих лопаток парових турбін
description The influence of electrode material on the state of build-up layer of steam turbine rotor blades is investigated. The strengthening layer is formed by means of the electrospark alloying with use of alloy Т15К6 and steel 15Х11МФШ. Microstructure, microhardness, and thickness of build-up layer are investigated. The advantages of steel 15Х11МФШ for the strengthening of leading edges of steam turbine rotor blades are substantiated. Исследовано влияние материала электрода на состояние наплавленного слоя рабочих лопаток паровых турбин. Упрочнённый слой формировался электроискровым легированием сплавом Т15К6 и сталью 15X11МФШ. Исследовались микроструктура, микротвёрдость и толщина наплавленного слоя. Обоснованы преимущества стали 15X11МФШ для упрочнения входных кромок рабочих лопаток паровых турбин. Досліджено вплив матеріялу електроди на стан натопленого шару робочих лопаток парових турбін. Зміцнений шар формувався електроіскровим леґуванням стопом Т15К6 і крицею 15Х11МФШ. Досліджувалися мікроструктура, мікротвердість і товщина натопленого шару. Обґрунтовано переваги криці 15Х11МФШ для зміцнення вхідних крайок робочих лопаток парових турбін.
issn 1024-1809
url https://nasplib.isofts.kiev.ua/handle/123456789/130470
citation_txt Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines / D.B. Glushkova, E.D. Grinchenko, L.L. Kostina, S.V. Demchenko, Yu.V. Ryzhkov // Металлофизика и новейшие технологии. — 2017. — Т. 39, № 12. — С. 1647-1654. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT glushkovadb materialforstrengtheningofentranceedgesofworkbladesofstreamturbines
AT grinchenkoed materialforstrengtheningofentranceedgesofworkbladesofstreamturbines
AT kostinall materialforstrengtheningofentranceedgesofworkbladesofstreamturbines
AT demchenkosv materialforstrengtheningofentranceedgesofworkbladesofstreamturbines
AT ryzhkovyuv materialforstrengtheningofentranceedgesofworkbladesofstreamturbines
AT glushkovadb materialdlâupročneniâvhodnyhkromokrabočihlopatokparovyhturbin
AT grinchenkoed materialdlâupročneniâvhodnyhkromokrabočihlopatokparovyhturbin
AT kostinall materialdlâupročneniâvhodnyhkromokrabočihlopatokparovyhturbin
AT demchenkosv materialdlâupročneniâvhodnyhkromokrabočihlopatokparovyhturbin
AT ryzhkovyuv materialdlâupročneniâvhodnyhkromokrabočihlopatokparovyhturbin
AT glushkovadb materíâldlâzmícnennâvhídnihkraiokrobočihlopatokparovihturbín
AT grinchenkoed materíâldlâzmícnennâvhídnihkraiokrobočihlopatokparovihturbín
AT kostinall materíâldlâzmícnennâvhídnihkraiokrobočihlopatokparovihturbín
AT demchenkosv materíâldlâzmícnennâvhídnihkraiokrobočihlopatokparovihturbín
AT ryzhkovyuv materíâldlâzmícnennâvhídnihkraiokrobočihlopatokparovihturbín
first_indexed 2025-11-25T06:57:38Z
last_indexed 2025-11-25T06:57:38Z
_version_ 1850509815233642496
fulltext 1647 PACS numbers: 62.20.Qp, 68.35.Gy, 68.55.J-, 68.55.Ln, 68.60.Bs, 81.15.Cd, 81.65.Lp Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines D. B. Glushkova, E. D. Grinchenko, L. L. Kostina, S. V. Demchenko, and Yu. V. Ryzhkov Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., 61002 Kharkiv, Ukraine The influence of electrode material on the state of build-up layer of steam turbine rotor blades is investigated. The strengthening layer is formed by means of the electrospark alloying with use of alloy Т15К6 and steel 15Х11МФШ. Microstructure, microhardness, and thickness of build-up lay- er are investigated. The advantages of steel 15Х11МФШ for the strengthen- ing of leading edges of steam turbine rotor blades are substantiated. Key words: electrospark alloying, electrode, surfacing layers, microstruc- ture, microhardness, strengthening. Досліджено вплив матеріялу електроди на стан натопленого шару робо- чих лопаток парових турбін. Зміцнений шар формувався електроіскро- вим леґуванням стопом Т15К6 і крицею 15Х11МФШ. Досліджувалися мікроструктура, мікротвердість і товщина натопленого шару. Обґрунто- вано переваги криці 15Х11МФШ для зміцнення вхідних крайок робочих лопаток парових турбін. Ключові слова: електроіскрове леґування, електрода, натоплений шар, мікроструктура, мікротвердість, зміцнення. Исследовано влияние материала электрода на состояние наплавленного слоя рабочих лопаток паровых турбин. Упрочнённый слой формировался электроискровым легированием сплавом Т15К6 и сталью 15X11МФШ. Corresponding author: Diana Borysivna Glushkova E-mail: diana@khadi.kharkov.ua Please cite this article as: D. B. Glushkova, E. D. Grinchenko, L. L. Kostina, S. V. Demchenko, and Yu. V. Ryzhkov, Material for Strengthening of Entrance Edges of Work Blades of Stream Turbines, Metallofiz. Noveishie Tekhnol., 39, No. 12: 1647– 1654 (2017), DOI: 10.15407/mfint.39.12.1647. Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol. 2017, т. 39, № 12, сс. 1647–1654 / DOI: 10.15407/mfint.39.12.1647 Îòòèñêè äîñòóïíû íåïîñðåäñòâåííî îò èçäàòåëÿ Ôîòîêîïèðîâàíèå ðàçðåøåíî òîëüêî â ñîîòâåòñòâèè ñ ëèöåíçèåé 2017 ÈÌÔ (Èíñòèòóò ìåòàëëîôèçèêè èì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàèíû) Íàïå÷àòàíî â Óêðàèíå. https://doi.org/10.15407/mfint.39.12.1647 https://doi.org/10.15407/mfint.39.12.1647 1648 D. B. GLUSHKOVA, E. D. GRINCHENKO, L. L. KOSTINA et al. Исследовались микроструктура, микротвёрдость и толщина наплавлен- ного слоя. Обоснованы преимущества стали 15X11МФШ для упрочнения входных кромок рабочих лопаток паровых турбин. Ключевые слова: электроискровое легирование, электрод, наплавленный слой, микроструктура, микротвёрдость, упрочнение. (Received September 7, 2017; in final version, November 24, 2017) 1. INTRODUCTION Rotor blades of steam turbines determine the serviceability of the tur- bine. Their working conditions require high hardness of leading edges. Further, erosion damage reduces their resistance. To increase the service life of blades, the leading edges are exposed to such processing methods like hardening by high-frequency currents and application of the widely used alloy Т15К6 based on carbides Ti and W as in forcing electrode. The binder for this alloy is Co. However, the mode of operation of blades is such that requires in- creased resistance to shock erosion, lack of adverse influence of coat- ing formation parameters on mechanical properties, high corrosion properties. 2. ANALYSIS OF PUBLICATIONS Application of the above methods has limitations. Thus, using the high-frequency current makes it difficult to technically temper the ra- dius blend from the blade air foil portion to the bookshelf bandage, and use of the widely applied alloy Т15К6 as a reinforcing electrode is lim- ited due to the presence of cobalt—an element that, as a result of acti- vation, forms long-lived isotopes, which reduce the erosion resistance of blades [1, 2]. In connection with the above, the objective of the present work was to develop a method that would enable to simultaneously reinforce the leading edges of blades and reduce their erosion resistance [3, 5]. 3. PURPOSE AND TASK In the given paper, there were tested two materials to be used as an electrode—alloy Т5К16 and steel 15Х11МФШ. The electric spark method is based on the phenomenon of electric erosion of materials under spark discharge in a gaseous medium, the polar erosion product transport on the layer of modified structure and alloy. Because of electrical breakdown of the interelectrode gap, there occurs a spark, in which the flow of electrons leads to local heating of MATERIAL FOR STRENGTHENING OF ENTRANCE EDGES OF WORK BLADES 1649 the electrode (anode) [1, 4]. On the surface of the cathode under the in- fluence of high thermal loads, there is carried out a mixing of both the cathode and anode materials that promotes the formation of proper adhesion between the substrate and the formed layer. Figure 1 shows the general scheme of the electrospark alloying (ESA). The composition of the doped layer may differ significantly from the composition of the raw materials. It is caused by the specifics of the ESA impact, which consists in the ultra-high heating and cooling rates, the contact of surfaces to each other and with the surrounding elements of the environment under pulse exposure to high tempera- tures and pressures. The study was conducted, using samples of steel 15Х11МФШ that was thermally treated to obtain the hardness of 285 HV with removing the decarburized layer to the depth of 1 mm along the hardening plane. Works on the strengthening of samples were carried out using elec- trospark equipment EIL 8A. 4. PRIMARY PARTITION The microstructure of the base metal of specimens presents sorbitol with retaining orientation along martensitic planes. The structure of the samples is of different uniformity, the structure contains grains of different etch ability, and the size of needles corresponds to 7–8 points Fig. 1. General scheme of the electrospark alloying. 1650 D. B. GLUSHKOVA, E. D. GRINCHENKO, L. L. KOSTINA et al. (Fig. 2). Control of the hardened surface is carried out by visual inspection with a magnifying glass with 3, 10 power. On the surface of the samples after hardening by both alloys Т15К6 and steel 15Х11МФШ, defects such as cracks were not revealed. Fig- ure 3 shows the appearance of the surface hardened by alloy Т15К6. The layer is homogeneous, fine-grained, and, in some places, there can be found small size craters. Figure 4 shows the appearance of the surface hardened by steel 15Х11МФШ. The layer is homogeneous, fine-grained, and it has small Fig. 2. Microstructure of the main sample metal. Fig. 3. The appearance of the sample surface strengthened by alloy Т15К6. MATERIAL FOR STRENGTHENING OF ENTRANCE EDGES OF WORK BLADES 1651 craters in small quantities. To assess the quality of adhesion of doped layers with the substrate, the samples after hardening were tested according to the following scheme: samples Nos. 1 and 2 were tested for bending at an angle of 90 using a mandrel with R 20 mm; samples Nos. 3 and 4 were tested for bending at an angle of 70 using a mandrel with R 40 mm. The test results are shown in Table 1. When viewing the bends, the peel of the hardened layer from the base metal was not detected. Measurement of the thickness of the hardened layer was carried out in sections manufactured according to the cross-sectional plane of the sample. The surface hardened layer is characterized by heterogeneity of the layer thickness, but the average value of the thickness in case of hard- ening by alloy Т15К6 and steel 15Х11МФШ is virtually identical (Fig. 5). Study of the microstructure of the deposited layer showed that the structure is homogeneous and almost no etch ability. In some places, there were detected individual pores. Fig. 4. The appearance of the sample surface hardened by steel 15Х11MФШ. TABLE 1. Bending test results. Sample brand Material Test result Notes 1 2 3 4 Т15К6 15Х11МФШ 15Х11МФШ 15Х11МФШ No ruination No ruination No ruination No ruination In the place of bending, detected tears In the place of bending, detected tears In the place of bending, no detected tears In the place of bending, no detected tears 1652 D. B. GLUSHKOVA, E. D. GRINCHENKO, L. L. KOSTINA et al. Fig. 5. Histograms of the mean values of thickness of layers hardened by alloy Т15К6 (1) and steel 15Х11MФШ (2). Fig. 6. Histograms of microhardness measurement in samples hardened by alloy Т15К6 (1) and steel 15Х11MФШ (2): a—deposited layer; b—transition (diffusion) zone; c—HAZ ( 0.05 mm from the border); d—HAZ ( 0.1 mm from the border). MATERIAL FOR STRENGTHENING OF ENTRANCE EDGES OF WORK BLADES 1653 When surfacing by steel 15Х11МФШ, the layer structure is of mainly dendritic structure. In the surface layer of the base metal under high temperatures, there was observed the formation of the light etch ability zone formed by diffusion of the electrode material into the sam- ple depth and the dark-etch ability zone of under alloying. In some places, there were detected pores. Figure 6 shows histograms of microhardness measurement in the zone ‘hardened layer–base metal’ of the samples under study. As it follows from the above histograms, in all areas, the micro- hardness at hardening by alloy Т15К6 and steel 15Х11МФШ is practi- cally identical. 5. CONCLUSIONS 1. When there was performed visual inspection and carried out metal- lographic analysis of samples reinforced by the electrospark method using the equipment EIL 8A with electrodes made of steel 15Х11МФШ and hard alloy Т15К6, cracks were not revealed. 2. The bending tests of the samples hardened by both the solid alloy Т15К6 and steel 15Х11МФШ are not failed. 3. In examination of the bends, the peel of the hardened layer from the base metal was not detected. 4. The average thickness of the surface layer hardened by both alloy Т15К6 and steel 15Х11МФШ was virtually identical. 5. The microhardness of the deposited layer, the transition zone, and HAZ at different distances from the boundary, when using both the hardened alloy Т15К6 and steel 15Х11МФШ, is not practically differ- ent. 6. Based on these studies, it is recommended to replace the applied re- inforcing electrode with one made of alloy Т15К6 and steel 15Х11МФШ to increase the hardness of the leading edges of steam en- gine rotor blades. REFERENCES 1. Yu. I. Mulin and A. D. Verkhoturov, Elektroiskrovoe Legirovanie Rabochikh Poverkhnostey Instrumentov i Detaley Mashin Elektrodnymi Materialami, Poluchennymi iz Mineral’nogo Syr’ya [Electrospark Alloying of Tools Surfaces and Machine Components with Electrode Materials Obtained from Mineral Raw Materials] (Vladivostok: Dal’nauka: 1999) (in Russian). 2. Sovremennye Metody Uprochneniya Poverkhnostey Detaley Mashin [Modern Methods of Hardening of Surfaces of Machine Parts] (Ed. K. W. Frolov) (Moscow: Institute Eng. Sci., Acad. Sci. USSR: 2009), Iss. 9.1: 205 (in Russian). 3. B. I. Kostetskiy, Trenie, Smazka i Iznos v Mashinakh [Friction, Lubrication 1654 D. B. GLUSHKOVA, E. D. GRINCHENKO, L. L. KOSTINA et al. and Wear in Machines] (Kiev: Tekhnika: 2000) (in Russian). 4. V. I. Bolshakov, V. I. Kharchenko, and V. N. Zhuravel, Perspectivnye Zadachi Sovremennoy Nauki: Sb. Nauchnykh Tr. (Dnepropetrovsk: 2002), p. 109 (in Russian). 5. V. I. Bolshakov, V. M. Volchuk, and Yu. V. Dubrov, Visnyk NAN Ukrayiny, No. 8: 66 (2013) (in Ukrainian).