On Chebyshev Polynomials and Torus Knots

In this work, we demonstrate that the q-numbers and their two-parameter generalization, the q,p -numbers, can be used to obtain some polynomial invariants for torus knots and links. First, we show that the q-numbers, which are closely connected with the Chebyshev polynomials, can also be related wit...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Gavrilik, A.M., Pavlyuk, A.M.
Формат: Стаття
Мова:English
Опубліковано: Відділення фізики і астрономії НАН України 2010
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/13295
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Chebyshev Polynomials and Torus Knots / A.M. Gavrilik, A.M. Pavlyuk // Укр. фіз. журн. — 2010. — Т. 55, № 1. — С. 129-134. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-13295
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-132952025-02-09T22:47:55Z On Chebyshev Polynomials and Torus Knots Про поліноми Чебишова і торичні вузли Gavrilik, A.M. Pavlyuk, A.M. Загальні питання теоретичної фізики In this work, we demonstrate that the q-numbers and their two-parameter generalization, the q,p -numbers, can be used to obtain some polynomial invariants for torus knots and links. First, we show that the q-numbers, which are closely connected with the Chebyshev polynomials, can also be related with the Alexander polynomials for the class T(s, 2) of torus knots, s being an odd integer, and used for finding the corresponding skein relation. Then, we develop this procedure in order to obtain, with the help of q, p - numbers, the generalized two-variable Alexander polynomials and to prove their direct connection with the HOMFLY polynomials and the skein relation of the latter. У роботi показано, що q-числа та їх двопараметричнi узагальнення, q, p-числа можна використати для отримання деяких полiномiальних iнварiантiв торичних вузлiв i зачеплень. По-перше, показано, що q-числа, якi тiсно пов’язанi з полiномами Чебишова, можуть бути пов’язанi з полiномами Александера для класу T(s, 2) торичних вузлiв, де s – непарне цiле число, i використанi для знаходження вiдповiдного скейн-спiввiдношення. Потiм використано цю процедуру для отримання за допомогою q, p-чисел, двопараметричних узагальнених полiномiв Александера та показано зв’язок останнiх iз полiномiальними iнварiантами HOMFLY та їх скейн-спiввiдношенням. This research was partially supported by the Grant 29.1/028 of the State Foundation of Fundamental Research of Ukraine and by the Special Program of the Division of Physics and Astronomy of the NAS of Ukraine. 2010 Article On Chebyshev Polynomials and Torus Knots / A.M. Gavrilik, A.M. Pavlyuk // Укр. фіз. журн. — 2010. — Т. 55, № 1. — С. 129-134. — Бібліогр.: 21 назв. — англ. 2071-0194 PACS 02.10.Kn,02.20.Uw https://nasplib.isofts.kiev.ua/handle/123456789/13295 en application/pdf Відділення фізики і астрономії НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Загальні питання теоретичної фізики
Загальні питання теоретичної фізики
spellingShingle Загальні питання теоретичної фізики
Загальні питання теоретичної фізики
Gavrilik, A.M.
Pavlyuk, A.M.
On Chebyshev Polynomials and Torus Knots
description In this work, we demonstrate that the q-numbers and their two-parameter generalization, the q,p -numbers, can be used to obtain some polynomial invariants for torus knots and links. First, we show that the q-numbers, which are closely connected with the Chebyshev polynomials, can also be related with the Alexander polynomials for the class T(s, 2) of torus knots, s being an odd integer, and used for finding the corresponding skein relation. Then, we develop this procedure in order to obtain, with the help of q, p - numbers, the generalized two-variable Alexander polynomials and to prove their direct connection with the HOMFLY polynomials and the skein relation of the latter.
format Article
author Gavrilik, A.M.
Pavlyuk, A.M.
author_facet Gavrilik, A.M.
Pavlyuk, A.M.
author_sort Gavrilik, A.M.
title On Chebyshev Polynomials and Torus Knots
title_short On Chebyshev Polynomials and Torus Knots
title_full On Chebyshev Polynomials and Torus Knots
title_fullStr On Chebyshev Polynomials and Torus Knots
title_full_unstemmed On Chebyshev Polynomials and Torus Knots
title_sort on chebyshev polynomials and torus knots
publisher Відділення фізики і астрономії НАН України
publishDate 2010
topic_facet Загальні питання теоретичної фізики
url https://nasplib.isofts.kiev.ua/handle/123456789/13295
citation_txt On Chebyshev Polynomials and Torus Knots / A.M. Gavrilik, A.M. Pavlyuk // Укр. фіз. журн. — 2010. — Т. 55, № 1. — С. 129-134. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT gavrilikam onchebyshevpolynomialsandtorusknots
AT pavlyukam onchebyshevpolynomialsandtorusknots
AT gavrilikam propolínomičebišovaítoričnívuzli
AT pavlyukam propolínomičebišovaítoričnívuzli
first_indexed 2025-12-01T13:24:03Z
last_indexed 2025-12-01T13:24:03Z
_version_ 1850312434107023360
fulltext ON CHEBYSHEV POLYNOMIALS AND TORUS KNOTS ON CHEBYSHEV POLYNOMIALS AND TORUS KNOTS A.M. GAVRILIK, A.M. PAVLYUK Bogolyubov Institute for Theoretical Physics, Nat. Acad. Sci. of Ukraine (14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: omgavr@bitp.kiev.ua; pavlyuk@bitp.kiev.ua) PACS 02.10.Kn,02.20.Uw c©2010 In this work, we demonstrate that the q-numbers and their two- parameter generalization, the q,p -numbers, can be used to obtain some polynomial invariants for torus knots and links. First, we show that the q-numbers, which are closely connected with the Chebyshev polynomials, can also be related with the Alexander polynomials for the class T (s, 2) of torus knots, s being an odd in- teger, and used for finding the corresponding skein relation. Then, we develop this procedure in order to obtain, with the help of q, p - numbers, the generalized two-variable Alexander polynomials and to prove their direct connection with the HOMFLY polynomials and the skein relation of the latter. 1. Introduction The relevance of knots and links to many physical [1– 3] and biophysical [4] systems implies the importance of investigating the properties and characteristics of knot- like structures. The concepts of knot theory play the important role in the models of statistical physics [5], quantum field theory [6], quantum gravity [7], and in a number of other physical phenomena. In the preprint of 1975, it was proposed by L.D. Faddeev that knot-like solitons could be realized in a nonlinear field theory [8], in a definite model defined in 3 + 1 dimensions. The model includes the standard nonlinear O(3) σ-model, which admits static solitons in 2 + 1 dimensions, and a Skyrme term. In the Faddeev model, the static solitons are stabilized by the integer-valued Hopf charge. Inter- est in the model was renewed in 1997 after the article of Faddeev and Niemi in [9]. They have made first at- tempts at a numerical construction of solitons with the minimal energy in the form of knots. Battye and Sut- cliffe demonstrated that, for a higher Hopf charge, the twisted, knotted, and linked configurations occur [10]. In particular, they showed that the minimal energy soliton with Hopf charge seven is a trefoil knot. R.J. Finkelstein has proposed a field theory model, in which the local SU(2) × U(1) symmetry group of the standard electroweak theory is combined with the global quantum group SUq(2), the symmetry group of knotted solitons [11, 12]. This allows one to incorporate a q- soliton into field theory and to replace point particles by knotted solitons. The more recent discussion on the role of field theory knots both in superconductivity theory and in the Yang-Mills theory can be found in [13]. In the context of modeling the static properties of hadrons, it was shown in [14] (see also [15]) that global quantum groups SUq(n), n = 2, . . . , 6, can be success- fully applied to flavor symmetries, and certain torus knots put into correspondence, through Alexander poly- nomials, with vector quarkonia. Various polynomial invariants are known to be one of the basic characteristics of knots and links (see e.g. [16]). Among them, the Alexander polynomials, Jones polyno- mials, and HOMFLY polynomials are the best studied and play the important role in the knot theory and its applications. To describe some properties and characteristics of knots and links, the classical Chebyshev polynomials can be used. For example, in [17], the Chebyshev polynomi- als were utilized for the polynomial parametrization of noncompact counterparts of torus knots. It was shown how to construct the Chebyshev model associated with any knot. In this paper, we concentrate on studying the poly- nomial invariants such as the Alexander and HOMFLY polynomials and their close connection with the Cheby- shev polynomials. We restrict ourselves to the set of torus knots and links and show that a certain rather sim- ple two-variable generalization of the Chebyshev polyno- mials is well suited for characterizing those knots. 2. Alexander Polynomials and a Skein Relation The Alexander polynomials A(t) for knots and links can be defined (see e.g. [16]) by the skein relation A+(t) = (t 1 2 − t− 1 2 )AO(t) +A−(t) (1) and the condition for the unknot: Aunknot = 1. (2) Using (1) and (2), one can find the Alexander polynomial for any knot or link, by applying to it, in a standard way, the surgery operations of switching and elimination. ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 129 A.M. GAVRILIK, A.M. PAVLYUK From now on, we consider torus knots and links of the type (s, 2), where s is any positive integer. If s = 1, we have the unknot, the case of s = 2 corresponds to the Hopf link, s = 3 to the trefoil knot, and so on. In general, when s is odd, we have the series of torus knots T (s, 2), and if s is even, we have the series of two-component torus links L(s, 2). Here, s equals the minimal number of crossings. Applying the operation of elimination to (s, 2), one obtains (s−1, 2), whereas the switching operation turns (s, 2) into (s − 2, 2), for s > 2. This means that A+(t), AO(t) and A−(t) correspond to three successive Alexander polynomials, which allows one to make the following juxtaposition in (1): A+(t)→ Ã2 n+1(t), AO(t)→ Ã2 n(t), A−(t)→ Ã2 n−1(t). (3) Thus, from (1) and (3), one obtains the recurrence re- lation for the tilded Alexander polynomials for a unified set of torus knots and links of the type (s, 2), (the poly- nomials are arranged by increasing degrees): Ã2 n+1(t) = (t 1 2 − t− 1 2 )Ã2 n(t) + Ã2 n−1(t). (4) It is convenient to denote the Alexander polynomials for a subset containing only torus knots (or the subset of torus links) as As,2m (t) ≡ As,2m ≡ A2 m. Here, m is the degree of the corresponding Alexander polynomial, which has the form of a Laurent polynomial: m = 1 2 (s− 1). (5) Since s = 2m + 1 for both knots and links, the degree m of the Alexander polynomial for knots T (s, 2) is an integer, and m for links L(s, 2) is half-integer. Let us first give the table of the Alexander polynomials As,2m (t) for torus knots T (s, 2) ≡ T (2m+ 1, 2) A1,2 0 (t) = 1, A3,2 1 (t) = t− 1 + t−1, A5,2 2 (t) = t2 − t+ 1− t−1 + t−2, A7,2 3 (t) = t3 − t2 + t− 1 + t−1 − t−2 + t−3, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · A2m+1,2 m (t) = tm − tm−1 + · · · − t−(m−1) + t−m = = m∑ i=0 tm−2i − m−1∑ i=0 tm−2i−1 = 2m∑ i=0 (−1)itm−i. (6) The recurrence formula for polynomials (6) looks as (dropping 2m+ 1 in superscript) A2 m+1(t) = (t+ t−1)A2 m(t)−A2 m−1(t). (7) Now consider torus links of the type L(s, 2) ≡ L(2m+ 1, 2), where s is a positive even integer. The degree m of the Alexander polynomial As,2m (q) is again as in (5). It is half-integer now. The table shows the Alexander polynomials for these torus links: A2,2 1 2 (t) = t 1 2 − t− 1 2 , A4,2 3 2 (t) = t 3 2 − t 1 2 + t− 1 2 − t− 3 2 , A6,2 5 2 (t) = t 5 2 − t 3 2 + t 1 2 − t− 1 2 + t− 3 2 − t− 5 2 , · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · A2m+1,2 m (t) = tm − tm−1 + · · ·+ t−(m−1) − t−m = = 2m∑ i=0 (−1)itm−i. (8) Note that polynomials (8) satisfy the recurrence relation (7) too, though now with half-integer subscripts. So, for torus knots and links of the type (s, 2), Eq. (7) describes either three successive torus knots (if s is an odd integer) or three successive torus links (if s is an even integer). Unifying two tables (6) and (8), we have the table of the Alexander polynomials for torus knots T (s, 2) and links L(s, 2), where s = 2m + 1 is an integer, while m is an integer or half-integer and equals the degree of the Alexander polynomial: Ã1,2 0 (t) ≡ A1,2 0 (t) = 1, Ã2,2 1 (t) ≡ A2,2 1 2 (t) = t 1 2 − t− 1 2 , Ã3,2 2 (t) ≡ A3,2 1 (t) = t− 1 + t−1, Ã4,2 3 (t) ≡ A4,2 3 2 (t) = t 3 2 − t 1 2 + t− 1 2 − t− 3 2 , Ã5,2 4 (t) ≡ A5,2 2 (t) = t2 − t+ 1− t−1 + t−2, Ã6,2 5 (t) ≡ A6,2 5 2 (t) = = t 5 2 − t 3 2 + t 1 2 − t− 1 2 + t− 3 2 − t− 5 2 , Ã7,2 6 (t) ≡ A7,2 3 (t) = = t3 − t2 + t− 1 + t−1 − t−2 + t−3, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Ã2m+1,2 2m (t) ≡ A2m+1,2 m (t) = = tm − tm−1 + tm−2 − · · · t−m = 2m∑ i=0 (−1)itm−i. (9) 130 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 ON CHEBYSHEV POLYNOMIALS AND TORUS KNOTS Two different notations for the Alexander polynomials are related to each other as Ã2m+1,2 2m (t) = A2m+1,2 m (t). The recurrence relation for polynomials (9) is given by (4) which immediately follows from the skein relation (1) in view of correspondence (3). Let us show that (4) can be obtained from (7) as well. To see that, we first write (1) in the general form A+(t) = b1AO(t) + b2A−(t). (10) With account of (3), we also have the recursion relation Ã2 n+1(t) = b1Ã 2 n(t) + b2Ã 2 n−1(t). (11) Then we rewrite Eq. (7) in terms of tilded Ã2 n(t): Ã2 n+1(t) = (t+ t−1)Ã2 n−1(t)− Ã2 n−3(t). (12) The latter in general terms looks as Ã2 n+1(t) = c1Ã 2 n−1(t) + c2Ã 2 n−3(t). (13) From (11) we have Ã2 n(t) = b1Ã 2 n−1(t) + b2Ã 2 n−2(t), (14) Ã2 n−1(t) = b1Ã 2 n−2(t) + b2Ã 2 n−3(t). (15) Insert (14) into (11): Ã2 n+1(t) = (b21 + b2)Ã2 n−1(t) + b1b2Ã 2 n−2(t). (16) Then we put Ã2 n−2(t) from (15) into (16) Ã2 n+1(t) = (b21 + 2b2)Ã2 n−1(t)− b22Ã2 n−3(t). (17) The comparison of (17) and (13) gives c1 = b21 + 2b2, c2 = −b22. (18) From Eq. (18), we have b1 = (c1 − 2b2) 1 2 , b2 = (−c2) 1 2 . (19) The latter two formulas which involve general coefficients will be used below (see Section 4). Comparing (12) and (13) yields c1 = t+ t−1, c2 = −1. With account of (19), this implies b2 = 1, b1 = t 1 2 − t− 1 2 , which coincides with the coefficients in (4). Thus, our statement is proved. Since formulas (18) and (19) connect arbitrary pairs b1, b2 and c1, c2, this allows us to gain a general skein relation from the corresponding recurrence relation for the set of torus knots T (s, 2). 3. Alexander Polynomials from Chebyshev Polynomials In this section, we describe the connection between Alexander polynomials and Chebyshev polynomials, us- ing the q-numbers. The q-number corresponding to the integer n is defined as (see, e.g., [18, 19] and [20]) [n]q = qn − q−n q − q−1 , (20) where q is a parameter. If q → 1, then [n]q → n. Consid- ering q to be variable, we go over to the q-polynomials. Some of the q-numbers (or q-polynomials) are as follows: [1]q = 1, [2]q = q + q−1, [3]q = q2 + 1 + q−2, [4]q = q3 + q + q−1 + q−3, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · [n]q=qn−1 + qn−3 + · · ·+ q−(n−1) = n−1∑ i=0 qn−1−2i. (21) The (easily verifiable) recurrence relation for the q- numbers (or q-polynomials) is [n+ 1]q = (q + q−1)[n]q − [n− 1]q. (22) From now on, we rename the variable in the Alexander polynomials: t→ q. For the considered class of torus knots, the compari- son of the Alexander polynomials and the q-polynomials implies that the Alexander polynomials (6) can be ex- pressed through q-polynomials (21) in the simple way: A2 n(q) = [n+ 1]q − [n]q. (23) This relation for the Alexander polynomials was found in [14, 15] in the context of their correspondence to the masses of vector quarkonia. Below, we will need some properties of the classi- cal Chebyshev polynomials in order to formulate the Alexander polynomials in terms of the Chebyshev ones. If x = 2 cos θ, the Chebyshev polynomials of the first kind are defined as Tn(x) = 2 cos(nθ). (24) ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 131 A.M. GAVRILIK, A.M. PAVLYUK From (24), some first cases read T0=2, T1=x, T2=x2 − 2, T3=x3 − 3x, . . . . The recurrence formula is known as Tn+1 = xTn − Tn−1. (25) Chebyshev polynomials of the second kind are Vn(x) = sin((n+ 1)θ) sin θ . (26) Polynomials Tn and Vn are both monic and have the degree n. From (26), we have V0=1, V1=x, V2 = x2 − 1, V3 = x3 − 2x, . . . , and the recurrence relation is Vn+1 = xVn − Vn−1. (27) There is a connection between (24) and (26): Tn(x) = Vn(x)− Vn−2(x). (28) Putting q = eiθ (29) into (20), we have [n]q = sin(nθ) sin θ = Vn−1(x), (30) where Vn(x) is the Chebyshev polynomial of the second kind, and x = 2 cos θ = q + q−1. (31) From (30) and (31), it is seen that Vn(q) = [n+ 1]q. (32) Therefore, (23) takes the form A2 n(q) = Vn(x)− Vn−1(x), x = q + q−1. (33) Thus, the Alexander polynomials A2 n(q) are obtained from the Chebyshev polynomials of the second kind Vn(x) (26) after changing the variables x → q + q−1 by means of formula (33). 4. Generalized Alexander Polynomials and HOMFLY Polynomials Now let us consider the q,p -numbers, a natural gener- alization of q-numbers. With the help of q, p-numbers, we will construct a generalization of the Alexander poly- nomials – A2 n(q, p) which now depend on two variables q, p. Afterwards, we intend to show that A2 n(q, p) turn into the well-known HOMFLY polynomials by an appro- priate change of variables. The q, p-number corresponding to the integer number n is defined as (see e.g. [21]) [n]q,p = qn − pn q − p , (34) where q, p are some complex parameters. If p = q−1, then [n]q,p = [n]q. Some of the q, p-numbers are [1]q,p = 1, [2]q,p = q + p, [3]q,p=q2 + qp+ p2, [4]q,p=q3 + q2p+ qp2 + p3, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · [n]q,p = qn−1 + qn−2p+ qn−3p2 + · · ·+ +qpn−2 + pn−1= n−1∑ i=0 qn−1−ipi = qn−1 n−1∑ i=0 q−ipi. (35) Considering q and p as variables, we deal with q, p- polynomials. Then, the recurrence relation for them is [n+ 1]q,p = (q + p)[n]q,p − qp[n− 1]q,p. (36) On the base of Eq. (32) and expression (34) or (35) for the q, p-polynomials, we introduce a natural general- ization of the Chebyshev polynomials of the second kind which now depend on the two variables: Vn(q, p) = [n+ 1]q,p. (37) From (36) and (37), the recurrence relation does follow: Vn+1(q, p) = (q + p)Vn(q, p)− qpVn−1(q, p). (38) Now, in analogy with (33), we introduce the two-variable generalized Alexander polynomial as a linear combina- tion of polynomials (37). Due to this proposal, the fol- lowing recurrence formula takes place: A2 n+1(q, p) = (q + p)A2 n(q, p)− qpA2 n−1(q, p). (39) 132 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 ON CHEBYSHEV POLYNOMIALS AND TORUS KNOTS This is a direct analog of (7) and reduces to it if q = t and p = t−1. To continue the analogy, we take A2 0(q, p) = 1, A2 1(q, p) = q − qp+ p. (40) It is easy to see that (39) with (40) will be valid if A2 n(q, p) = Vn(q, p)− qpVn−1(q, p) = = [n+ 1]q,p − qp[n]q,p. (41) Setting q = reiθ, p = q̄ = re−iθ (42) into (34), we have [n]q,p = rn sin(nθ) r sin θ = rn−1Vn−1(x). (43) If r = 1, Eq. (43) turns into (30). Taking (37) and (43) into account, we obtain Vn(q, p) with a factorized form of the dependence on the variables r, x : Vn(r, x) = rnVn(x). (44) Here, Vn(x) is the classical Chebyshev polynomial of the second kind, with x as in (31). The corresponding two- variable Chebyshev polynomials of the first kind arise as well: Tn(r, x) = 2rn cos(nθ). In the variables r, x, see (42) and (31), the recurrence relation (39) can be written as A2 n+1(r, x) = rxA2 n(r, x)− r2A2 n−1(r, x). (45) The first two polynomials (40) become A2 0(r, x) = 1, A2 1(r, x) = rx− r2. (46) From (41) and (44), we also have A2 n(r, x) = rn(Vn(x)− rVn−1(x)). (47) Now we make a key proposal: we apply the generalized Alexander polynomials A2 n(r, x) given by (45) and (46) for describing the torus knots T (s, 2). From (19) with account of (42), we have c1 = rx, c2 = −r2, and then b2 = r, b1 = (rx− 2r) 1 2 = r 1 2 (x− 2) 1 2 . (48) Hence, as a generalization of (1), from (10), (11) and (48), we obtain the skein relation for the generalized Alexander polynomials: A+(r, x) = r 1 2 (x− 2) 1 2AO(r, x) + rA−(r, x). (49) Now let us explore the connection between the gener- alized Alexander skein relation (49) and the HOMFLY skein relation. By definition, the HOMFLY polynomials H(a, z) satisfy the skein relation a−1H+(a, z)− a1H−(a, z) = zHO(a, z), or, in equivalent form, H+(a, z) = azHO(a, z) + a2H−(a, z), (50) with Hunknot = 1. As before, consider the torus knots T (s, 2), where s is an odd integer. For these, the notation for the corresponding HOMFLY polynomials is similar to that for the Alexander ones, namely H(s, 2)(a, z) ≡ H(2m+ 1, 2)(a, z) ≡ H2 m(a, z) ≡ H2 m. The short list of the HOMFLY polynomials for torus knots T (s, 2) ≡ T (2m+ 1, 2) is: H1,2 0 (a, z) = 1, H3,2 1 (a, z) = 2a2 + a2z2 − a4, H5,2 2 (a, z) = 3a4 + 4a4z2 + a4z4 − 2a6 − a6z2, H7,2 3 (a, z) = 4a6 + 10a6z2 + 6a6z4 + a6z6 − 3a8− −4a8z2 − a8z4, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · . (51) The recurrence relation for (51) reads H2 m+1(a, z) = a2(z2 + 2)H2 m(a, z)− a4H2 m−1(a, z). (52) If we compare (52) and (45), we see that, through the substitution r = a2, x = z2 + 2, (53) the HOMFLY polynomials and the generalized Alexan- der polynomials coincide: H2 n(a, z) = A2 n(r, x) = rn(Vn(x)− rVn−1(x)). Then, the HOMFLY skein relation (50) in the variables r, x, see (53), looks as H+(r, x) = r 1 2 (x− 2) 1 2HO(r, x) + rH−(r, x), (54) ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1 133 A.M. GAVRILIK, A.M. PAVLYUK which coincides with (49). In addition, A2 0(r, x) = H2 0 (r, x), A2 1(r, x) = H2 1 (r, x). Thus, we have proved that the generalized Alexan- der polynomials and their skein relation go over into the HOMFLY ones by applying parametrization (53). On the other hand, the HOMFLY skein relation and poly- nomials turn into the generalized Alexander ones with the help of the inverse substitution a = r 1 2 , z = (x− 2) 1 2 . 5. Concluding Remarks We have demonstrated that the connection of the Cheby- shev polynomials with the Alexander polynomials can be realized in a rather simple way if one uses, as an auxiliary tool, the concept of q-numbers. On the other hand, the existence of the q,p -numbers, which general- ize the q-numbers, makes it possible to generalize the Chebyshev polynomials to their two-variable modifica- tion and, by exploiting the analogy with the previous one-variable case, also to achieve a two-variable general- ization of the Alexander polynomials. Finally, we have found that the two-variable extended Alexander polyno- mials are mapped onto the HOMFLY polynomials. We hope that the proposed way to use the Chebyshev polynomials will be helpful for the further investigation of knots and links, not only on the base of the Alexander polynomials (along with their two-variable modification) and the HOMFLY polynomials treated above, but also possibly in connection with Kauffman polynomials and other known polynomial invariants. In addition, it is of interest to study, within the proposed scheme, the more general (s, r) torus knots than those in the particular class (s, 2) considered in this paper. Subsequently, we hope to use the explored polynomial invariants within the framework of some physical models. This research was partially supported by the Grant 29.1/028 of the State Foundation of Fundamental Re- search of Ukraine and by the Special Program of the Di- vision of Physics and Astronomy of the NAS of Ukraine. 1. M.F. Atiyah, The Geometry and Physics of Knots (Cam- bridge Univ. Press, Cambridge, 1990). 2. L.H. Kauffman, Knots and Physics (World Scientific, Sin- gapore, 2001). 3. L.H. Kauffman (editor), The Interface of Knots and Physics, AMS Short Course Lecture Notes, Proc. Symp. App. Math. 51, 1996. 4. M.D. Frank-Kamenetskii, A.V. Vologodskii, Uspekhi Fiz. Nauk 134, 641 (1981). 5. Y. Akutsu and M. Wadati, Comm. Math. Phys. 117, 243 (1988). 6. E. Witten, Comm. Math. Phys. 121, 351 (1989). 7. J.C. Baez (editor), Knots and Quantum Gravity (Oxford Univ. Press, Oxford, 1994). 8. L.D. Faddeev, Preprint IAS-75-QS70 (Institute for Ad- vanced Study, Princeton, 1975). 9. L. Faddeev and A.J. Niemi, Nature 387, 58 (1997). 10. R.A. Battye and P.M. Sutcliffe, Phys. Rev. Lett. 81, 4798 (1998); Proc. R. Soc. Lon. A 455, 4305 (1999). 11. R.J. Finkelstein, arXiv:hep-th/0701124, 2007. 12. R.J. Finkelstein, Int. J. Mod. Phys. A 22, 4467 (2007) 13. L.D. Faddeev, arXiv:0805.1624 [hep-th], 2008. 14. A.M. Gavrilik, J. Phys. A 27, 91 (1994). 15. A.M. Gavrilik, Nuclear Phys. (Proc. Suppl.) B 102-103, 298 (2001). 16. J.S. Birman, Bull. Amer. Math. Soc. 28, 253 (1993). 17. P.-V. Koseleff, D. Pecker, arXiv:0712.2408v1 [math.HO], 2007. 18. L.C. Biedenharn, J. Phys. A: Math. Gen. 22, L873 (1989). 19. A.J. Macfarlane, J. Phys. A: Math. Gen. 22, 4581 (1989). 20. V. Kac and P. Cheung, Quantum Calculus (Springer, Berlin, 2002). 21. A. Chakrabarti and R. Jagannathan, J. Phys. A: Math. Gen. 24, L711 (1991). Received 22.10.09 ПРО ПОЛIНОМИ ЧЕБИШОВА I ТОРИЧНI ВУЗЛИ О.М. Гаврилик, А.М. Павлюк Р е з ю м е У роботi показано, що q-числа та їх двопараметричнi уза- гальнення, q, p-числа можна використати для отримання де- яких полiномiальних iнварiантiв торичних вузлiв i зачеплень. По-перше, показано, що q-числа, якi тiсно пов’язанi з полi- номами Чебишова, можуть бути пов’язанi з полiномами Але- ксандера для класу T (s, 2) торичних вузлiв, де s – непар- не цiле число, i використанi для знаходження вiдповiдного скейн-спiввiдношення. Потiм використано цю процедуру для отримання за допомогою q, p-чисел, двопараметричних уза- гальнених полiномiв Александера та показано зв’язок остан- нiх iз полiномiальними iнварiантами HOMFLY та їх скейн- спiввiдношенням. 134 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1