Побудова найкращих чебишовських наближень сплайнами
З метою побудови найкращого чебишовського наближення для заданої функції поліноміальним сплайном степеня n з r фіксованими вузлами у статті пропонується застосувати після відповідної модифікації алгоритм апроксимації функції багатьох змінних узагальненим многочленом. У цьому алгоритмі використовуєть...
Збережено в:
| Опубліковано в: : | Штучний інтелект |
|---|---|
| Дата: | 2017 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут проблем штучного інтелекту МОН України та НАН України
2017
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/133667 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Побудова найкращих чебишовських наближень сплайнами / Л.П. Вакал // Штучний інтелект. — 2017. — № 2. — С. 94-100. — Бібліогр.: 15 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | З метою побудови найкращого чебишовського наближення для заданої функції поліноміальним сплайном степеня n з r фіксованими вузлами у статті пропонується застосувати після відповідної модифікації алгоритм апроксимації функції багатьох змінних узагальненим многочленом. У цьому алгоритмі використовується зведення до задачі лінійного програмування з головною двоїстою максимум-задачею. Аналіз чисельних результатів показав, що у більшості випадків модифікований алгоритм знаходить більш точні наближення сплайнами, ніж інші відомі алгоритми.
In order to compute the best Chebyshev (uniform) approximation for a given function by polynomial spline of degree n with r fixed knots it is proposed to apply, after an appropriate modification, an algorithm for approximating many-variables function by a generalized polynomial. In the algorithm a reduction to the linear programming problem with the main dual maximum-problem is used. Analysis of the numerical results showed that in most cases the modified algorithm has computed spline approximations more precisely than other known algorithms.
|
|---|---|
| ISSN: | 1561-5359 |