A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov

We survey the unification of the Bardeen, Cooper, Schrieffer (BCS) and the Bose–Einstein condensation (BEC) theories via a generalized BEC (GBEC) formalism. The GBEC describes a ternary boson-fermion gas mixture consisting of fermion-particle- as well as fermion-hole-Cooper-pairs (CPs) that are boso...

Full description

Saved in:
Bibliographic Details
Date:2010
Main Authors: De Llano, M., Tolmachev, V.V.
Format: Article
Language:English
Published: Відділення фізики і астрономії НАН України 2010
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/13288
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov / M. De Llano, V.V. Tolmachev // Укр. фіз. журн. — 2010. — Т. 55, № 1. — С. 79-84. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-13288
record_format dspace
spelling De Llano, M.
Tolmachev, V.V.
2010-11-04T10:07:31Z
2010-11-04T10:07:31Z
2010
A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov / M. De Llano, V.V. Tolmachev // Укр. фіз. журн. — 2010. — Т. 55, № 1. — С. 79-84. — Бібліогр.: 32 назв. — англ.
2071-0194
PACS 74.70.-b; 71.10.-w; 71.10.Hf; 71.10.Li
https://nasplib.isofts.kiev.ua/handle/123456789/13288
We survey the unification of the Bardeen, Cooper, Schrieffer (BCS) and the Bose–Einstein condensation (BEC) theories via a generalized BEC (GBEC) formalism. The GBEC describes a ternary boson-fermion gas mixture consisting of fermion-particle- as well as fermion-hole-Cooper-pairs (CPs) that are bosons in thermal and chemical equilibrium with unpaired electrons. One then switches on an interaction Hamiltonian (Hint) that is reminiscent of the single-vertex Fr¨ohlich “two-fermion/one-boson” interaction. In contrast with the well-known BCS “four-fermion” two-vertex Hint, the full GBEC H H0 + Hint is exactly diagonalized with a Bogolyubov–Valatin transformation provided only that one ignores nonzero-total-momenta CPs in the interaction Hint although not in the unperturbed H0 that describes an ideal ternary gas. Nonzerototal-momenta CPs are completely ignored in the full BCS H. Exact diagonalization is possible since the reduced GBEC H becomes bilinear in the fermion creation/annihilation operators on applying the Bogolyubov “recipe” of replacing the remaining zero-totalmomenta boson hole- and particle-CP operators by the square root of their respective temperature- and coupling-dependent boson cnumbers. The resulting GBEC theory subsumes all five statistical theories of superconductors, including the Friedberg–T.D. Lee (1989) BEC theory, and yields hundredfold enhancements in predicted Tcs when compared with BCS predictions with the same two-electron BCS model phonon interaction producing the CPs.
Дано огляд об’єднання теорiй Бардiна–Купера–Шрiффера (БКШ) i бозе-ейнштейнiвської конденсацiї (БЕК) в узагальненому формалiзмi БЕК, який описує трикомпонентний бозефермiонний газ, що мiстить куперiвськi пари (КП) частинок-фермiонiв i дiрок-фермiонiв, якi є бозонами в тепловiй i хiмiчнiй рiвновазi з неспареними електронами. Введено гамiльтонiан взаємодiї Hint, що нагадує одновершинну “двофермiонну/однобозонну” взаємодiю Фрелiха. На вiдмiну вiд добре вiдомого БКШ “чотирифермiонного” двовершинного Hint, повний узагальнений гамiльтонiан БЕК H H0 + Hint точно дiагоналiзується перетворенням Боголюбова–Валатина, якщо знехтувати КП з ненульовим повним iмпульсом в Hint, а не в незбурюваному H0, який описує iдеальний трикомпонентний газ. Куперiвськi пари з ненульовим повним iмпульсом повнiстю iгноруються в повному БКШ гамiльтонiанi H. Точна дiагоналiзацiя можлива, оскiльки узагальнений редукований гамiльтонiан БЕК H стає бiлiнiйним у термiнах фермiонних операторiв народження/знищення при застосуваннi “процедури” Боголюбова iз замiною iнших операторiв куперiвських пар iз дiрок-бозонiв та частинок-бозонiв iз нульовим iмпульсом коренем квадратним iз вiдповiдних бозонних c-чисел, що залежать вiд температури i взаємодiї. Результуюча узагальнена теорiя БЕК пiдсумовує всi п’ять статистичних теорiй надпровiдностi, також теорiю Фрiдберга–Т.Д. Лi, та дає на два порядки бiльшу Tc, нiж за теорiєю БКШ з тiєю ж електрон-фононною взаємодiєю, яка породжує КП.
We thank M. Fortes, M. Grether, F.J. Sevilla, M.A. Sol´ıs, S. Tapia, O. Rojo, J.J. Valencia, and A.A. Valladares. Also S.K. Adhikari, V.C. Aguilera-Navarro, A.S. Alexandrov, P.W. Anderson, J.F. Annett, J. Batle, M. Casas, J.R. Clem, J.D. Dow, D.M. Eagles, B.L. Gy¨orffy, K. Levin, T.A. Mamedov, P.D. Mannheim, W.C. Stwalley, H. Vucetich, and J.A. Wilson for conversations and/or for providing material prior to its publication. MdeLl thanks UNAM-DGAPA-PAPIIT (Mexico) for the partial support through grant IN106908. He also thanks the Physics Department of the University of Connecticut, Storrs, CT, USA for its gracious hospitality during the sabbatical year, as well as CONACyT (Mexico) for its support.
en
Відділення фізики і астрономії НАН України
Тверде тіло
A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov
Узагальнена теорія надпровідності з бозе-ейнштейнівською конденсацією, стимульована Боголюбовим
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov
spellingShingle A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov
De Llano, M.
Tolmachev, V.V.
Тверде тіло
title_short A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov
title_full A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov
title_fullStr A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov
title_full_unstemmed A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov
title_sort generalized bose–einstein condensation theory of superconductivity inspired by bogolyubov
author De Llano, M.
Tolmachev, V.V.
author_facet De Llano, M.
Tolmachev, V.V.
topic Тверде тіло
topic_facet Тверде тіло
publishDate 2010
language English
publisher Відділення фізики і астрономії НАН України
format Article
title_alt Узагальнена теорія надпровідності з бозе-ейнштейнівською конденсацією, стимульована Боголюбовим
description We survey the unification of the Bardeen, Cooper, Schrieffer (BCS) and the Bose–Einstein condensation (BEC) theories via a generalized BEC (GBEC) formalism. The GBEC describes a ternary boson-fermion gas mixture consisting of fermion-particle- as well as fermion-hole-Cooper-pairs (CPs) that are bosons in thermal and chemical equilibrium with unpaired electrons. One then switches on an interaction Hamiltonian (Hint) that is reminiscent of the single-vertex Fr¨ohlich “two-fermion/one-boson” interaction. In contrast with the well-known BCS “four-fermion” two-vertex Hint, the full GBEC H H0 + Hint is exactly diagonalized with a Bogolyubov–Valatin transformation provided only that one ignores nonzero-total-momenta CPs in the interaction Hint although not in the unperturbed H0 that describes an ideal ternary gas. Nonzerototal-momenta CPs are completely ignored in the full BCS H. Exact diagonalization is possible since the reduced GBEC H becomes bilinear in the fermion creation/annihilation operators on applying the Bogolyubov “recipe” of replacing the remaining zero-totalmomenta boson hole- and particle-CP operators by the square root of their respective temperature- and coupling-dependent boson cnumbers. The resulting GBEC theory subsumes all five statistical theories of superconductors, including the Friedberg–T.D. Lee (1989) BEC theory, and yields hundredfold enhancements in predicted Tcs when compared with BCS predictions with the same two-electron BCS model phonon interaction producing the CPs. Дано огляд об’єднання теорiй Бардiна–Купера–Шрiффера (БКШ) i бозе-ейнштейнiвської конденсацiї (БЕК) в узагальненому формалiзмi БЕК, який описує трикомпонентний бозефермiонний газ, що мiстить куперiвськi пари (КП) частинок-фермiонiв i дiрок-фермiонiв, якi є бозонами в тепловiй i хiмiчнiй рiвновазi з неспареними електронами. Введено гамiльтонiан взаємодiї Hint, що нагадує одновершинну “двофермiонну/однобозонну” взаємодiю Фрелiха. На вiдмiну вiд добре вiдомого БКШ “чотирифермiонного” двовершинного Hint, повний узагальнений гамiльтонiан БЕК H H0 + Hint точно дiагоналiзується перетворенням Боголюбова–Валатина, якщо знехтувати КП з ненульовим повним iмпульсом в Hint, а не в незбурюваному H0, який описує iдеальний трикомпонентний газ. Куперiвськi пари з ненульовим повним iмпульсом повнiстю iгноруються в повному БКШ гамiльтонiанi H. Точна дiагоналiзацiя можлива, оскiльки узагальнений редукований гамiльтонiан БЕК H стає бiлiнiйним у термiнах фермiонних операторiв народження/знищення при застосуваннi “процедури” Боголюбова iз замiною iнших операторiв куперiвських пар iз дiрок-бозонiв та частинок-бозонiв iз нульовим iмпульсом коренем квадратним iз вiдповiдних бозонних c-чисел, що залежать вiд температури i взаємодiї. Результуюча узагальнена теорiя БЕК пiдсумовує всi п’ять статистичних теорiй надпровiдностi, також теорiю Фрiдберга–Т.Д. Лi, та дає на два порядки бiльшу Tc, нiж за теорiєю БКШ з тiєю ж електрон-фононною взаємодiєю, яка породжує КП.
issn 2071-0194
url https://nasplib.isofts.kiev.ua/handle/123456789/13288
citation_txt A Generalized Bose–Einstein Condensation Theory of Superconductivity Inspired by Bogolyubov / M. De Llano, V.V. Tolmachev // Укр. фіз. журн. — 2010. — Т. 55, № 1. — С. 79-84. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT dellanom ageneralizedboseeinsteincondensationtheoryofsuperconductivityinspiredbybogolyubov
AT tolmachevvv ageneralizedboseeinsteincondensationtheoryofsuperconductivityinspiredbybogolyubov
AT dellanom uzagalʹnenateoríânadprovídnostízbozeeinšteinívsʹkoûkondensacíêûstimulʹovanabogolûbovim
AT tolmachevvv uzagalʹnenateoríânadprovídnostízbozeeinšteinívsʹkoûkondensacíêûstimulʹovanabogolûbovim
AT dellanom generalizedboseeinsteincondensationtheoryofsuperconductivityinspiredbybogolyubov
AT tolmachevvv generalizedboseeinsteincondensationtheoryofsuperconductivityinspiredbybogolyubov
first_indexed 2025-11-24T15:49:05Z
last_indexed 2025-11-24T15:49:05Z
_version_ 1850848798415257600
fulltext A GENERALIZED BOSE–EINSTEIN CONDENSATION THEORY A GENERALIZED BOSE–EINSTEIN CONDENSATION THEORY OF SUPERCONDUCTIVITY INSPIRED BY BOGOLYUBOV M. DE LLANO,1, 2 V.V. TOLMACHEV3 1Physics Department, University of Connecticut, Storrs (CT 06269 USA) 2Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (Apdo. Postal 70-360 04510 México, DF, Mexico) 3N.E. Baumann State Technical University (5, 2-ya Baumanskaya Str., Moscow 107005, Russia) PACS 74.70.-b; 71.10.-w; 71.10.Hf; 71.10.Li c©2010 We survey the unification of the Bardeen, Cooper, Schrieffer (BCS) and the Bose–Einstein condensation (BEC) theories via a gener- alized BEC (GBEC) formalism. The GBEC describes a ternary boson-fermion gas mixture consisting of fermion-particle- as well as fermion-hole-Cooper-pairs (CPs) that are bosons in thermal and chemical equilibrium with unpaired electrons. One then switches on an interaction Hamiltonian (Hint) that is reminiscent of the single-vertex Fröhlich “two-fermion/one-boson” interaction. In con- trast with the well-known BCS “four-fermion” two-vertex Hint, the full GBEC H ≡ H0 + Hint is exactly diagonalized with a Bogolyubov–Valatin transformation provided only that one ignores nonzero-total-momenta CPs in the interaction Hint although not in the unperturbed H0 that describes an ideal ternary gas. Nonzero- total-momenta CPs are completely ignored in the full BCS H. Ex- act diagonalization is possible since the reduced GBEC H becomes bilinear in the fermion creation/annihilation operators on apply- ing the Bogolyubov “recipe” of replacing the remaining zero-total- momenta boson hole- and particle-CP operators by the square root of their respective temperature- and coupling-dependent boson c- numbers. The resulting GBEC theory subsumes all five statisti- cal theories of superconductors, including the Friedberg–T.D. Lee (1989) BEC theory, and yields hundredfold enhancements in pre- dicted Tcs when compared with BCS predictions with the same two-electron BCS model phonon interaction producing the CPs. 1. Introduction Boson-fermion (BF) models of superconductivity (SC) as a Bose–Einstein condensation (BEC) go back to the mid- 1950s [1–4], pre-dating even the BCS–Bogoliubov theory [5–7]. Although BCS theory only envisions the presence of “Cooper correlations” of single-electron states, BF models [1–4, 8–19] posit the existence of actual bosonic Cooper pairs (CPs). With two [18, 19] exceptions, how- ever, all BF models neglect the effect of hole CPs in- cluded on an equal footing with electron CPs to give the “complete” BF model (CBFM) that constitutes the gen- eralized Bose–Einstein condensation (GBEC) formalism to be surveyed. 2. The GBEC Hamiltonian The GBEC [18,19] formalism is described by the Hamil- tonian H = H0 +Hint, where H0 = ∑ k1,s1 εk1a + k1,s1 ak1,s1 + ∑ K E+(K)b+KbK− − ∑ K E−(K)c+KcK, (1) and K ≡ k1 + k2 is the CP total or center-of-mass- momentum (CMM) wavevector, while εk1 ≡ ~2k2 1/2m are the single-electron and E±(K) the 2e-/2h-CP phe- nomenological, energies. Here, a+ k1,s1 (ak1,s1) are the cre- ation (annihilation) operators for electrons and similarly b+K (bK ) and c+K (cK) for 2e- and 2h-CP bosons, respec- tively. As originally suggested by the work of Cooper [20], the b and c CP operators depend only on K and so are distinct from the BCS pair operators depending on both K and the relative wavevector k ≡ 1 2 (k1 − k2) discussed in [5] [Eqs. (2.9) to (2.13)] for the particular case of K = 0 and shown there not to satisfy the ordi- nary Bose commutation relations. Nonetheless, CPs are objects easily seen to obey Bose–Einstein statistics as, in the thermodynamic limit, an indefinitely large number of distinct k values correspond to a given K value defin- ing the energy levels E+(K) or E−(K). This is all that is needed to ensure a BEC (or the macroscopic occupa- tion of a given state that appears below a certain fixed T = Tc). This was found [18, 19] numerically a posteri- ori in the GBEC theory. Also, the BCS gap equation is ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 79 M. de LLANO, V.V. TOLMACHEV recovered for equal numbers of both kinds of pairs, both in the K = 0 state and in all K 6= 0 states taken collec- tively, and in weak coupling, regardless of CP overlaps. The precise familiar BEC Tc formula emerges [18] when i) 2h-CPs are ignored (whereupon the Friedberg–T.D. Lee model [13]-[16] equations are recovered) and ii) one switches off the BF interaction but under a strong inter- electron coupling, whereby no unpaired electrons survive in the remaining binary mixture. The interaction Hamil- tonian Hint consists of four distinct BF interaction single vertices each with two-fermion/one-boson creation or an- nihilation operators. Each vertex is reminiscent of the Fröhlich electron-phonon interaction with CPs replac- ing phonons. Here, Hint depicts how unpaired electrons (or holes) combine to form the 2e- (and 2h-CPs), and vice versa, assumed in a d-dimensional system of size L, namely Hint = L−d/2 ∑ k,K f+(k)× ×[a+ k+ 1 2K,↑a + −k+ 1 2K,↓bK + a−k + 1 2 K, ↓ ak+ 1 2K, ↑ b+K]+ +L−d/2 ∑ k,K f−(k)× ×[a+ k+ 1 2K,↑a + −k+ 1 2K,↓c + K + a−k+ 1 2K,↓ak+ 1 2K,↑cK]. (2) The energy form factors f±(k) in (2) are taken as those in [18,19], where the associated quantities Ef and δε are new phenomenological dynamical energy parameters (in addition to the positive BF vertex coupling parameter f introduced in [18, 19]) that replace the previous such E±(0), through the relations Ef ≡ 1 4 [E+(0) + E−(0)] and δε ≡ 1 2 [E+(0) − E−(0)] ≥ 0, where E±(0) are the (empirically unknown) zero-CMM energies of the 2e- and 2h-CPs, respectively. We refer to Ef as the “pseudo-Fermi” energy. It serves as a convenient energy scale and is not to be confused with the usual Fermi energy EF = 1 2mv 2 F ≡ kBTF, where TF is the Fermi temperature. If n is the total number-density of charge-carrier electrons of effective mass m, the Fermi energy EF equals π~2n/m in 2D and (~2/2m)(3π2n)2/3 in 3D, while Ef is similarly related to another density nf which serves to scale the ordinary density n. The two quantities Ef and EF , and conse- quently also n and nf , coincide only when the perfect 2e/2h-CP symmetry holds as in the BCS instance. 3. Diagonalization of GBEC Hamiltonian The interaction Hamiltonian (2) can be further reduced by keeping only the K = 0 terms, so that Hint ' L−d/2 ∑ k f+(k)[a+ k↑a + −k↓b0 + a−k↓ak↑b + 0 ]+ +L−d/2 ∑ k f−(k)[a+ k↑a + −k↓c + 0 + a−k↓ak↑c0] (3) which allows the exact diagonalization as follows. One applies the Bogoliubov “recipe” [21] (see also [22] p. 199 ff.) of replacing all zero-CMM 2e- and 2h-CP bo- son creation and annihilation operators in the full Hamil- tonian Ĥ = H0 + Hint by their respective c-numbers, namely b0, b+0 → √ N0(T ) and c0, c+0 → √ M0(T ), where N0(T ) and M0(T ) are the as yet to be determined T - dependent thermodynamically equilibrated number of zero-CMM 2e- and 2h-CPs, respectively. One eventu- ally seeks, numerically at worst, the highest tempera- ture, say Tc, above which N0(T ) or M0(Tc) vanishes and below which one or the other is nonzero. Note that Tc calculated thusly can, in principle, turn out to be zero, in which case there is no BEC, but this will not turn out to be for the BCS model interaction to be employed here. If the number operator is N̂ ≡ ∑ k1,s1 a+ k1,s1 ak1,s1 + 2 ∑ K b+KbK − 2 ∑ K c+KcK, (4) the reduced Ĥ − µN̂ with (1) plus (3) is now entirely bilinear in the a+ and a operators. It can thus be diago- nalized exactly via a Bogoliubov–Valatin transformation [23, 24] ak,s ≡ ukαk,s + 2svkα † −k,−s, (5) where s = ± 1 2 . Transformation (5) simplifies (1) plus (3) to the fully bilinear form Ĥ − µN̂ ' ∑ k,s [ ξk ( u2 k − v2 k ) + 2Δkukvk]︸ ︷︷ ︸ ≡Ek α†k,sαk,s+ + ∑ k,s 2s[ ≡0︷ ︸︸ ︷ ξkukvk −Δk ( u2 k − v2 k ) ]× × ( α†k,sα † −k,−s + αk,sα−k,−s ) + ∑ k,s 2 [ ξkv 2 k + Δkukvk ] + 80 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 A GENERALIZED BOSE–EINSTEIN CONDENSATION THEORY + [E+(0)− 2µ]N0 + ∑ K 6=0 [E+(K)− 2µ] b†KbK+ + [2µ− E−(0)]M0 + ∑ K6=0 [2µ− E−(K)] c†KcK GBEC (6) with ξk ≡ εk − µ. A little algebra shows that v2 k ≡ 1 2 [1 − ξk/Ek] and Ek = √ ξ2k + Δ2 k, precisely as in the BCS theory [5] as reformulated [6] by Bogoliubov. The term set equal to zero in (6) is justified, as this merely fixes the coefficient, say vk, that was restricted only by u2 k + v2 k = 1 which follows, in turn, from the require- ment that both the a and α operators obey Fermi anti- commutation relations. There are no products such as α†k,sα † −k,−s remaining, nor any other nonbilinear terms, as with [25] the BCS two-vertex, four -fermion Hamilto- nian [5] that neglects other than K = 0 pairings H ≡ H0 +Hint = ∑ k,s εka + k,sak,s− −V ∑ k,k′,s a+ k′,sa + −k′,−sa−k,−sak,s BCS, (7) where −V 6 0, and the last summation is restricted by EF − ~ωD 6 ~2k2/2m ≡ εk, εk′ 6 EF − ~ωD. Eigenstates of the now fully diagonalized reduced GBEC Ĥ − µN̂ (6) are | ...nk,s...NK...MK...〉= ∏ k,s ( α†k,s )nk,s∏ K6=0 1√ NK ( b†K )NK × × ∏ K 6=0 1√ MK ! ( c†K )MK |O〉, where the three exponents nk,s = 0, 1 and NK and MK = 0, 1, 2 · · · are occupation numbers. Here, | O〉 is the vacuum state for a fermionic “bogolon” quasipar- ticle with the gapped dispersion energy Ek appearing in (6) and rewritten below in (10) as E(ε). It is simul- taneously a vacuum state for 2e-CP and 2h-CP boson creation and annihilation operators which is to say that | O〉 is defined by αk,s | O〉 ≡ bK | O〉 ≡ cK | O〉 ≡ 0. With the Hamiltonian explicitly diagonalized, one can now straightforwardly construct the thermodynamic po- tential Ω ≡ −PLd for the GBEC, with Ld the system “volume” and P its pressure, which is defined as ([22], p. 228) Ω(T, Ld, µ,N0,M0) = = −kBT ln [ Tr exp{−β(H − µN̂)} ] , (8) where “Tr” stands for “trace.” Inserting (1) plus (2) into (8) [18], one obtains, after some algebra, an explicit ex- pression for Ω(T, Ld, µ, N0, M0)/Ld (see [26], Eq. 10). In d = 3, one usually has N(ε) ≡ m3/2 21/2π2~3 √ ε and M(ε) ≡ 2m3/2 π2~3 √ ε (9) for the (one-spin) fermion density-of-states (DOS) at en- ergies ε = ~2k2/2m and the boson DOS for an assumed quadratic [1] boson dispersion ε = ~2K2/2(2m), respec- tively. The latter assumption is to be lifted later so as to include Fermi-sea effects which change the boson disper- sion relation from quadratic to linear, as mentioned be- fore. Finally, the relation between the resulting fermion spectrum E(ε), which is as before, and the fermion en- ergy gap Δ(ε), are of the form E(ε) = √ (ε− µ)2 + Δ2(ε), (10) Δ(ε) ≡ √ n0f+(ε) + √ m0f−(ε). (11) This last expression for the gap Δ(ε) implies a simple T -dependence rooted in the 2e-CP n0(T ) ≡ N0(T )/Ld and 2h-CP m0(T ) ≡ M0(T )/Ld number densities of BE-condensed bosons, i.e., Δ(T ) = √ n0(T )f+(ε) +√ m0(T )f−(ε). 4. Minimizing the Helmholtz Free Energy By definition, the Helmholtz free energy is F (T, Ld, µ,N0,M0) ≡ Ω(T, Ld, µ,N0,M0) + µN. Minimizing it with respect to N0 and M0, and simul- taneously fixing the total number N of electrons by in- troducing the electron chemical potential µ in the usual way, specifies an equilibrium state of the system at fixed volume Ld and temperature T . The necessary conditions for an equilibrium thermodynamic state are thus ∂F/∂N0 = 0, ∂F/∂M0 = 0, and ∂Ω/∂µ = −N, (12) whereN evidently includes both paired and unpaired CP fermions. The second partial derivatives of F have been examined in [27]. After some algebra, Eqs. (12) then lead to the three coupled transcendental Eqs. (7)–(9) of [18]. These can be rewritten somewhat more transpar- ently as: a) two “gap-like equations” [2Ef + δε− 2µ(T )] = 1 2 f2 Ef +δε∫ Ef dεN(ε)× ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 81 M. de LLANO, V.V. TOLMACHEV × tanh 1 2β √ [ε− µ(T )]2 + f2n0(T )√ [ε− µ(T )]2 + f2n0(T ) (13) and [2µ(T )− 2Ef + δε] = 1 2 f2 Ef∫ Ef−δε dεN(ε)× × tanh 1 2β √ [ε− µ(T )]2 + f2m0(T )√ [ε− µ(T )]2 + f2m0(T ) (14) with β ≡ 1/kBT, as well as b) a single “number equation” 2nB(T )− 2mB(T ) + nf (T ) = n. (15) This last relation ensures the charge conservation in a ternary mixture. In general, n ≡ N/Ld is the total num- ber density of electrons, nf (T ) that of the unpaired elec- trons, while nB(T ) and mB(T ) are, respectively, those of 2e- and 2h-CPs in all bosonic states, ground plus ex- cited, i.e., condensed and noncondensed. These turn out to be nB(T ) ≡ n0(T ) + ∞∫ 0+ dεM(ε)× × (expβ[2Ef + δε− 2µ+ ε]− 1)−1 , (16) mB(T ) ≡ m0(T ) + ∞∫ 0+ dεM(ε)× × (expβ[2µ+ ε− 2Ef + δε]− 1)−1 , (17) which are clear manifestations of the bosonic nature of both kinds of CPs. For the number density of unpaired electrons at any T , one also obtains nf (T ) ≡ ∞∫ 0 dεN(ε)[1−ε− µ E(ε) tanh 1 2 βE(ε)] = 2 ∑ k v2 k(T ), (18) where v2 k(T ) ≡ 1 2 [1 − (εk − µ)/Ek] −→ T →0 v2 k with Ek be- ing given by (10) is precisely the BCS–Bogoliubov T - dependent coefficient that is linked with uk(0) ≡ uk through v2 k + u2 k = 1 of the normalized BCS trial wave- function | O〉 ≡ ∏ k (uk + vka + k↑a + −k↓) | O〉 with 〈O | O〉 = 1, (19) where | O〉 is the ordinary vacuum. The zero-T version of the two amplitude coefficients vk and uk originally ap- peared in (19) and shortly afterwards in the Bogoliubov– Valatin canonical transformation. Next, one picks δε = ~ωD and identifies [18, 19] nonzero f+(ε) and nonzero f−(ε) with f ≡ √ 2~ωDV but such that f+(ε)f−(ε) ≡ 0. In the very special case where n0(T ) = m0(T ), adding together (13) and (14) gives the precise BCS gap pro- vided one identifies the pseudo-Fermi energy Ef with µ. This is guaranteed, in turn, if nB(T ) = mB(T ), namely, if (16) and (17) are set equal to each other so that the arguments of the two exponentials become identical. The self-consistent (at worst, numerical) solution of the three coupled equations (13) to (15) yields the three thermodynamic variables of the GBEC formalism n0(T, n, µ), m0(T, n, µ) and µ(T, n). (20) The existence of a nonzero Tc associated with these ex- pressions vindicates the GBEC theory. The numeri- cal elimination of µ(T, n) shows [19] that, in addition to the normal phase at high temperatures defined by n0(T, n) = m0(T, n) = 0, three condensed phases appear at lower temperatures: two pure phases of 2e-CP- and 2h-CP-BE-condensed states and one mixed phase with arbitrary proportions of both kinds of BE-condensed states. If hole pairs are ignored, the relation Δ(T ) = f √ n0(T ) resulting from (11) has recently been general- ized [28] to include nonzero-K pairs beyond expression (3) with the help of two-time Green functions [29, 30]. This leads to a generalized gap Eg(λ, T ) defined as Eg(λ, T ) = √ 2~ωDV nB(λ, T ) ≡ f √ nB(λ, T ), (21) where nB(λ, T ) is the net number density of CPs, both in and above the BE-condensate, in the BF mixture which was taken in [28] for simplicity as a binary mixture in- stead of a ternary one. The generalized gap Eg(λ, T ) accommodates recently discovered pseudogap phenom- ena [31], whereby the so-called “depairing” or pseudo- gap critical temperature T ∗ > Tc arises. The pseudogap T ∗ is the solution of Eg(λ, T ∗) = 0, whereas the super- conducting Tc is that of Δ(Tc) = 0. 82 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 A GENERALIZED BOSE–EINSTEIN CONDENSATION THEORY Flowchart outlining conditions, under which the GBEC formalism reduces to all five statistical theories of superconductivity (ovals). The GBEC formalism has alternately been called the “complete boson-fermion model” (CBFM) in that it does not neglect hole CPs 5. Five Statistical Theories Subsumed All told, the three GBEC equations (13) to (15) subsume five different theories as special cases, see a flowchart in Figure. The vastly more general GBEC formalism has been applied and gives sizeable enhancements in Tcs over the BCS theory that emerge [32] by admitting, appar- ently for the first time, departures from the very special case of the perfect 2e/2h-pair symmetry in the mixed phase. 6. Conclusions In conclusion, five statistical continuum theories of su- perconductivity, including both the BCS and BEC the- ories, are contained as special limiting cases within a single generalized Bose–Einstein condensation (GBEC) model. This model includes, for the first time, along with unpaired electrons, both two-electron and two-hole pair- condensates in freely variable proportions. The BCS and BEC theories are thus completely unified within the GBEC. The BCS condensate emerges directly from the GBEC as a BE condensate through the condi- tion for phase equilibria when both total 2e- and 2h- pair number, as well as their condensate, densities are equal at the given T and coupling provided the cou- pling is weak enough so that the electron chemical po- tential µ roughly equals the Fermi energy EF . The or- dinary BEC Tc-formula, on the other hand, is recov- ered from the GBEC when hole pairs are completely neglected, the BF coupling f is made to vanish, and the limit of zero unpaired electrons is taken, this im- plying a very strong interelectron coupling. The practi- cal outcome of the BCS-BEC unification via the GBEC is an enhancement in Tc by more than two orders-of- magnitude in 3D. This enhancement in Tc falls within empirical ranges for 2D and 3D “exotic” SCs, whereas BCS Tc values remain low and within the empirical ranges for conventional, elemental SCs using standard interaction-parameter values. Lastly, room tempera- ture superconductivity is possible for a material with a Fermi temperature TF . 103K, with the same inter- action parameters used in BCS theory for conventional SCs. ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 83 M. de LLANO, V.V. TOLMACHEV We thank M. Fortes, M. Grether, F.J. Sevilla, M.A. Soĺıs, S. Tapia, O. Rojo, J.J. Valencia, and A.A. Valladares. Also S.K. Adhikari, V.C. Aguilera- Navarro, A.S. Alexandrov, P.W. Anderson, J.F. Annett, J. Batle, M. Casas, J.R. Clem, J.D. Dow, D.M. Eagles, B.L. Györffy, K. Levin, T.A. Mamedov, P.D. Mannheim, W.C. Stwalley, H. Vucetich, and J.A. Wilson for conver- sations and/or for providing material prior to its pub- lication. MdeLl thanks UNAM-DGAPA-PAPIIT (Mex- ico) for the partial support through grant IN106908. He also thanks the Physics Department of the University of Connecticut, Storrs, CT, USA for its gracious hospi- tality during the sabbatical year, as well as CONACyT (Mexico) for its support. 1. J.M. Blatt, Theory of Superconductivity (Academic Press, New York, 1964). 2. M.R. Schafroth, Phys. Rev. 96, 1442 (1954). 3. M.R. Schafroth, S.T. Butler, and J.M. Blatt, Helv. Phys. Acta 30, 93 (1957). 4. M.R. Schafroth, Sol. State Phys. 10, 293 (1960). 5. J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957). 6. N.N. Bogoliubov, JETP 34, 41 (1958). 7. N.N. Bogoliubov, V.V. Tolmachev, and D.V. Shirkov, Fortschr. Phys. 6, 605 (1958); and also in A New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959). 8. J. Ranninger and S. Robaszkiewicz, Physica B 135, 468 (1985). 9. J. Ranninger, R. Micnas, and S. Robaszkiewicz, Ann. Phys. Fr. 13, 455 (1988). 10. R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990). 11. R. Micnas, S. Robaszkiewicz, and A. Bussmann-Holder, Phys. Rev. B 66, 104516 (2002). 12. R. Micnas, S. Robaszkiewicz, and A. Bussmann-Holder, Struct. Bond 114, 13 (2005). 13. R. Friedberg and T.D. Lee, Phys. Rev. B 40, 6745 (1989). 14. R. Friedberg, T.D. Lee, and H.-C. Ren, Phys. Rev. B 42, 4122 (1990). 15. R. Friedberg, T.D. Lee, and H.-C. Ren, Phys. Lett. A 152, 417 and 423 (1991). 16. R. Friedberg, T.D. Lee, and H.-C. Ren, Phys. Rev. B 45, 10732 (1992). 17. M. Casas, A. Rigo, M. de Llano, O. Rojo, and M.A. Soĺıs, Phys. Lett. A 245, 5 (1998). 18. V.V. Tolmachev, Phys. Lett. A 266, 400 (2000). 19. M. de Llano and V.V. Tolmachev, Physica A 317, 546 (2003). 20. L.N. Cooper, Phys. Rev. 104, 1189 (1956). 21. N.N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947). 22. A.L. Fetter and J.D. Walecka, Quantum Theory of Many- Particle Systems (McGraw-Hill, New York, 1971). 23. N.N. Bogoliubov, N. Cim. 7, 794 (1958). 24. J.G. Valatin, N. Cim. 7, 843 (1958). 25. G. Rickayzen, Theory of Superconductivity (Interscience, New York, 1965). 26. S.K. Adhikari, M. de Llano, F.J. Sevilla, M.A. Soĺıs, and J.J. Valencia, Physica C 453, 37 (2007). 27. M. Grether, M. de Llano, S. Ramı́rez, and O. Rojo, Int. J. Mod. Phys. B 22, 4367 (2008). 28. T.A. Mamedov and M. de Llano, to be published. 29. D.N. Zubarev, Sov. Phys. Uspekhi 3, 320 (1960). 30. T.A. Mamedov and M. de Llano, Phys. Rev. B 75, 104506 (2007). 31. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999). 32. M. Grether and M. de Llano, Physica C 460, 1141 (2007). Received 28.09.09 УЗАГАЛЬНЕНА ТЕОРIЯ НАДПРОВIДНОСТI З БОЗЕ-ЕЙНШТЕЙНIВСЬКОЮ КОНДЕНСАЦIЄЮ, СТИМУЛЬОВАНА БОГОЛЮБОВИМ М. де Ллано, В.В. Толмачев Р е з ю м е Дано огляд об’єднання теорiй Бардiна–Купера–Шрiффера (БКШ) i бозе-ейнштейнiвської конденсацiї (БЕК) в узагаль- неному формалiзмi БЕК, який описує трикомпонентний бозе- фермiонний газ, що мiстить куперiвськi пари (КП) частинок- фермiонiв i дiрок-фермiонiв, якi є бозонами в тепловiй i хi- мiчнiй рiвновазi з неспареними електронами. Введено гамiль- тонiан взаємодiї Hint, що нагадує одновершинну “двофермiон- ну/однобозонну” взаємодiю Фрелiха. На вiдмiну вiд добре вiдо- мого БКШ “чотирифермiонного” двовершинного Hint, повний узагальнений гамiльтонiан БЕК H ≡ H0 + Hint точно дiаго- налiзується перетворенням Боголюбова–Валатина, якщо зне- хтувати КП з ненульовим повним iмпульсом в Hint, а не в незбурюваному H0, який описує iдеальний трикомпонентний газ. Куперiвськi пари з ненульовим повним iмпульсом повнi- стю iгноруються в повному БКШ гамiльтонiанi H. Точна дiа- гоналiзацiя можлива, оскiльки узагальнений редукований га- мiльтонiан БЕК H стає бiлiнiйним у термiнах фермiонних опе- раторiв народження/знищення при застосуваннi “процедури” Боголюбова iз замiною iнших операторiв куперiвських пар iз дiрок-бозонiв та частинок-бозонiв iз нульовим iмпульсом коре- нем квадратним iз вiдповiдних бозонних c-чисел, що залежать вiд температури i взаємодiї. Результуюча узагальнена теорiя БЕК пiдсумовує всi п’ять статистичних теорiй надпровiдностi, також теорiю Фрiдберга–Т.Д. Лi, та дає на два порядки бiльшу Tc, нiж за теорiєю БКШ з тiєю ж електрон-фононною взаємо- дiєю, яка породжує КП. 84 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1