Некоторые детерминированные модели задач нечеткого линейного программирования

Рассмотрены детерминированные эквиваленты различных постановок задач линейного программирования, в которых коэффициенты функции цели, ограничений и граничные значения переменных задачи и правых частей неравенств представлены нечеткими множествами. Предложены методы сравнения и определения предпочтен...

Full description

Saved in:
Bibliographic Details
Published in:Системні дослідження та інформаційні технології
Date:2016
Main Author: Зак, Ю.А.
Format: Article
Language:Russian
Published: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2016
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/131706
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Некоторые детерминированные модели задач нечеткого линейного программирования / Ю.А. Зак // Системні дослідження та інформаційні технології. — 2016. — № 1. — С. 120-133. — Бібліогр.: 16 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Рассмотрены детерминированные эквиваленты различных постановок задач линейного программирования, в которых коэффициенты функции цели, ограничений и граничные значения переменных задачи и правых частей неравенств представлены нечеткими множествами. Предложены методы сравнения и определения предпочтения нечетких множеств. Решение задачи при поиске вектора переменных в виде вектора действительных чисел сводится к решению однокритериальной или многокритериальной задачи с существенно большим количеством ограничений. При решении задачи в виде вектора Fuzzy-множеств детерминировано эквивалент задачи — последовательность задач линейного программирования. Сформулированные задачи могут быть решены симплексным методом. Розглянуто детерміновані еквіваленти різних постановок завдань лінійного програмування, у яких коефіцієнти функції мети, обмежень і граничні значення змінних задачі і правих частин нерівностей подані нечіткими множинами. Запропоновано методи порівняння і визначення переваги нечітких множин. Розв’язання задачі при пошуку вектора змінних у вигляді вектора дійсних чисел зводиться до розв’язання однокритеріальної або багатокритеріальної задачі з істотно більшою кількістю обмежень. При розв’язанні задачі у вигляді вектора Fuzzy-множин детерміновано еквівалент задачі — послідовність задач лінійного програмування. Сформульовані задачі можуть бути розв’язані симплексним методом We consider deterministic equivalents of various formulations of linear programming prob-lems, in which the coefficients of the objective function, constraints and the boundary values of the variables of the problem and the right-hand side are represented by fuzzy sets. The methods for comparing the fuzzy sets and selecting the best ones are proposed. The problem of finding the vec-tor of variables as a vector of real numbers is reduced to solving the one-criterion or multicriteria problem with the significantly large number of constraints. In solving the problem as a vector of Fuzzy-sets, the equivalent problem was determined – a sequence of linear programming problems. The formulated problems can be solved by the simplex method.
ISSN:1681–6048