Математическое моделирование комбинаторных конфигураций и применение в задачах оптимизации

В работе предложен подход к построению функционально-аналитических представлений конечных точечных конфигураций, являющихся образами множеств комбинаторных конфигураций в арифметическом евклидовом пространстве. Построен ряд таких представлений множеств евклидовых конфигураций перестановок. Предложен...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Математичні машини і системи
Datum:2018
1. Verfasser: Пичугина, О.С.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут проблем математичних машин і систем НАН України 2018
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/132017
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Математическое моделирование комбинаторных конфигураций и применение в задачах оптимизации / О.С. Пичугина // Математичні машини і системи. — 2018. — № 1. — С. 123-137. — Бібліогр.: 30 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:В работе предложен подход к построению функционально-аналитических представлений конечных точечных конфигураций, являющихся образами множеств комбинаторных конфигураций в арифметическом евклидовом пространстве. Построен ряд таких представлений множеств евклидовых конфигураций перестановок. Предложена схема построения эквивалентной модели к задаче оптимизации на общем евклидовом множестве перестановок векторов в виде задачи дискретного программирования. Показано применение полученных результатов к задачам размещения объектов произвольной размерности. У роботі запропоновано підхід до побудови функціонально-аналітичних представлень скінченних точкових конфігурацій, що є образами множин комбінаторних конфігурацій в арифметичному евклідовому просторі. Побудовано ряд таких представлень множин евклідових конфігурацій перестановок. Запропоновано схему побудови еквівалентної моделі до задачі оптимізації на загальній евклідовій множині перестановок векторів у вигляді задачі дискретного програмування. Показано застосування отриманих результатів до задач розміщення об'єктів довільної вимірності. In the paper, an approach to the construction of functional-analytic representations of finite point configurations being the images of sets of combinatorial configurations’ sets in the arithmetic Euclidean space is presented. A number of the representations for the Euclidean permutation configuration sets is constructed. A scheme of forming an equivalent model of an optimization problem on the general Euclidean permutation of vectors set as a discrete problem is proposed. Applicability of the results to placement problems for arbitrary dimension objects is demonstrated.
ISSN:1028-9763