Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений
Используются сведения, вводящие и сохраняющие разрыв. Показано, что для множественной реоптимизации задачи о вычислении хроматического числа графа с заданным экспоненциальным множеством оптимальных решений при вставке произвольной вершины с не более чем двумя ребрами, ей инцидентными, а также при уд...
Saved in:
| Date: | 2016 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2016
|
| Series: | Кибернетика и системный анализ |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/133680 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений / В.А. Михайлюк // Кибернетика и системный анализ. — 2016. — Т. 52, № 3. — С. 39-48. — Бібліогр.: 14 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-133680 |
|---|---|
| record_format |
dspace |
| fulltext |
|
| spelling |
nasplib_isofts_kiev_ua-123456789-1336802025-02-09T13:15:48Z Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений Складність реоптимізації задачі обчислення хроматичного числа графа із заданою множиною оптимальних розв’язків Hardness of reoptimization of the problem of calculating the chromatic number of a graph with a given set of optimal solutions Михайлюк, В.А. Кибернетика Используются сведения, вводящие и сохраняющие разрыв. Показано, что для множественной реоптимизации задачи о вычислении хроматического числа графа с заданным экспоненциальным множеством оптимальных решений при вставке произвольной вершины с не более чем двумя ребрами, ей инцидентными, а также при удалении произвольной вершины со всеми инцидентными ей ребрами не существует полиномиально приближенной схемы (PTAS). Такой же результат имеет место для обычной реоптимизации. Використано зведення, що вводять і зберігають розрив. Показано, що для множинної реоптимізаціі задачі про обчислення хроматичного числа графа із заданою експоненціальною множиною оптимальних розв’язків при уставленні довільної вершини з не більш ніж двома ребрами, їй інцидентними, а також при видаленні довільної вершини з усіма інцидентними їй ребрами не існує поліноміально наближеної схеми (PTAS). Такий же результат має місце для звичайної реоптимізаціі. The author uses gap-introducing and gap-preserving reductions and shows that for multiple reoptimization of the problem of calculating the chromatic number of a graph with a given exponential set of optimal solutions, when an arbitrary vertex with no more than two edges incident to it is inserted as well as when any vertex with all incident edges is deleted, polynomial time approximation scheme (PTAS) does not exist. The same result holds for ordinary reoptimization. 2016 Article Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений / В.А. Михайлюк // Кибернетика и системный анализ. — 2016. — Т. 52, № 3. — С. 39-48. — Бібліогр.: 14 назв. — рос. 0023-1274 https://nasplib.isofts.kiev.ua/handle/123456789/133680 519.854 ru Кибернетика и системный анализ application/pdf Інститут кібернетики ім. В.М. Глушкова НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
Russian |
| topic |
Кибернетика Кибернетика |
| spellingShingle |
Кибернетика Кибернетика Михайлюк, В.А. Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений Кибернетика и системный анализ |
| description |
Используются сведения, вводящие и сохраняющие разрыв. Показано, что для множественной реоптимизации задачи о вычислении хроматического числа графа с заданным экспоненциальным множеством оптимальных решений при вставке произвольной вершины с не более чем двумя ребрами, ей инцидентными, а также при удалении произвольной вершины со всеми инцидентными ей ребрами не существует полиномиально приближенной схемы (PTAS). Такой же результат имеет место для обычной реоптимизации. |
| format |
Article |
| author |
Михайлюк, В.А. |
| author_facet |
Михайлюк, В.А. |
| author_sort |
Михайлюк, В.А. |
| title |
Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений |
| title_short |
Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений |
| title_full |
Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений |
| title_fullStr |
Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений |
| title_full_unstemmed |
Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений |
| title_sort |
сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений |
| publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
| publishDate |
2016 |
| topic_facet |
Кибернетика |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/133680 |
| citation_txt |
Сложность реоптимизации задачи вычисления хроматического числа графа с заданным множеством оптимальных решений / В.А. Михайлюк // Кибернетика и системный анализ. — 2016. — Т. 52, № 3. — С. 39-48. — Бібліогр.: 14 назв. — рос. |
| series |
Кибернетика и системный анализ |
| work_keys_str_mv |
AT mihajlûkva složnostʹreoptimizaciizadačivyčisleniâhromatičeskogočislagrafaszadannymmnožestvomoptimalʹnyhrešenij AT mihajlûkva skladnístʹreoptimízacíízadačíobčislennâhromatičnogočislagrafaízzadanoûmnožinoûoptimalʹnihrozvâzkív AT mihajlûkva hardnessofreoptimizationoftheproblemofcalculatingthechromaticnumberofagraphwithagivensetofoptimalsolutions |
| first_indexed |
2025-11-26T02:06:00Z |
| last_indexed |
2025-11-26T02:06:00Z |
| _version_ |
1849816787667910656 |