Предельная характеристика точности дискретного аналога спектральной задачи
Рассмотрена задача на собственные значения для оператора Лапласа с краевым условием Дирихле на границе двумерной области произвольной формы. С помощью конечно-разностной аппроксимации исходной задачи получена предельная оценка точности простого собственного числа. На основании асимптотической формул...
Gespeichert in:
| Veröffentlicht in: | Кибернетика и системный анализ |
|---|---|
| Datum: | 2016 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2016
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/133688 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Предельная характеристика точности дискретного аналога спектральной задачи / В.Г. Приказчиков, Н.В. Майко // Кибернетика и системный анализ. — 2016. — Т. 52, № 3. — С. 134-140. — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Рассмотрена задача на собственные значения для оператора Лапласа с краевым условием Дирихле на границе двумерной области произвольной формы. С помощью конечно-разностной аппроксимации исходной задачи получена предельная оценка точности простого собственного числа. На основании асимптотической формулы доказана оценка снизу для простых собственных чисел.
Розглянуто задачу на власні значення для оператора Лапласа з крайовими умовами Діріхле на межі двовимірної області довільної форми. За допомогою скінченно-різницевої апроксимації доведено граничну оцінку точності простого власного числа. З асимптотичної формули виведено оцінку знизу для простих власних чисел.
The spectral problem for the Laplace operator with the Dirichlet boundary condition in a two-dimensional domain is investigated. By using the finite-difference approximation the limit accuracy estimate for a simple eigenvalue is obtained. From the asymptotic formula the lower estimate for a simple eigenvalue is drawn.
|
|---|---|
| ISSN: | 0023-1274 |