Предельная характеристика точности дискретного аналога спектральной задачи

Рассмотрена задача на собственные значения для оператора Лапласа с краевым условием Дирихле на границе двумерной области произвольной формы. С помощью конечно-разностной аппроксимации исходной задачи получена предельная оценка точности простого собственного числа. На основании асимптотической формул...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Кибернетика и системный анализ
Datum:2016
Hauptverfasser: Приказчиков, В.Г., Майко, Н.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2016
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/133688
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Предельная характеристика точности дискретного аналога спектральной задачи / В.Г. Приказчиков, Н.В. Майко // Кибернетика и системный анализ. — 2016. — Т. 52, № 3. — С. 134-140. — Бібліогр.: 7 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Рассмотрена задача на собственные значения для оператора Лапласа с краевым условием Дирихле на границе двумерной области произвольной формы. С помощью конечно-разностной аппроксимации исходной задачи получена предельная оценка точности простого собственного числа. На основании асимптотической формулы доказана оценка снизу для простых собственных чисел. Розглянуто задачу на власні значення для оператора Лапласа з крайовими умовами Діріхле на межі двовимірної області довільної форми. За допомогою скінченно-різницевої апроксимації доведено граничну оцінку точності простого власного числа. З асимптотичної формули виведено оцінку знизу для простих власних чисел. The spectral problem for the Laplace operator with the Dirichlet boundary condition in a two-dimensional domain is investigated. By using the finite-difference approximation the limit accuracy estimate for a simple eigenvalue is obtained. From the asymptotic formula the lower estimate for a simple eigenvalue is drawn.
ISSN:0023-1274