Методы глобальной оптимизации на перестановочном многограннике в комбинаторных задачах на вершинно расположенных множествах
Рассмотрена общая постановка задачи оптимизации произвольной функции на дискретном вершинно расположенном множестве Е с учетом дополнительных функциональных ограничений. С использованием теории выпуклых продолжений сформулирована эквивалентная на Е задача оптимизации выпуклой функции при выпуклых ог...
Збережено в:
| Опубліковано в: : | Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки |
|---|---|
| Дата: | 2017 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/133948 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Методы глобальной оптимизации на перестановочном многограннике в комбинаторных задачах на вершинно расположенных множествах / О.С. Пичугина, С.В. Яковлев // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2017. — Вип. 15. — С. 152-158. — Бібліогр.: 13 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Рассмотрена общая постановка задачи оптимизации произвольной функции на дискретном вершинно расположенном множестве Е с учетом дополнительных функциональных ограничений. С использованием теории выпуклых продолжений сформулирована эквивалентная на Е задача оптимизации выпуклой функции при выпуклых ограничениях-неравенствах. Предложен гибридный подход к оптимизации на перестановочном многограннике на основе совместного использования метода штрафных функций и модификации метода условного градиента. При выполнении достаточно общих условий обоснована сходимость предложенного метода к глобальному решению.
A general problem statement of constrained optimization over a discrete vertex located set E is posed. An optimization problem with convex objective function and convex inequality-constraints equivalent on E to original is formulated, based on the convex extensions theory. A hybrid approach to optimization over the permutation polyhedron is presented. It uses jointly the penalty method and a modification of the conditional gradient method. A convergence of the method to the global solution is justified.
|
|---|---|
| ISSN: | 2308-5878 |