Математична модель реології фрактально-неоднорідних пластових систем

Досліджено умову «гладкості» фронту поділу складових неоднорідних (гетерогенних) систем на основі аналізу «стрибка» насиченості в функції Баклея-Леверета. Показано, що «стрибок» насиченості відсутній, а фронт поділу просувається стало та зберігає «гладкість», якщо рухомість компоненти, яка витискає,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Математичне та комп'ютерне моделювання. Серія: Технічні науки
Datum:2016
Hauptverfasser: Положаєнко, С.А., Савіч, В.С.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/133756
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Математична модель реології фрактально-неоднорідних пластових систем / С.А. Положаєнко, В.С. Савіч // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 98-107. — Бібліогр.: 16 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-133756
record_format dspace
spelling Положаєнко, С.А.
Савіч, В.С.
2018-06-05T20:18:22Z
2018-06-05T20:18:22Z
2016
Математична модель реології фрактально-неоднорідних пластових систем / С.А. Положаєнко, В.С. Савіч // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 98-107. — Бібліогр.: 16 назв. — укр.
2308-5916
https://nasplib.isofts.kiev.ua/handle/123456789/133756
004.32:532.5
Досліджено умову «гладкості» фронту поділу складових неоднорідних (гетерогенних) систем на основі аналізу «стрибка» насиченості в функції Баклея-Леверета. Показано, що «стрибок» насиченості відсутній, а фронт поділу просувається стало та зберігає «гладкість», якщо рухомість компоненти, яка витискає, не перевищує рухомість компоненти, яка витискається. Також показано, що порушення «гладкості» фронту поділу призводить до фрактально-неоднорідної структури процесу реології. Отримано числові значення фрактальної розмірності фронту поділу для реологічного процесу, який розвивається у реальних геологічних умовах. Запропоновано математичну модель фрактально-неоднорідної системи в класі варіаційних нерівностей.
The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that squeezes does not exceed movable components that squeezed. Also show that violations of the «smoothness» Front separation leads to inhomogeneous fractal structure process rheology. A numerical values fractal dimension of the front division for rheological process that occurs in real geological conditions. The mathematical model of fractalheterogeneous systems in a class of varitional inequalities.
uk
Інститут кібернетики ім. В.М. Глушкова НАН України
Математичне та комп'ютерне моделювання. Серія: Технічні науки
Математична модель реології фрактально-неоднорідних пластових систем
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Математична модель реології фрактально-неоднорідних пластових систем
spellingShingle Математична модель реології фрактально-неоднорідних пластових систем
Положаєнко, С.А.
Савіч, В.С.
title_short Математична модель реології фрактально-неоднорідних пластових систем
title_full Математична модель реології фрактально-неоднорідних пластових систем
title_fullStr Математична модель реології фрактально-неоднорідних пластових систем
title_full_unstemmed Математична модель реології фрактально-неоднорідних пластових систем
title_sort математична модель реології фрактально-неоднорідних пластових систем
author Положаєнко, С.А.
Савіч, В.С.
author_facet Положаєнко, С.А.
Савіч, В.С.
publishDate 2016
language Ukrainian
container_title Математичне та комп'ютерне моделювання. Серія: Технічні науки
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
format Article
description Досліджено умову «гладкості» фронту поділу складових неоднорідних (гетерогенних) систем на основі аналізу «стрибка» насиченості в функції Баклея-Леверета. Показано, що «стрибок» насиченості відсутній, а фронт поділу просувається стало та зберігає «гладкість», якщо рухомість компоненти, яка витискає, не перевищує рухомість компоненти, яка витискається. Також показано, що порушення «гладкості» фронту поділу призводить до фрактально-неоднорідної структури процесу реології. Отримано числові значення фрактальної розмірності фронту поділу для реологічного процесу, який розвивається у реальних геологічних умовах. Запропоновано математичну модель фрактально-неоднорідної системи в класі варіаційних нерівностей. The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that squeezes does not exceed movable components that squeezed. Also show that violations of the «smoothness» Front separation leads to inhomogeneous fractal structure process rheology. A numerical values fractal dimension of the front division for rheological process that occurs in real geological conditions. The mathematical model of fractalheterogeneous systems in a class of varitional inequalities.
issn 2308-5916
url https://nasplib.isofts.kiev.ua/handle/123456789/133756
citation_txt Математична модель реології фрактально-неоднорідних пластових систем / С.А. Положаєнко, В.С. Савіч // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 98-107. — Бібліогр.: 16 назв. — укр.
work_keys_str_mv AT položaênkosa matematičnamodelʹreologíífraktalʹnoneodnorídnihplastovihsistem
AT savíčvs matematičnamodelʹreologíífraktalʹnoneodnorídnihplastovihsistem
first_indexed 2025-12-07T19:45:26Z
last_indexed 2025-12-07T19:45:26Z
_version_ 1850880007783579648