Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran
Removal of Natural Organic Matter (NOM)is one of the most important objectives of water treatment plants but reducing these pollutants either present in water as dissolved or suspended form is not as efficient as is required in conventional treatment plants. The purpose of this study was comparison...
Saved in:
| Published in: | Химия и технология воды |
|---|---|
| Date: | 2011 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут колоїдної хімії та хімії води ім. А.В. Думанського НАН України
2011
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/130670 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran / A.H. Mahvi, M. Malakootian, M.R. Heidari // Химия и технология воды. — 2011. — Т. 33, № 6. — С. 633-645. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-130670 |
|---|---|
| record_format |
dspace |
| spelling |
Mahvi, A.H. Malakootian, M. Heidari, M.R. 2018-02-18T19:11:43Z 2018-02-18T19:11:43Z 2011 Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran / A.H. Mahvi, M. Malakootian, M.R. Heidari // Химия и технология воды. — 2011. — Т. 33, № 6. — С. 633-645. — Бібліогр.: 23 назв. — англ. 0204-3556 https://nasplib.isofts.kiev.ua/handle/123456789/130670 541.18.046 + 628.16 Removal of Natural Organic Matter (NOM)is one of the most important objectives of water treatment plants but reducing these pollutants either present in water as dissolved or suspended form is not as efficient as is required in conventional treatment plants. The purpose of this study was comparison performance of composite polyaluminum silicate chloride (PASiC) and electrocoagulation (EC) process by aluminum electrodes in NOM removal from raw surface water. Удаление природных органических веществ (ПОВ) является одной из наиболее важных задач при очистке поверхностных вод. Однако удаление ПОВ, находящихся в растворенной форме или в виде суспензий, не настолько эффективно, как это требуется при работе водоочистных сооружений. Изучено влияние мутности, общего органического углерода (ООУ), адсорбции ПОВ при длине волны 254 нм (УФ254 нм), ХПК, щелочности в процессе электрокоагуляции и при использовании композитного четыреххлористого кремния полиалюминия (КЧКП). Видалення природних органічних речовин (ПОР) є одним з найбільш важливих завдань при очищенні поверхневих вод. Проте видалення ПОР, що знаходяться в розчиненій формі або у вигляді суспензій, не настільки ефективно, як це потрібно при роботі водоочисних споруд. Вивчений вплив каламутності, загального органічного вуглецю (ЗОУ), адсорбції ПОР при довжині хвилі 254 нм (УФ254 нм), ХПК, лужності в процесі електрокоагуляції і при використанні композитного чотирьоххлорістого кремнію поліалюмінію (КЧКП). The authors would like to thank Environmental Health Research Committee of Kerman University of Medical Sciences and Khorasan Razavi Water and Wastewater company for financial support of this research. They also appreciate Ms. Navidi and Ms. Eng Ghouchani for their assistance in the water treatment plant. en Інститут колоїдної хімії та хімії води ім. А.В. Думанського НАН України Химия и технология воды Технология водоподготовки и деминерализация вод Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran |
| spellingShingle |
Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran Mahvi, A.H. Malakootian, M. Heidari, M.R. Технология водоподготовки и деминерализация вод |
| title_short |
Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran |
| title_full |
Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran |
| title_fullStr |
Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran |
| title_full_unstemmed |
Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran |
| title_sort |
comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, iran |
| author |
Mahvi, A.H. Malakootian, M. Heidari, M.R. |
| author_facet |
Mahvi, A.H. Malakootian, M. Heidari, M.R. |
| topic |
Технология водоподготовки и деминерализация вод |
| topic_facet |
Технология водоподготовки и деминерализация вод |
| publishDate |
2011 |
| language |
English |
| container_title |
Химия и технология воды |
| publisher |
Інститут колоїдної хімії та хімії води ім. А.В. Думанського НАН України |
| format |
Article |
| description |
Removal of Natural Organic Matter (NOM)is one of the most important objectives of water treatment plants but reducing these pollutants either present in water as dissolved or suspended form is not as efficient as is required in conventional treatment plants. The purpose of this study was comparison performance of composite polyaluminum silicate chloride (PASiC) and electrocoagulation (EC) process by aluminum electrodes in NOM removal from raw surface water.
Удаление природных органических веществ (ПОВ) является одной из наиболее важных задач при очистке поверхностных вод. Однако удаление ПОВ, находящихся в растворенной форме или в виде суспензий, не настолько эффективно, как это требуется при работе водоочистных сооружений. Изучено влияние мутности, общего органического углерода (ООУ), адсорбции ПОВ при длине волны 254 нм (УФ254 нм), ХПК, щелочности в процессе электрокоагуляции и при использовании композитного четыреххлористого кремния полиалюминия (КЧКП).
Видалення природних органічних речовин (ПОР) є одним з найбільш важливих завдань при очищенні поверхневих вод. Проте видалення ПОР, що знаходяться в розчиненій формі або у вигляді суспензій, не настільки ефективно, як це потрібно при роботі водоочисних споруд. Вивчений вплив каламутності, загального органічного вуглецю (ЗОУ), адсорбції ПОР при довжині хвилі 254 нм (УФ254 нм), ХПК, лужності в процесі електрокоагуляції і при використанні композитного чотирьоххлорістого кремнію поліалюмінію (КЧКП).
|
| issn |
0204-3556 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/130670 |
| citation_txt |
Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in ghochan, Iran / A.H. Mahvi, M. Malakootian, M.R. Heidari // Химия и технология воды. — 2011. — Т. 33, № 6. — С. 633-645. — Бібліогр.: 23 назв. — англ. |
| work_keys_str_mv |
AT mahviah comparisonofpolyaluminumsilicatechlorideandelectrocoagulationprocessinnaturalorganicmatterremovalfromsurfacewateringhochaniran AT malakootianm comparisonofpolyaluminumsilicatechlorideandelectrocoagulationprocessinnaturalorganicmatterremovalfromsurfacewateringhochaniran AT heidarimr comparisonofpolyaluminumsilicatechlorideandelectrocoagulationprocessinnaturalorganicmatterremovalfromsurfacewateringhochaniran |
| first_indexed |
2025-11-25T21:02:54Z |
| last_indexed |
2025-11-25T21:02:54Z |
| _version_ |
1850545661914644480 |
| fulltext |
ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6 633
A.H. MAHVI, M. MALAKOOTIAN, M.R. HEIDARI, 2011
ТЕХНОЛОГИЯ ВОДОПОДГОТОВКИ И ДЕМИНЕРАЛИЗАЦИЯ ВОД
UDK 541.18.046 + 628.16
COMPARISON OF POLYALUMINUM SILICATE CHLORIDE
AND ELECTROCOAGULATION PROCESS, IN NATURAL
ORGANIC MATTER REMOVAL FROM SURFACE WATER
IN GHOCHAN, IRAN
A.H. Mahvi1,2, M. Malakootian3, M.R. Heidari3
1School of Public Health and Center for Environmental research,
Tehran University of Medical Sciences, Tehran, Iran;
2National Institute of Health Research, Ministry of Health, Tehran,
Iran;
3Department of Environmental Health, School of Public Health,
Kerman University of Medical Sciences, Kerman, Iran
Recieved 10.09.2010
Removal of Natural Organic Matter (NOM)is one of the most important objectives of
water treatment plants but reducing these pollutants either present in water as dissolved
or suspended form is not as efficient as is required in conventional treatment plants.
The purpose of this study was comparison performance of composite polyaluminum
silicate chloride (PASiC) and electrocoagulation (EC) process by aluminum electrodes
in NOM removal from raw surface water. In this study, the effects of turbidity, total
organic compounds carbons (TOC), adsorption at a wavelength of 254 nm (UV254
nm), chemical oxygen demand (COD), alkalinity, residual aluminum in finished water
by application of EC process and PASiC were investigated. The results demonstrate
that PASiC coagulant at optimum concentration of 1 – 5 (ml/L) was capable of removing
TOC, COD, UV254, and turbidity from raw water by 93.77, 93.5, 63 and 95%,
respectively. In contrast, EC process, removed TOC, COD, UV254 and turbidity from
raw water by 89, 99.75, 37 and 50%, respectively. The pilot-scale results demonstrated
the significant advantage of PASiC compared to EC process in removal of NOM and
turbidity form raw water. Residual aluminum in finished water was below the
recommended World Health Organization guidelines (0.2 mg/L) for both processes.
Finally it can be concluded that PASiC and EC process are reliable, efficient and cost-
effective methods for removal of NOM from surface water.
Keywords: electrocoagulation, natural organic matter, polyaluminum silicate
chloride.
634 ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6
Introduction
Presence of high concentration of NOM is one of the major pollutants in
surface water sources. The presence of NOM can cause odor and taste in the
finished treated water and could lead to additional treatment costs [1]. NOM
contains roughly 40 – 60% carbon and 1 – 5% nitrogen by weight, respectively
[2]. NOM concentration in water treatment plants is 2.47 and 1.63 mg/L
respectively. The mean of total percent of hydrophobic and hydrophilic
fraction is about 41 and 59% [3]. During water treatment process, nitrogenous
moieties of NOM can react with disinfectants to form carcinogenic, and
adverse birth outcomes, trihalomethanes and haloacetic acids [2, 4, 5]. WHO
has given a recommendation guideline of below 0.3 mg/L [1]. Current options
for dissolved organic carbon (DOC) removal includes membrane filtration
(80 – 99%), activated carbon filtration (53 – 95%), ion exchange (60 – 80%),
ozonation/biodegradation (25 – 75%) and coagulation with cationic additives
(10 – 60%) [6, 7]. NOM can be removed from water by conventional surface
water treatment processes mainly such of coagulation, sedimentation, and
gravity ltration [7]. During coagulation process NOM is removed through
charge neutralization, entrapment, and sorption onto oc surfaces. In recent
decade, aluminum or iron-based compounds such as ferric sulfate (FS), alum,
aluminum chloride, polyaluminum chloride (PAC) are widely used for
removal of DOC [8]. In contrast, a research demonstrated that Al and Fe
salts were not efficiently desirable in removal of natural organic matter [9].
Therefore, there is a need to a new coagulant in order to improve the
performance in NOM removal from water.
Development of PASiC under certain conditions was in mind. In this regard,
PAC and activated silica, a polysilicate (PSi), could be combined eith each
other in order to get a compound based on (PAC) as a new coagulant [10].
PASiC is a new type of inorganic polymer coagulant, having a larger particle
size and better turbidity and color removal efficiency than PAC [11]. Gao and
Yue et al. in their recent studies applied PASiC for removal of algae, turbidity,
oil, COD and TP under the laboratory conditions [12].
EC is a an emerging and efficient method in water treatment where the
flocculating agent is generated by ion exchange process using electrochemical
of a sacrificial anode [13, 14]. In electrocoagulation process, there is no addition
of chemicals to the water. Therefore, in this process a small volume of sludge is
produced, comparing with conventional coagulation process in water treatment
and such sludge can be easily removed by decantation [12, 15]. Currently, in the
EC process aluminum or iron plates are used as electrodes [16].
ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6 635
In recent years, it has been increasing interest in the use of electrochemistry
for water and wastewater treatment. EC process has been widely researched in
the field of water and wastewater treatment to remove heavy metals, chemical
compounds, microorganism, hardness, turbidity, and other environmental
contaminants [17 – 18].
In a research in Taiwan, EC process was investigated for removal of TOC
from aqueous solution containing polyvinyl alcohol (PVA). The PVA and TOC
removal efficiencies were significantly influenced by the current density and temperature
[19]. In another survey the removal of NOM from drinking water which was treated by
coagulation – microfiltration using metal membranes resulted in more than 95%
color removal, 85% UV removal, 65 – 75% TOC removal and turbidity reached
less than 0.2 NTU and non-detectable suspended solids in the finished water [20].
Zazouli and et al. in a research on application of nanofiltration membrane showed
that the average rejection efficiency of humic acid and salt ranged between 91.2 –
95.25% and 63.6 – 80% respectively [21].
This paper investigates comparison of PaSiC and the EC process, in
removal of NOM from raw surface water in Ghouchan water treatment plant.
Experimental
Preparation of coagulants. The preparation of PASiC coagulant is briefly
described below. At first, 10,75 ml of concentrated 3M SiO
2
solution was
introduced slowly into 10 ml of 2M hydrochloric acid solution while stirring
to obtain a PSi solution (pH value of 2.0 – 2.2). Then, fresh PSi solution was
mixed with 2.5 M AlCl
3
solution at Al to Si ratio of at least 10. Then, 1.5 M
Na
2
CO
3
solutions were added to the solution slowly under stirring condition
to obtain an OH to Al ratio equal to 2. The above solution had the following
properties: Al
2
O
3
+ SiO
2
content = 10.0 %, Al/Si = 10, = 2, pH = 1.5 – 3.5,
and density = 1–1.5 g/Cm3 [22].
EC unit. A 200 ml beaker was used as EC cell. Eight sheets of rectangular
laminate aluminum was used as electrode, each (8 10) cm and the distance
between the plates was fixed about 1 cm. Electrodes were connected to direct
current power supply with 10 – 30 V as maximal tension and 15 A (Fig. 1).
Before the EC test, and in order to avoid any interference, the electrodes
were rinsed with distilled water then cleaned with HCl solution (1:1) and finally
they were rinsed again with distilled water.
636 ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6
1
2
3
4 5
6
7
A C
1 – DC power supply
2 – Digital amperemeter
3 – Digital voltmeter
4 – Anode rod
5 – Cathode rod
6 – Magnetic bar
7 – Magnetic stirring controller
Fig. 1. Schematic diagram of the electrocoagulation pilot plant.
Analytical methods
Coagulation procedure was carried out using a six paddle gang stirrer jar
test with six one-liter beakers. An initial rapid mixing was set at 120 rpm for
two min followed by a slow mixing at 45 rpm for 10 min then settling for
15 min. After sedimentation, supernatant samples were taken from a point 2 cm
below the surface for analysis.
Turbidity was measured by a Eutech Turbidimeter (Model 5310), and pH
was measured by Eutech pH meter. TOC of the samples were measured using
DR/5000 Spectrophotometer, UV254 absorbance and residual aluminum was
measured by UV/Vis Spectrophotometer ("Shimadzu", Japan) with 1.0 cm
quartz cells COD was determined by the potassium dichromate method
according to the Standard Method for Examination of Water and Wastewater
[23]. In all the experiments, in order to neglect the effect of pH on the NOM
removal efficiency, the pH of the water was adjusted with 0.1M HCl solution
or 0.1M NaOH solution.
Removal efficiencies (R, %) were calculated according to equation below:
R = [(CO – CE) / CO] . 100.
ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6 637
Results and discussion
Application of PASiC coagulant. Results of PASiC experiments for TOC,
COD, and UV254 removal are shown in Fig. 2 – 4.The results demonstrated
that, required coagulant dosage for TOC, COD, and UV254 removal increases
with NOM increment. As illustrated in Fig. 2 – 4, applying an optimum dosage
of 1 ml/L at pH 7 resulted in 93.77, 93.5, and 63% removals of TOC, COD,
and UV254, respectively. As the initial coagulant concentration increased, the
removal efficiency decreased, and the range of removal efficiency was 91 –
95% .The effect of PASiC doses on turbidity removal is shown in Fig. 5, at
initial pH of water. As shown, turbidity removal generally increases with
increasing coagulant dose. According to this Fig. 5, the maximum turbidity
removal rates obtained at initial pH of water is 95%. The results obtained from
the experiment showed that increases in raw water turbidity up to 100 NTU
led to an increase in turbidity removal efficiency. Therefore, the treated water
residual turbidity was always below 0.2 NTU for all samples tested. Fig. 6
shows the volume of settled sludge after coagulation in its optimum pH. As in
Fig. 7, residual aluminum in treated water increases with increasing coagulant
dose. It is clear that PASiC not only have any positive effect on NOM removal
but also it increases turbidity and the volume of settled sludge. The appropriate
setting time was obtained about 15 min. The appropriate amount of sludge
production can cause reduction in sludge disposal problem and extra costs.
100
92
96
88
84
80
0 1 2 3 4 5
Fig. 2. TOC removal percentage by PASiC in natural pH.
638 ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6
Fig. 3. COD removal percentage by PASiC in natural pH.
60
40
20
0
0 1 2 3 4 5
Fig. 4. Removal percentage UV254 by PASiC in natural pH.
ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6 639
80
60
100
40
20
0
0 1 2 3 4 5
Fig. 5. Turbidity removal percentage by PASiC in natural pH .
1.7
1.9
0.9
1.1
1.3
1.5
0.7
0.5
0 1 2 3 4 5
Fig. 6. Height of sludge by PASiC in natural pH.
640 ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6
5
2
3
4
1
0
0 1 2 3 4 5
Fig. 7. Residual aluminum rate by PASiC in natural pH
Application of EC process. Fig.8 – 10 represent the percent of TOC, COD
and UV254 removal in different pH, electrical potential (voltage) and time
intervals. As it is seen, at time 60 min, pH 6.5 and electrical potential of 30 V
the maximum removal efficiency was achieved which was 89%, 99.75%, and
38% removal in TOC, COD, and UV254, respectively. During experiment,
the most effective removal parameter was electrical potential in 30 V. These
results illustrated that with increase in time up to 30 min, the amount of removal
rate increases considerably, but whit the increase of electrical potential, in the
range of 30 – 60 V and time in the range of 30 – 60 min no impressive
enhancement will occur in treatment efficiency. The results show that the most
turbidity removal rate of 50% was achieved in 30 min, pH 6,5 and electrical
potential in 30 V (Fig. 11). Maximum removal rate was achieved in the initial
period of 30 min time and by time passes in the range of 30 – 60 min, turbidity
removal rate decreases. Results showed that residual aluminum concentrations
in all experiments are below 0,2 mg/L the recommended guideline for aluminum
goal (Fig. 12).
ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6 641
89
85
87
83
0 20 40 60
V30
V20
V10
Fig. 8. TOC removal by EC in pH 6.5 different V.
60
80
100
20
40
83
0 20 40 60
V30
V20
V10
Fig. 9. COD removal by EC in pH 6.5 different V.
642 ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6
40
30
10
20
83
0 20 40 60
V30
V20
V10
Fig. 10. UV254 removal by EC in pH 6.5 different V
40
50
60
30
10
20
0
0 20 40 60
V30
V20
V10
Fig. 11. Turbidity removal by EC in pH 6.5 different V
ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6 643
2
4
6
8
10
12
14
0
0 2010 30 40 6050
V30
V20
V10
Fig. 12. Residual aluminum of by EC in pH 6.5 different V
Conclusions
This study has shown that lower doses of PASiC coagulant have high
efficiency in NOM and turbidity removal, these results are in accordance whit
a research on PASiC [10]. It can be concluded that the PASiC coagulant has
the potential to be utilized as cost-effective alternative coagulant in surface
water treatment plants. The experiments show that EC process in operating
time of 10 min, pH 6.5 and electrical potential in 30 volt is capable in the
removal of NOM and turbidity. The NOM removal rate was seen to increase
with increasing the current power and reaction time.
These results are in agreement with the findings in the study on COD and
turbidity removal efficiency from water through electrocoagulation process
[15]. Also the results are in matched with results of another research on iron
chemical coagulation and EC pretreatment [9], Zhu and et al. suggest that EC
might also be superior to conventional coagulation for NOM removal during
membrane pretreatment [12].
The turbidity removal performance of the coagulants varied according to
the following order: PASiC >AlCl
3
>PAC>Al
2
(SO
4
)
3
and it could reach about
95; 94; 91,5 % and 90,5 % for PASiC , AlCl
3
, PAC, Al
2
(SO
4
)
3
, respectively
[8].Residual aluminum of PASiC coagulation reduced to less than 4,1 mg/L
and for electrocoagulation was below 15 mg/L [4]. Scientific issues on the
association between Al and Alzheimer’s disease are pending resolution [8].The
residual aluminum ratio of the three coagulants varied according to the following
order: Al
2
(SO
4
)
3
> AlCl
3
> PAC [8]. However, the residual aluminum in the
treated finished water was much below the acceptable potable water standard
of 0,2 mg/L.
644 ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6
The comparison of PASiC coagulant and electrocoagulation used for
surface water treatment, demonstrated the practical advantage of PASiC
coagulant for water treatment in terms of effectiveness. Finally, concluded
that both PASiC coagulant and electrocoagulation method is a reliable, safe,
efficient and cost-effective method in removal of NOM from surface waters.
Acknowledgements
The authors would like to thank Environmental Health Research Committee of
Kerman University of Medical Sciences and Khorasan Razavi Water and Wastewater
company for financial support of this research. They also appreciate Ms. Navidi and
Ms. Eng Ghouchani for their assistance in the water treatment plant.
Резюме. Удаление природных органических веществ (ПОВ) являет-
ся одной из наиболее важных задач при очистке поверхностных вод.
Однако удаление ПОВ, находящихся в растворенной форме или в виде
суспензий, не настолько эффективно, как это требуется при работе во-
доочистных сооружений. Изучено влияние мутности, общего органи-
ческого углерода (ООУ), адсорбции ПОВ при длине волны 254 нм
(УФ254 нм), ХПК, щелочности в процессе электрокоагуляции и при ис-
пользовании композитного четыреххлористого кремния полиалюминия
(КЧКП). Показано, что КЧКП при оптимальной концентрации 1.10-3 –
5.10-3 дм3/дм3 позволяет снизить ООУ, ХПК, УФ254 и мутность соответ-
ственно на 93,8; 93,5; 63 и 95%. Экспериментальные результаты свиде-
тельствуют о значительном преимуществе КЧКП по сравнению с про-
цессом электрокоагуляции при удалении ПОВ и мутности из
неочищенной воды. Остаточный алюминий в очищенной воде находил-
ся ниже норм, рекомендуемых Всемирной организацией здравоохране-
ния (0,2 мг/дм3), для обоих процессов. Таким образом, можно сделать
вывод, что КЧКП и электрокоагуляция являются надежными и эффек-
тивными методами для удаления ПОВ из поверхностной воды.
Резюме. Видалення природних органічних речовин (ПОР) є одним з
найбільш важливих завдань при очищенні поверхневих вод. Проте ви-
далення ПОР, що знаходяться в розчиненій формі або у вигляді суспензій,
не настільки ефективно, як це потрібно при роботі водоочисних споруд.
Вивчений вплив каламутності, загального органічного вуглецю (ЗОУ),
адсорбції ПОР при довжині хвилі 254 нм (УФ254 нм), ХПК, лужності в
процесі електрокоагуляції і при використанні композитного чотирьох-
хлорістого кремнію поліалюмінію (КЧКП). Показано, що КЧКП при оп-
тимальній концентрації 1.10-3 – 5.10-3 дм3/дм3 дозволяє понизити ЗОУ,
ХПК, УФ254 і каламутність відповідно на 93,8; 93,5; 63 і 95%. Експери-
ISSN 0204–3556. Химия и технология воды, 2011, т. 33, №6 645
ментальні результати свідчать про значну перевагу КЧКП в порівнянні з
процесом електрокоагуляції при видаленні ПОР і каламутності з неочи-
щеної води. Залишковий алюміній в очищеній воді знаходився нижчим
за норми, що рекомендуються Всесвітньою організацією охорони здоро-
â'ÿ (0,2 ì ã/äì 3), для обох процесів. Таким чином, можна зробити висно-
вок, що КЧКП і електрокоагуляція є надійними і ефективними методами
для видалення ПОР з поверхневої води.
1. Qin J., Htun O., Kiran M., Kekre A., Knops F., Miller P. // Separ. and Purif.
Technol. – 2006. – 49. – P. 295 – 298.
2. Leea W., Westerhoff P. //Water Resh. – 2006. – 40. – P. 3767 – 3774.
3. Zazouli M.A., Nasseri S., Mahvi A.H., Mesdaghinia A.R., Younecian M., Ghol-
ami M. // J. Appl. Sci. – 2007. – 7, N18. – P. 2651 – 2655.
4. Selcuka H., Rizzob L., Nikolaouc A.N., Mericb S., Belgiornob V., Bekboletd M.
// Desalination. – 2007. – 210. – P. 31 – 43.
5. Duan J., Wangb J., Grahanf N., Wilsonb F., Wark I. //Ibid. – 2002. – 150. – P. 1 – 14.
6. Sharp E. L., Parsons S.A., Jefferson B.// Sci. Total Environ. – 2006. – 363. –
P. 183 – 194.
7. Matilainen A., Vieno N., Tuhkanen T. //Environ. Int. – 2006. – 32. – P. 324 – 331.
8. Yang Z.L., Gao B.Y., Yue Q.Y., Wang Y.//Hazard. Materials. – 2010. – 178. –
P. 596 – 603.
9. Bagga A., Chellam S., Clifford D. A. // Membrane Sci. – 2008. – 309. – P. 82 – 93.
10. Gao B.Y., Yue Q.Y., Wang B.J., Chu Y.B. // Colloids and surfaces, A. – 2003. –
229. – P.121–127.
11. Gao B.Y., Hahn H.H., Hoffmann E.//Water Res. – 2002. – 36. – P.573 – 581.
12. Gao B.Y., Yue Q.Y., Wang Y. //Separ. and Purific. Technol. – 2007. – 56. – P.225 – 230.
13. Zhu B., Clifford D.A., Chellam S. //Water Res. – 2005. – 39. – P.3098 – 3108.
14. Yilmaz E., Boncukcuoglu R., Kocakerim M.//Hazard. Materials. – 2007. – 149. –
P. 475 – 481.
15. Onder E., Savas A.K., Ogutveren U.//Separ. and Purific. Technol. – 2007. –
52. – P. 527 – 532.
16. Nabil S. Abuzaid, Alaadin A. Bukhari, Zakariya M. Hamouz // Adv. Environ.
Res. – 2002. – 6. – P.325 – 333.
17. Zhua B., Clifford D.A., Chellam S.// Water Res. – 2005. – 39. – P. 3098 – 3108.
18. Vepsalainen M., Ghiasvand M., Selin J., Pienimaa J., Repo E., Pulliainen M.,
Sillanpaa M. // Separ. and Purific. Technol. – 2009. – 69. – P. 255 – 260.
19. Chou W., Wang C., Hsu C., Huang K., Liu T. // Desalination. – 2010. – 259. –
P.103 – 110.
20. Leiknes T., Degaard H., Myklebust H.//Membrane Sci. – 2004. – 242. –
P. 47 – 55.
21. Zazouli M.A., Nasseri S., Mahvi A.H., Gholami M., Mesdaghinia A.R., Youne-
sian M. //Iran. J. Environ. Health Sci. and Eng. – 2008. – 5, N1. – P.11 – 18.
22. Gao B.Y., Yue Q.Y., Wang B.J.// Chemosphere. – 2002. – 46, N6. – P. 809 – 813.
23. APHA /AWWA /WEF. Standard method for examination of water and waste-
water, 20 th ed, Washington DC, American public health association publication,
2340. – 1999.
|