Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії

Дослiджено феромагнiтну фазу (ФМФ) одноосьового магнетика з одноiонною анiзотропiєю (ОА) типу “легка площина” та анiзотропною бiквадратною обмiнною взаємодiєю (БОВ). Розглянуто випадок, коли значення вузлового спiну дорiвнює одиницi S = 1. Одержано вирази для двох гiлок спектра спiнових збуджень при...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Шаповалов, І.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Відділення фізики і астрономії НАН України 2010
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/13402
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії / І. Шаповалов // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 307-312. — Бібліогр.: 37 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-13402
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-134022025-02-09T13:27:54Z Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії Ферромагнитная фаза одноосного магнетика в присутствии анизотропного биквадратичного обменного взаимодействия Ferromagnetic Phase of a Uniaxial Magnet with Anisotropic Biquadratic Exchange Шаповалов, І. Тверде тіло Дослiджено феромагнiтну фазу (ФМФ) одноосьового магнетика з одноiонною анiзотропiєю (ОА) типу “легка площина” та анiзотропною бiквадратною обмiнною взаємодiєю (БОВ). Розглянуто випадок, коли значення вузлового спiну дорiвнює одиницi S = 1. Одержано вирази для двох гiлок спектра спiнових збуджень при скiнченних температурах та визначено умови стiйкостi мод спектра. Побудовано дiаграму стiйкостi мод спектра в координатах T - h, з якої випливає, що за певних умов у системi зi зниженням температури спочатку вiдбувається порушення стiйкостi мод спектра, а потiм, з подальшим зниженням температури, стiйкiсть мод спектра вiдновлюється, тобто спостерiгається реєнтрантна поведiнка. Доведено, що температура фазового переходу (ФП) другого роду мiж ФМФ та фазою зi спонтанно порушеною симетрiєю суттєво залежить вiд константи анiзотропiї БОВ. Исследована ферромагнитная фаза (ФМФ) одноосного магнетика с одноионной анизотропией (ОА) типа легкая плоскость и анизотропным биквадратным обменным взаимодействием (БОВ). Рассмотрен случай, когда значение узельного спина равно единице. Получены выражения для двух ветвей спектра спиновых возбуждений при конечных температурах и определены условия устойчивости мод спектра. Построена диаграмма устойчивости мод спектра в координатах T - h, из которой следует, что при определенных условиях в системе с понижением температуры сначала происходит потеря устойчивости мод спектра спиновых возбуждений, а затем, при дальнейшем понижении температуры, устойчивость мод спектра восстанавливается, т. е. наблюдается реентрантное поведение. Доказано, что температура фазового перехода (ФП) второго рода между ФМФ и фазой со спонтанно нарушенной симметрией существенно зависит от константы анизотропии БОВ. The ferromagnetic phase (FMP) of a uniaxial magnet with the easy-plane single-ion anisotropy (SIA) and the anisotropic biquadratic exchange interaction (BQEI) has been studied. The case S = 1 for the site spin S has been considered. Expressions for two branches of the spin excitation spectrum at finite temperatures T have been obtained, and the conditions for spectral mode stability have been determined. The spectral mode stability diagram in the T 􀀀h coordinates has been constructed. The diagram testifies that, under certain conditions, the temperature decrease is accompanied by a violation of the spectral mode stability followed, as the temperature decreases further, by its restoration; i.e. the reentrance phenomenon is observed. The temperature of the second-order phase transition (PT) from the FMP into the phase with spontaneously broken symmetry has been demonstrated to depend considerably on the BQEI anisotropy constant. 2010 Article Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії / І. Шаповалов // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 307-312. — Бібліогр.: 37 назв. — укр. 2071-0194 PACS 75.30.Kz https://nasplib.isofts.kiev.ua/handle/123456789/13402 537.61 uk application/pdf application/pdf Відділення фізики і астрономії НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Тверде тіло
Тверде тіло
spellingShingle Тверде тіло
Тверде тіло
Шаповалов, І.
Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії
description Дослiджено феромагнiтну фазу (ФМФ) одноосьового магнетика з одноiонною анiзотропiєю (ОА) типу “легка площина” та анiзотропною бiквадратною обмiнною взаємодiєю (БОВ). Розглянуто випадок, коли значення вузлового спiну дорiвнює одиницi S = 1. Одержано вирази для двох гiлок спектра спiнових збуджень при скiнченних температурах та визначено умови стiйкостi мод спектра. Побудовано дiаграму стiйкостi мод спектра в координатах T - h, з якої випливає, що за певних умов у системi зi зниженням температури спочатку вiдбувається порушення стiйкостi мод спектра, а потiм, з подальшим зниженням температури, стiйкiсть мод спектра вiдновлюється, тобто спостерiгається реєнтрантна поведiнка. Доведено, що температура фазового переходу (ФП) другого роду мiж ФМФ та фазою зi спонтанно порушеною симетрiєю суттєво залежить вiд константи анiзотропiї БОВ.
format Article
author Шаповалов, І.
author_facet Шаповалов, І.
author_sort Шаповалов, І.
title Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії
title_short Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії
title_full Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії
title_fullStr Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії
title_full_unstemmed Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії
title_sort феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії
publisher Відділення фізики і астрономії НАН України
publishDate 2010
topic_facet Тверде тіло
url https://nasplib.isofts.kiev.ua/handle/123456789/13402
citation_txt Феромагнітна фаза одновісного магнетика у присутності анізотропної біквадратичної обмінної взаємодії / І. Шаповалов // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 307-312. — Бібліогр.: 37 назв. — укр.
work_keys_str_mv AT šapovaloví feromagnítnafazaodnovísnogomagnetikauprisutnostíanízotropnoíbíkvadratičnoíobmínnoívzaêmodíí
AT šapovaloví ferromagnitnaâfazaodnoosnogomagnetikavprisutstviianizotropnogobikvadratičnogoobmennogovzaimodejstviâ
AT šapovaloví ferromagneticphaseofauniaxialmagnetwithanisotropicbiquadraticexchange
first_indexed 2025-11-26T04:59:13Z
last_indexed 2025-11-26T04:59:13Z
_version_ 1849827694347288576
fulltext I.P. SHAPOVALOV FERROMAGNETIC PHASE OF A UNIAXIAL MAGNET WITH ANISOTROPIC BIQUADRATIC EXCHANGE I.P. SHAPOVALOV I.I. Mechnikov Odesa National University (2, Dvoryans’ka Str., Odesa 270100, Ukraine) PACS 75.30.Kz c©2010 The ferromagnetic phase (FMP) of a uniaxial magnet with the easy-plane single-ion anisotropy (SIA) and the anisotropic biquadra- tic exchange interaction (BQEI) has been studied. The case S = 1 for the site spin S has been considered. Expressions for two branches of the spin excitation spectrum at finite temperatures T have been obtained, and the conditions for spectral mode stability have been determined. The spectral mode stability diagram in the T−h coordinates has been constructed. The diagram testifies that, under certain conditions, the temperature decrease is accompanied by a violation of the spectral mode stability followed, as the tem- perature decreases further, by its restoration; i.e. the reentrance phenomenon is observed. The temperature of the second-order phase transition (PT) from the FMP into the phase with sponta- neously broken symmetry has been demonstrated to depend con- siderably on the BQEI anisotropy constant. 1. Introduction Magnets with high values of the SIA and BQEI constants have been found in works [1–6]. In turn, it invoked the subsequent researches of such systems [7–23]. However, in the majority of works, where the BQEI was consid- ered, the authors confined themselves to the isotropic BQEI approximation. In work [17], magnets with SIA and anisotropic BQEI with the site spin S = 1 were studied. It was found that, in the case where the external magnetic field is directed along the crystal symmetry axis (the z-axis), two phases with spontaneously broken symmetry can be realized in the system, besides the symmetric fer- romagnetic and quadrupole phases. One of the asym- metric phases is the so-called Q<FMZ phase. It is a quadrupole-ferromagnetic phase with both a ferro- magnetic ordering axis coinciding with the z-axis and a plane of quadrupole ordering, whose orientation de- pends on Hamiltonian parameters. When the magnetic field hZ grows, the fraction of the ferromagnetic com- ponent increases and that of the quadrupole one de- creases. At a definite hZ-value, the phase Q<FMZ con- tinuously transforms into the FMP, i.e. there occurs a PT of the second kind induced by the field. Unfor- tunately, the authors of work [17] confined the consid- eration to the low-temperature case, which made the study of temperature-induced PTs impossible. A gen- eralization of the ferromagnetic and Q<FMZ phase re- searches to the finite temperature interval has been car- ried out in work [20]. In particular, a boundary between the ferromagnetic and Q<FMZ phases in the field ver- sus temperature coordinates was determined. However, the problem of spin excitation spectra remained unre- solved. Another asymmetric phase (the Q<FM< phase, ac- cording to the terminology of the authors of work [17]), is a phase, in which the magnetization is directed at an angle to the field hZ . At T = 0, when the external field grows, the quadrupole phase (QP) → Q<FM< phase transition occurs at hZ = hc1. If the field grows further, the phase transition, either Q<FM< phase → Q<FMZ phase or Q<FM< phase → FMP, occurs at hZ = hc2. Hence, the Q<FM< phase is realized only provided that hc1 < hc2, with hc1- and hc2-values depending on Hamil- tonian parameters. In work [24], expressions for hc1 and hc2 were obtained in the case where there exists anisotropic BQEI in the system (the corresponding ex- pressions are given below). In the absence of BQEI, only one asymmetric phase can be realized in an easy-plane magnet, namely, in the case where the magnetic field is perpendicular to the easy plane. This phase is an analog of the Q<FM< one (an angular phase). The existence of this phase was pre- dicted in works [25, 26] and confirmed by experiments carried out with nickel compounds [27–30]. Further re- searches of the angular phase have been continued till now [32–35]. For instance, in work [33], an experimental T − h phase diagram is presented, in which the bound- aries of the angular phase with the quadrupole and fer- romagnetic ones agree well with the experimental results of work [31]. A comparison between the results obtained in works [33] and [24] gives the following result: the expressions for hc1 obtained in both works completely agree with each other, whereas expressions for hc2 are different to a certain extent. 306 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 FERROMAGNETIC PHASE OF A UNIAXIAL MAGNET The spectra of spin excitations in magnets with anisotropic BQEI at finite temperatures were the object of researches in work [36], where a special method was developed. The method is based on the application of a suitable dynamic matrix, the characteristic values of which coincide with the values for spin excitation ener- gies. The main purpose of this work consists in construct- ing the spin excitation spectra for a FMP and determin- ing the conditions of their stability. The analysis of the problem is carried out within the method elaborated in work [36]. 2. Hamiltonian In the most general case, the uniaxial Hamiltonian with S = 1 which makes allowance for SIA and BQEI looks like H = −hZ ∑ i SZ i − − ∑ i,j(i6=j) Jij [ SZ i S Z j − 2ξS+ i S − j ] +D ∑ i O0 2i− − ∑ i,j(i6=j) Kij ( 3O0 2iO O 2j − 2ηO1 2iO −1 2j + 4ζO2 2iO −2 2j ) , (1) where Jij are the exchange interaction constants, Kij are the BQEI constants, D is the SIA constant; ξ, η, and ζ are positive numbers; and Om l with l = 1, 2 and m = 0,±1, . . . ,±l are the tensor operators that form the Lie algebra of the group SU(3). The first term in Hamil- tonian (1) is the energy of site spins in an external mag- netic field (the Zeeman energy). The second term is the energy of exchange interaction which becomes isotropic at ξ = 1. The third term is the energy of spins in the crystalline field. The fourth term is the BQEI energy. In the case where η = ζ = 1, the BQEI is isotropic: HBQEI = − ∑ i,j(i6=j) Kij (SiSj) 2 . (2) The deviations of the parameters η and ζ from 1 char- acterize the anisotropy degree of BQEI; i.e. those pa- rameters are the BQEI anisotropy constants. The operators Om l are connected with spin operators by the relations O0 1 = SZ ; O1 1 ≡ S+ = 1√ 2 ( SX − iSY ) ; O−1 1 ≡ S− = −1√ 2 ( SX + iSY ) ; O0 2 = ( SZ )2 − 2 3 ; O± 1 2 = − ( SZS± + S±SZ ) ; O± 2 2 = ( S± )2 . (3) The average values of these operators determine the spin ordering in the system. In the FMP, only the diago- nal averages 〈SZ〉 and 〈O0 2〉 are different from zero, and the order parameter is therefore two-component. In this work, we confine ourselves to the consideration of the single-sublattice ordering in easy-plane magnets, which is provided by the conditions Jij > 0, Kij > 0, and D > 0. In the molecular-field approximation, H0 = − ( hZ + 2J0〈SZ〉 ) × × ∑ i SZ i + ( D − 6K0〈O0 2〉 )∑ i O0 2i, (4) where J0 ≡ ∑ i Jij and K0 ≡ ∑ iKij . Depending on the spin projection SZ on the z-axis (SZ = 0,±1), the energy levels of lattice site atoms are determined by the formulas E0 = −2 3 D + 4K0〈O0 2〉; E1 = −hZ − 2J0〈SZ〉+ 1 3 D − 2K0〈O0 2〉; E−1 = hZ + 2J0〈SZ〉+ 1 3 D − 2K0〈O0 2〉. (5) Since the condition E1 < E−1 is satisfied automati- cally in the FMP, this phase can be realized, provided that E1 < E0 or hZ + 2J0〈SZ〉 > D − 6K0〈O0 2〉. (6) At zero temperature (T = 0) in the FMP, 〈SZ〉 = 1; 〈O0 2〉 = 1 3 . (7) At finite temperatures, the averages 〈SZ〉 and 〈O0 2〉 are determined by the system of two equations [36] 〈SZ〉 = 2sh hz + 2J0〈SZ〉 θ exp 6K0〈O0 2〉 −D θ 1 + 2ch hz + 2J0〈SZ〉 θ exp 6K0〈O0 2〉 −D θ , ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 307 I.P. SHAPOVALOV 〈O0 2〉 = 1 3 − 1 1 + 2ch hz + 2J0〈SZ〉 θ exp 6K0〈O0 2〉 −D θ , (8) where θ is the temperature expressed in energy units (θ = kT ). Note that system (8) looks identically for the quadrupole and ferromagnetic phases; however, the quantities 〈SZ〉 and 〈O0 2〉 are different in both phases. For the identification of solutions of the system which correspond to different phases, it is expedient to use the passage to the limit T → 0. In this case, 〈SZ〉 → 0 and 〈O0 2〉 → − 2 3 in the QP, and 〈SZ〉 → 1 and 〈O0 2〉 → 1 3 in the FMP. 3. Spin Excitation Spectrum The value SZ = 1 corresponds to the ground state of site atoms in the FMP. At finite temperatures, there arise the spin excitations with SZ = 0 and SZ = −1. The creation operators for these excitations are the Hubbard opera- tors X01 and X−11, and the corresponding annihilation operators are X10 and X1−1. In order to find branches of the spin excitation spec- trum, we used the method proposed in work [36] which consists, briefly, in the following. Calculating the com- mutators of non-diagonal Hubbard operators and the Hamiltonian, the dynamic matrix is constructed. The number of characteristic values of this matrix coincides with the number of non-diagonal Hubbard operators that were used, with every characteristic value corre- sponding to a certain Hubbard operator. The expres- sions for those characteristic values, which correspond to the annihilation operators X01 and X−11, coincide in the k-space with the expressions for branches of the spin excitation spectrum. To calculate the commutators, it is expedient to pass to Hubbard operators in Hamiltonian (1). At SZ = 1, the relations between the Om l and Hubbard operators are given by the formulas SZ = X11 −X−1−1, S+ = −X10 −X0−1, S− = X01 +X−10, O0 2 = X11 +X−1−1 − 2 3 , O1 2 = X10 −X0−1, O−1 2 = −X01 +X−10, O2 2 = X1−1, O−2 2 = X−11. (9) Accordingly, Hamiltonian (1) reads H = −hZ ∑ i ( X11 i −X−1−1 i ) − − ∑ i,j Jij [( X11 i −X−1−1 i ) ( X11 j −X−1−1 j ) + + 2ξ ( X10 i +X0−1 i ) ( X01 j +X−10 j )] + +D ∑ i ( X11 i +X−1−1 i − 2 3 ) − − ∑ i,j Kij [ 3 ( X11 i +X−1−1 i − 2 3 ) × × ( X11 j +X−1−1 j − 2 3 ) − −2η ( X10 i −X0−1 i ) ( −X01 j +X−10 j ) + 4ζX1−1 i X−11 j ] . (10) To construct a suitable dynamic matrix, it is necessary to calculate the commutators [X10 f , H], [X0−1 f , H], and [X1−1 f , H] and use the approximation XiXj = Xi〈Xj〉+ 〈Xi〉Xj , 〈Xnm〉 = 0, (n 6= m) (11) which was proposed in work [36]. In the k-space, the corresponding commutators are[ X10 k , H ] = p11 (k)X10 k + p12 (k)X0−1 k , [ X0−1 k , H ] = p21 (k)X10 k + p22 (k)X0−1 k , [ X1−1 k , H ] = p33 (k)X1−1 k , (12) where the coefficients pim constitute a dynamic matrix with the components p11 (k) = hZ + 2J0〈SZ〉 −D + 6K0〈O0 2〉− − ( 〈SZ〉+ 3〈O0 2〉 ) (ξJk + ηKk) , 308 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 FERROMAGNETIC PHASE OF A UNIAXIAL MAGNET p12 (k) = ( 〈SZ〉+ 3〈O0 2〉 ) (ηKk − ξJk) , p21 (k) = ( 〈SZ〉 − 3〈O0 2〉 ) (ηKk − ξJk) , p22 (k) = hZ + 2J0〈SZ〉+D − 6K0〈O0 2〉− − ( 〈SZ〉 − 3〈O0 2〉 ) (ξJk + ηKk) , p33 (k) = 2hZ + 4〈SZ〉 (J0 − ζKk) . (13) The characteristic values of the dynamic matrix are determined by the secular equation∣∣∣∣∣∣ p11 (k)− ε (k) p12 (k) 0 p21 (k) p22 (k)− ε (k) 0 0 0 p33 (k)− ε (k) ∣∣∣∣∣∣ = 0. (14) Its solution gives three characteristic values which can be expressed, by taking Eq. (13) into account, as follows: ε1 (k) = 2hZ + 4〈SZ〉 (J0 − ζKk) , (15) ε2,3 (k) = hZ + 〈SZ〉 (2J0 − ξJk − ηKk)∓ ∓ {( 〈SZ〉 )2 (ξJk − ηKk)2 + + [ D − 6〈O0 2〉 (K0 − ξJk) ] [ D − 6〈O0 2〉 (K0 − ηKk) ]}1/2 . (16) Those characteristic values of the dynamic matrix, which correspond to the Hubbard annihilation opera- tors, coincide with the branches of the spin excitation spectrum. The characteristic values ε1 (k) and ε2 (k) correspond to the operators X10 and X1−1; therefore, the branches of the spin excitation spectrum are ω1 (k) = ε1 (k) , (17) ω2 (k) = ε2 (k) . (18) Since Jk and Kk are even functions of the wave vector k, both branches are characterized by the square-law dispersion in the long-wave limit, ω1 (k) = Δ1 + α1k2;ω2 (k) = Δ2 + α2k2. (19) In work [37], the inequality ω (k) > ω (0) was proved to be valid at every k 6= 0 in the cases where the single- sublattice ordering takes place in the system. Therefore, the condition for spectrum mode stability is given by the system of inequalities ω1 (0) > 0, ω2 (0) > 0, (20) and the stability boundary is determined by two equali- ties, ω1 (0) = 0 and ω2 (0) = 0, or hZ + 2〈SZ〉 (J0 − ζK0) = 0, (21) hZ + 〈SZ〉 (2J0 − ξJ0 − ηK0) = = {( 〈SZ〉 )2 (ξJk − ηKk)2 + [ D − 6〈O0 2〉 (K0 − ξJk) ] × × [ D − 6〈O0 2〉 (K0 − ηKk) ]}1/2 . (22) Expression (22) coincides with the corresponding expres- sion for the QP (see work [36]). However, since the quan- tities 〈SZ〉 and 〈O0 2〉 are different in the ferromagnetic and quadrupole phases, the stability boundaries in the T −h coordinates do not coincide, generally speaking, in both phases. Note that curve (21) coincides with the curve corre- sponding to the second-kind PT between the Q<FMZ and ferromagnetic phases, which was obtained in work [20] (see Introduction). 4. Stability Diagram First of all, it is worth noting that we consider the case where the phase Q<FM< is not realized, i.e. the con- dition hc1 > hc2 is satisfied. For the critical fields hc1 and hc2, the following expressions were obtained in work [24]: hc1 = √ [D + 4K0(1− η)][D + 4(K0 − ξJ0)], hc2 = D − 2J0(1− ξ)− 2K0(1− η). (23) In Fig. 1, the mode stability diagram for the FMP spectrum is depicted in the θ̃ − h̃ coordinates, where θ̃ = θ/K0 and h̃ = hZ/K0. The Hamiltonian parameters are chosen so that the condition hc1 > hc2 is satisfied, i.e. a unique asymmetric phase is the phase Q<FM<. Zone 1 is the range, where FMP spectrum modes are stable, ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 309 I.P. SHAPOVALOV Fig. 1. Mode stability diagram for the FMP spectrum of an easy- plane magnet with anisotropic BQEI: (1 ) region of FMP spec- trum mode stability, (2 ) region of FMP spectrum mode instabil- ity, (3 ) curve given by expression (21), and (4 ) curve given by expression (22). The diagram is plotted for the parameter values J0 = 0.8, D = 0.4, K0 = 1, ζ = 1.2, η = 0.8, and ξ = 1.25 and zone 2 is the range, where their stability is violated. Curves 3 and 4 are given by expressions (21) and (22), respectively. In the external magnetic field interval h̃1 < h̃ < h̃2, the stability of spectrum modes demonstrates a reentrant behavior. In particular, at h̃ = h̃∗, if the temperature decreases, the stability is first violated at the point θ̃1. But the further temperature decrease gives rise to the restoration of the spectrum mode stability at the point θ̃2. Since curve (21) is not only a curve, where the mode stability of the spin excitation spectrum is violated, but also a PT curve, it is expedient to study the dependence of the temperature θ̃c of the second-kind PT between the Q<FMZ and ferromagnetic phases on the BQEI anisotropy constant ζ at various fields h̃. Such a de- pendence is depicted in Fig. 2. The figure demonstrates that the transition temperature substantially depends on the constant ζ. At the same time, for large enough ζ’s, the temperature θ̃c is almost independent of the external field h̃. 5. Discussion of Results In this work, the expressions for two branches of the spin excitation spectrum in the FMP have been obtained. Both branches demonstrate the square law of the disper- sion in the long-wave limit. When determining the spin excitation spectrum branches, the condition D > 0 was not used. Therefore, expressions (17) and (18) for the spectrum branches and expressions (21) and (22) for the Fig. 2. Dependences of the temperature of the second-kind PT between the ferromagnetic and Q<FMZ phases on the constant ζ at various hZ = 0.6 (1 ), 0.8 (2 ), and 1 (3 ). All curves were calculated for the parameter values J0 = 0.8, D = 0.4, and K0 = 1 boundary of the spectrum mode stability range remain valid in the case D < 0, i.e. for an easy-axis magnet. Owing to a mismatch between the stability bound- aries for the ferromagnetic and quadrupole phases (see Section 3), there emerges a region in the stability dia- gram plotted in the T −h coordinates, where the modes of spectra of both phases are stable. The presence of such a region brings about two essential consequences. First, the curve of the PT between the ferromagnetic and quadrupole phases coincides with the curve, where the free energies in both phases are identical; in this case, the corresponding PT is of the first kind. Second, there are two regions of metastability. In one of them, the FMP is metastable and the QP is stable; in the other, the situ- ation is opposite. Hence, the stability diagram does not coincide with the phase one. The results of researches of phase diagrams, metastable regions, and the influence of the BQEI anisotropy constants on the first-kind PT between the ferromagnetic and quadrupole phases will be reported elsewhere. It has to be noted that the method proposed in work [36] can be directly used only for those phases which preserve the Hamiltonian symmetry, i.e. for the QP and the FMP. In the case of phases with spontaneously bro- ken symmetry, it is necessary, first, to diagonalize the zero Hamiltonian with the help of a unitary transforma- tion for the application of the method proposed to be eligible. This transformation is one-parametric for the Q<FMZ phase and two-parametric for the Q<FM< one. The calculations of spin excitation spectra in the asym- 310 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 FERROMAGNETIC PHASE OF A UNIAXIAL MAGNET metric phases at T 6= 0 will be a subject of a separate research. 1. R.I. Birgeneau, I. Als-Nielsen, and E. Bucher, Phys. Rev. B 6, 2724 (1972). 2. B. Luthi, R.L. Tomas, and P.M. Levi, Phys. Rev. B 7, 3238 (1973). 3. A. Furrer and H.G. Purwins, Phys. Rev. B 16, 2131 (1977). 4. P.M. Levi, P. Morin, and D. Schmitt, Phys. Rev. Lett 42, 1417 (1979). 5. R. Aleonard and P. Morin, Phys. Rev. B 19, 3868 (1979). 6. P. Morin and D. Schmitt, Phys. Rev. B 21, 1742 (1980). 7. V.M. Loktev, Fiz. Nizk. Temp. 7, 1184 (1981). 8. F.P. Onufrieva, Zh. Èksp. Teor. Fiz. 80, 2372 (1981). 9. E.L. Nagaev, Usp. Fiz. Nauk 136, 61 (1982). 10. V.G. Bar’yakhtar, I.M. Vitebskii, A.A. Galkin et al., Zh. Èksp. Teor. Fiz. 84, 1803 (1983). 11. V.G. Bar’yakhtar, V.N. Krivoruchko, and D.A. Yablon- skii,. Green’s Functions in the Theory of Magnetism (Kyiv, Naukova Dumka, 1984) (in Russian). 12. F.P. Onufrieva, Zh. Èksp. Teor. Fiz. 86, 2270 (1985). 13. T. Iwashita and N. Uryu, Phys. Status Solidi B 137, 65 (1986). 14. E.V. Nagaev, Magnets with Complex Exchange Interac- tions (Nauka, Moscow, 1988) (in Russian). 15. V.V. Val’kov, G.N. Matsuleva, and S.G. Ovchinnikov, Fiz. Tverd. Tela 31, 60 (1989). 16. V.V. Val’kov and B.V. Fedoseev, Fiz. Tverd. Tela 32, 3522 (1990). 17. F.P. Onufrieva and I.P. Shapovalov, J. Moscow Phys. Soc. 1, 63 (1991). 18. V.M. Loktev and V.S. Ostrovskii, Fiz. Nizk. Temp. 20, 983 (1994). 19. V.M. Kalita and A.F. Lozenko, Fiz. Nizk. Temp. 24, 958 (1998). 20. I. Shapovalov, Zh. Fiz. Dosl. 3, N2, 192 (1999). 21. Yu.A. Fridman, O.V. Kozhemyako, and B.L. Eingorn, Fiz. Nizk. Temp. 27, 495 (2001). 22. V.M. Kalita and V.M. Loktev, Fiz. Nizk. Temp. 28, 1244 (2002). 23. V.M. Kalita and V.M. Loktev, Zh. Èksp. Teor. Fiz. 125, 1149 (2004). 24. F.P. Onufrieva, Dr. Sci. thesis (I.I. Mechnikov Odessa State University, Odessa, 1989) (in Russian). 25. T. Tsuneto and T. Murao, Physica 51, 186 (1971). 26. C. Ishikawa and Y. Endo, Prog. Theor. Phys. 55, 650 (1976). 27. I.I. Smit, L.I. De Jongh, and D. De Klerk, Physica 86, 1147 (1977). 28. N. Wada, K. Amaja, and T. Haseda, J. Phys. Soc. Jpn. 43, 341 (1977). 29. H.A. Algra, I. Bartoljme, L.I. De Jongh et al., Physica 93, 35 (1978). 30. R.L. Carlin and V. Van Duyneveldt, J. Acc. Chem. Res. 13, 231 (1980). 31. V.P. Dyakonov, E.E. Zubov, F.P. Onufrieva et al., Zh. Èksp. Teor. Fiz. 93, 1775 (1987). 32. V.M. Kalita and V.M. Loktev, Fiz. Nizk. Temp. 28, 667 (2002). 33. V.S. Zapf, D. Zocco, B.R. Hansen et al., Phys. Rev. Lett. 96, 077204 (2006). 34. S.A. Zvyagin, J. Wosniza, C.D. Batista et al., Phys. Rev. Lett. 98, 047205 (2007). 35. V.S. Zapf et al., J. Appl. Phys. 101, 09E106 (2007). 36. I.P. Shapovalov, Ukr. Fiz. Zh. 53, 653 (2008). 37. R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974). Received 22.04.09. Translated from Ukrainian by O.I. Voitenko ФЕРОМАГНIТНА ФАЗА ОДНОВIСНОГО МАГНЕТИКА У ПРИСУТНОСТI АНIЗОТРОПНОЇ БIКВАДРАТИЧНОЇ ОБМIННОЇ ВЗАЄМОДIЇ I. Шаповалов Р е з ю м е Дослiджено феромагнiтну фазу (ФМФ) одноосьового магне- тика з одноiонною анiзотропiєю (ОА) типу “легка площина” та анiзотропною бiквадратичною обмiнною взаємодiєю (БОВ). Розглянуто випадок, коли значення вузлового спiну дорiвнює одиницi S = 1. Одержано вирази для двох гiлок спектра спi- нових збуджень при скiнченних температурах та визначено умови стiйкостi мод спектра. Побудовано дiаграму стiйкостi мод спектра в координатах T − h, з якої випливає, що за пев- них умов у системi зi зниженням температури спочатку вiдбу- вається порушення стiйкостi мод спектра, а потiм, з подаль- шим зниженням температури, стiйкiсть мод спектра вiднов- люється, тобто спостерiгається реєнтрантна поведiнка. Дове- дено, що температура фазового переходу (ФП) другого роду мiж ФМФ та фазою зi спонтанно порушеною симетрiєю суттє- во залежить вiд константи анiзотропiї БОВ. ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 311