Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами

У статті встановлено необхідні, достатні умови і критерії екстремальності елемента для задачі найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації фіксованого відображення з множини неперервних відображень з компактними опуклими образами підмножиною цієї множини. Отримано ни...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Дата:2016
Автори: Гудима, У.В., Гнатюк, В.О.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2016
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/133908
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами / У.В. Гудима, В.О. Гнатюк // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 22-43. — Бібліогр.: 15 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-133908
record_format dspace
spelling Гудима, У.В.
Гнатюк, В.О.
2018-06-09T18:22:39Z
2018-06-09T18:22:39Z
2016
Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами / У.В. Гудима, В.О. Гнатюк // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 22-43. — Бібліогр.: 15 назв. — укр.
2308-5878
https://nasplib.isofts.kiev.ua/handle/123456789/133908
517.5
У статті встановлено необхідні, достатні умови і критерії екстремальності елемента для задачі найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації фіксованого відображення з множини неперервних відображень з компактними опуклими образами підмножиною цієї множини. Отримано низку допоміжних результатів, які становлять і самостійний інтерес.
The necessary and sufficient conditions and criteria of the extremal element for the problem of the best at sense of the weighting Hausdorf’s distance of uniform approximation of fixed map from set of continuous maps with compact convex images by subset of this set are proved in the article.
uk
Інститут кібернетики ім. В.М. Глушкова НАН України
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
spellingShingle Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
Гудима, У.В.
Гнатюк, В.О.
title_short Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
title_full Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
title_fullStr Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
title_full_unstemmed Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
title_sort задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами
author Гудима, У.В.
Гнатюк, В.О.
author_facet Гудима, У.В.
Гнатюк, В.О.
publishDate 2016
language Ukrainian
container_title Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
format Article
description У статті встановлено необхідні, достатні умови і критерії екстремальності елемента для задачі найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації фіксованого відображення з множини неперервних відображень з компактними опуклими образами підмножиною цієї множини. Отримано низку допоміжних результатів, які становлять і самостійний інтерес. The necessary and sufficient conditions and criteria of the extremal element for the problem of the best at sense of the weighting Hausdorf’s distance of uniform approximation of fixed map from set of continuous maps with compact convex images by subset of this set are proved in the article.
issn 2308-5878
url https://nasplib.isofts.kiev.ua/handle/123456789/133908
citation_txt Задача найкращої у розумінні зваженої хаусдорфової відстані рівномірної апроксимації у множині неперервних відображень з компактними опуклими образами / У.В. Гудима, В.О. Гнатюк // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2016. — Вип. 14. — С. 22-43. — Бібліогр.: 15 назв. — укр.
work_keys_str_mv AT gudimauv zadačanaikraŝoíurozumínnízvaženoíhausdorfovoívídstanírívnomírnoíaproksimacííumnožiníneperervnihvídobraženʹzkompaktnimiopuklimiobrazami
AT gnatûkvo zadačanaikraŝoíurozumínnízvaženoíhausdorfovoívídstanírívnomírnoíaproksimacííumnožiníneperervnihvídobraženʹzkompaktnimiopuklimiobrazami
first_indexed 2025-12-07T13:15:46Z
last_indexed 2025-12-07T13:15:46Z
_version_ 1850855491970793472