Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій
Розраховано хвильовi функцiї nd-системи, а також фази i перерiзи nd-розсiяння при енергiях, нижчих за порiг розвалу дейтрона. Виходячи з модифiкованих рiвнянь Фаддєєва, що одержанi у нашiй попереднiй роботi для повної хвильової функцiї, ми видiлили найбiльш складну її частину, яка описує рух трьох н...
Збережено в:
| Дата: | 2010 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Відділення фізики і астрономії НАН України
2010
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/13408 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій / В.І. Ковальчук, І.В. Козловський, В.К. Тартаковський // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 343-350. — Бібліогр.: 33 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-13408 |
|---|---|
| record_format |
dspace |
| spelling |
Ковальчук, В.І. Козловський, І.В. Тартаковський, В.К. 2010-11-08T15:04:58Z 2010-11-08T15:04:58Z 2010 Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій / В.І. Ковальчук, І.В. Козловський, В.К. Тартаковський // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 343-350. — Бібліогр.: 33 назв. — укр. 2071-0194 PACS 21.45.-v, 25.10.+s, 25.40.Dn https://nasplib.isofts.kiev.ua/handle/123456789/13408 539.17.01 Розраховано хвильовi функцiї nd-системи, а також фази i перерiзи nd-розсiяння при енергiях, нижчих за порiг розвалу дейтрона. Виходячи з модифiкованих рiвнянь Фаддєєва, що одержанi у нашiй попереднiй роботi для повної хвильової функцiї, ми видiлили найбiльш складну її частину, яка описує рух трьох нуклонiв в областi взаємодiї, i розклали її у ряд по гiперсферичним полiномам з K = 0; 1; 2. Для коефiцiєнтiв розкладу (радiальних функцiй вiд колективної змiнної) складено систему одновимiрних iнтегральних рiвнянь, яку потiм було чисельно розв’язано для енергiй нейтрона 2,45, 3 i 3,27 МеВ. У розрахунках використовували локальнi NN-потенцiали Малфлi–Тьона i Хюльтена. Результати обчислень фаз i перерiзiв nd-розсiяння задовiльно узгоджуються з вiдповiдними експериментальними даними. Рассчитаны волновые функции nd-системы, а также фазы и сечения nd-рассеяния при энергиях ниже порога развала дейтрона. Исходя из модифицированных уравнений Фаддеева, полученных в нашей предыдущей работе для полной волновой функции, мы выделили наиболее сложную ее часть, которая описывает движение трех нуклонов в области взаимодействия, и разложили ее в ряд по гиперсферическим полиномам с K = 0; 1; 2. Для коэффициентов разложения (радиальных функций коллективной переменной) составлена система одномерных интегральных уравнений, которая была решена численно для энергий нейтрона 2,45, 3 i 3,27 МэВ. В расчетах использовались локальные NN-потенциалы Малфли–Тьона и Хюльтена. Результаты расчетов фаз и сечений nd-рассеяния удовлетворительно согласуются с соответствующими экспериментальными данными. The neutron-deuteron wave functions, nd phases, and nd scattering cross-sections have been calculated for neutron energies below the deuteron breakup threshold. Starting from the modified Faddeev’s equations which have got in our previous paper, the most complicated part of the full wave function describing the three-nucleon motion in the NN interaction region is separated and expanded into a series in hyperspherical polynomials with K = 0; 1; 2. The system of one-dimensional integral equations for the expansion coefficients has been constructed and solved numerically for incident neutron energies of 2.45, 3, and 3.27 MeV. The Malfliet–Tjon and the Hulth´en local NN potentials were used in calculations. The calculated nd phases and nd scattering crosssections satisfactorily fit the corresponding experimental data. uk Відділення фізики і астрономії НАН України Загальні питання теоретичної фізики Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій Расчеты волновых функций nd-системы, фаз и сечений nd-рассеяния с использованием модифицированных уравнений фаддеева и метода гиперсферических функций Calculations of Wave Functions of the nd-system, Phases, and Cross-sections of nd-scattering with the Use of Modified Faddeev’s Equations and the Method of Hyperspherical Functions Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій |
| spellingShingle |
Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій Ковальчук, В.І. Козловський, І.В. Тартаковський, В.К. Загальні питання теоретичної фізики |
| title_short |
Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій |
| title_full |
Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій |
| title_fullStr |
Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій |
| title_full_unstemmed |
Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій |
| title_sort |
розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь фаддєєва і методу гіперсферичних функцій |
| author |
Ковальчук, В.І. Козловський, І.В. Тартаковський, В.К. |
| author_facet |
Ковальчук, В.І. Козловський, І.В. Тартаковський, В.К. |
| topic |
Загальні питання теоретичної фізики |
| topic_facet |
Загальні питання теоретичної фізики |
| publishDate |
2010 |
| language |
Ukrainian |
| publisher |
Відділення фізики і астрономії НАН України |
| format |
Article |
| title_alt |
Расчеты волновых функций nd-системы, фаз и сечений nd-рассеяния с использованием модифицированных уравнений фаддеева и метода гиперсферических функций Calculations of Wave Functions of the nd-system, Phases, and Cross-sections of nd-scattering with the Use of Modified Faddeev’s Equations and the Method of Hyperspherical Functions |
| description |
Розраховано хвильовi функцiї nd-системи, а також фази i перерiзи nd-розсiяння при енергiях, нижчих за порiг розвалу дейтрона. Виходячи з модифiкованих рiвнянь Фаддєєва, що одержанi у нашiй попереднiй роботi для повної хвильової функцiї, ми видiлили найбiльш складну її частину, яка описує рух трьох нуклонiв в областi взаємодiї, i розклали її у ряд по гiперсферичним полiномам з K = 0; 1; 2. Для коефiцiєнтiв розкладу (радiальних функцiй вiд колективної змiнної) складено систему одновимiрних iнтегральних рiвнянь, яку потiм було чисельно розв’язано для енергiй нейтрона 2,45, 3 i 3,27 МеВ. У розрахунках використовували локальнi NN-потенцiали Малфлi–Тьона i Хюльтена. Результати обчислень фаз i перерiзiв nd-розсiяння задовiльно узгоджуються з вiдповiдними експериментальними даними.
Рассчитаны волновые функции nd-системы, а также фазы и сечения nd-рассеяния при энергиях ниже порога развала дейтрона. Исходя из модифицированных уравнений Фаддеева, полученных в нашей предыдущей работе для полной волновой функции, мы выделили наиболее сложную ее часть, которая описывает движение трех нуклонов в области взаимодействия, и разложили ее в ряд по гиперсферическим полиномам с K = 0; 1; 2. Для коэффициентов разложения (радиальных функций коллективной переменной) составлена система одномерных интегральных уравнений, которая была решена численно для энергий нейтрона 2,45, 3 i 3,27 МэВ. В расчетах использовались локальные NN-потенциалы Малфли–Тьона и Хюльтена. Результаты расчетов фаз и сечений nd-рассеяния удовлетворительно согласуются с соответствующими экспериментальными данными.
The neutron-deuteron wave functions, nd phases, and nd scattering cross-sections have been calculated for neutron energies below the deuteron breakup threshold. Starting from the modified Faddeev’s equations which have got in our previous paper, the most complicated part of the full wave function describing the three-nucleon motion in the NN interaction region is separated and expanded into a series in hyperspherical polynomials with K = 0; 1; 2. The system of one-dimensional integral equations for the expansion coefficients has been constructed and solved numerically for incident neutron energies of 2.45, 3, and 3.27 MeV. The Malfliet–Tjon and the Hulth´en local NN potentials were used in calculations. The calculated nd phases and nd scattering crosssections satisfactorily fit the corresponding experimental data.
|
| issn |
2071-0194 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/13408 |
| citation_txt |
Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій / В.І. Ковальчук, І.В. Козловський, В.К. Тартаковський // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 343-350. — Бібліогр.: 33 назв. — укр. |
| work_keys_str_mv |
AT kovalʹčukví rozrahunkihvilʹovihfunkcíindsistemifazípererízívndrozsíânnâzvikoristannâmmodifíkovanihrívnânʹfaddêêvaímetodugípersferičnihfunkcíi AT kozlovsʹkiiív rozrahunkihvilʹovihfunkcíindsistemifazípererízívndrozsíânnâzvikoristannâmmodifíkovanihrívnânʹfaddêêvaímetodugípersferičnihfunkcíi AT tartakovsʹkiivk rozrahunkihvilʹovihfunkcíindsistemifazípererízívndrozsíânnâzvikoristannâmmodifíkovanihrívnânʹfaddêêvaímetodugípersferičnihfunkcíi AT kovalʹčukví rasčetyvolnovyhfunkciindsistemyfazisečeniindrasseâniâsispolʹzovaniemmodificirovannyhuravneniifaddeevaimetodagipersferičeskihfunkcii AT kozlovsʹkiiív rasčetyvolnovyhfunkciindsistemyfazisečeniindrasseâniâsispolʹzovaniemmodificirovannyhuravneniifaddeevaimetodagipersferičeskihfunkcii AT tartakovsʹkiivk rasčetyvolnovyhfunkciindsistemyfazisečeniindrasseâniâsispolʹzovaniemmodificirovannyhuravneniifaddeevaimetodagipersferičeskihfunkcii AT kovalʹčukví calculationsofwavefunctionsofthendsystemphasesandcrosssectionsofndscatteringwiththeuseofmodifiedfaddeevsequationsandthemethodofhypersphericalfunctions AT kozlovsʹkiiív calculationsofwavefunctionsofthendsystemphasesandcrosssectionsofndscatteringwiththeuseofmodifiedfaddeevsequationsandthemethodofhypersphericalfunctions AT tartakovsʹkiivk calculationsofwavefunctionsofthendsystemphasesandcrosssectionsofndscatteringwiththeuseofmodifiedfaddeevsequationsandthemethodofhypersphericalfunctions |
| first_indexed |
2025-11-24T04:30:40Z |
| last_indexed |
2025-11-24T04:30:40Z |
| _version_ |
1850841503316836352 |
| fulltext |
V.I. KOVALCHUK, I.V. KOZLOVSKY, V.K. TARTAKOVSKY
CALCULATIONS OF WAVE
FUNCTIONS OF THE nd-SYSTEM, PHASES,
AND CROSS-SECTIONS OF nd-SCATTERING
WITH THE USE OF MODIFIED FADDEEV’S EQUATIONS
AND THE METHOD OF HYPERSPHERICAL FUNCTIONS
V.I. KOVALCHUK,1 I.V. KOZLOVSKY,2 V.K. TARTAKOVSKY3
1Taras Shevchenko National University of Kyiv
(2/1, Academician Glushkov Ave., Kyiv 03127, Ukraine)
2Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine)
3Institute of Nuclear Research, Nat. Acad. of Sci. of Ukraine
(47, Nauky Ave., Kyiv 03680, Ukraine)
PACS 21.45.-v, 25.10.+s,
25.40.Dn
c©2010
The neutron-deuteron wave functions, nd phases, and nd scatter-
ing cross-sections have been calculated for neutron energies be-
low the deuteron breakup threshold. Starting from the modified
Faddeev’s equations which have got in our previous paper, the
most complicated part of the full wave function describing the
three-nucleon motion in the NN interaction region is separated
and expanded into a series in hyperspherical polynomials with
K = 0, 1, 2. The system of one-dimensional integral equations
for the expansion coefficients has been constructed and solved nu-
merically for incident neutron energies of 2.45, 3, and 3.27 MeV.
The Malfliet–Tjon and the Hulthén local NN potentials were used
in calculations. The calculated nd phases and nd scattering cross-
sections satisfactorily fit the corresponding experimental data.
1. Introduction
The contemporary theory of nuclei has mainly the phe-
nomenological character, and its microscopic substantia-
tion is very poorly developed [1]. Therefore, the impor-
tant step to a better physical comprehension of multi-
particle nucleonic systems and processes with their par-
ticipation is the study of namely three-nucleon systems.
As compared with the binary systems, the description
of three-particle states in the continuous spectrum is a
nontrivial theoretical problem. This is related, first of
all, to the possibility of the processes of redistribution
and fission in a three-particle system in addition to the
elastic scattering. Second, the mentioned systems have
essentially different energy spectra. Whereas the spec-
trum of a binary system is composed separately from
discrete levels and the continuum, a three-particle sys-
tem has a purely degenerate spectrum, i.e. a certain
value of the total energy can correspond to physically
different states of the system. At the present time, the
well-developed powerful methods of calculation of three-
particle wave functions in the continuum are available.
Among them, the most known methods are one based on
the Faddeev equations [1–3] and the variational method
of Kohn–Hulthén with the use of expansions in a hyper-
spherical basis [4].
The Faddeev method consists in that the Schrödinger
equation for a three-particle wave function is trans-
formed and is reduced to a system of three equations [2]
with boundary conditions, like the Lippmann–Schwinger
equation [1]. Each of the Faddeev equations is a six-
dimensional integral equation, whose solution is firstly
started by its transformation into an infinite system of
coupled integral equations. Then this collection of equa-
tions is truncated and is solved by ordinary numerical
methods [3]. An essential drawback of the method con-
sists in the impossibility to directly use the potentials
with infinite action radius such as, for example, the
Coulomb potential [5]. Within this method, the solution
of the problem on the scattering of a proton by a deutron
is extremely complicated and, in addition, is not strictly
mathematically substantiated [5–7], as distinct from the
formalism of the Faddeev equations themselves.
Another approach to the problem of nd-scattering is
the solution of the input three-nucleon Schrödinger equa-
tion by the variational method of Kohn–Hulthén [8]. The
wave function of the system of nucleons is separated into
two parts – short-range and asymptotic ones [9]. The lat-
ter can be presented in the ordinary way in terms of the
incident and scattered waves and the collision matrix.
The short-range parts is expanded in a series in hyper-
342 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3
CALCULATIONS OF WAVE FUNCTIONS
spherical functions. The coefficients of this expansion
and the scattering phases can be determined after the
application of a variational procedure. Both approaches,
the variational one and the Faddeev method, give very
close results at the fitting of experimental data on the
nd- and pd-scattering [10, 11]. But, in the latter case,
only the variational method can be strictly substanti-
ated at the consideration of the Coulomb interaction of
particles.
The aim of our work is to develop and to use a method
of calculation of the cross-sections of nd-scattering at
energies below the deuteron breakup threshold. Such a
study was begun else in our previous works. Starting
from the well-known Faddeev equations [2] and using
the expansion in hyperspherical functions, we reduced
the problem on the determination of a neutron-deuteron
wave function in the continuum to a system of one-
dimensional integral equations, whose solution requires
a significantly less computer time than the numerical so-
lution of the Faddeev equations. We used simple model
NN potentials with a nonseparable interaction without
spin-isospin dependence. These potentials, as test ones,
are used in similar tasks by many researchers for a long
time [12–18]. Of course, the Faddeev equations contain-
ing only spatial variables can be extended on the case
where the interaction and the wave function depend on
spin and isospin variables [19]. But they will be quite
different complicated equations which are not considered
here. In our case of spinless wave functions and particles
with identical masses, the Faddeev equations themselves
can be considered, in this sense, as model equations.
Moreover, the specific results obtained with their help
for cross-sections indicate that the effect of the spin de-
grees of freedom is quite small at fitting the experiment
at least in some kinematic regions, but in many cases. In
calculations, we also neglect the doublet component of
the scattering amplitude, since it follows from the phase
analysis data [20, 21] that the contribution of the dou-
blet state to the scattering cross-section is about 1%.
Despite the mentioned approximations, we managed to
obtain a satisfactory agreement with experiments on the
cross-sections and on the scattering phases. The present
work is a continuation and a natural development of the
cycle of our works devoted to the study of the scattering
of a particle on a system of two coupled particles which
was started in [22].
2. Formalism
We are based on the well-known Faddeev equations [2]
written for a system of three strongly interacting par-
ticles with identical masses m, in which one particle is
free, and two ones are bound:
Ψ(1) = Φ +G0(Z)T23(Z)(Ψ(2) + Ψ(3));
Ψ(2) = G0(Z)T31(Z)(Ψ(3) + Ψ(1));
Ψ(3) = G0(Z)T12(Z)(Ψ(1) + Ψ(2)), (1)
Here,
Ψ = Ψ(1) + Ψ(2) + Ψ(3) (2)
is the total three-particle wave function; Φ is the asymp-
totic wave function which the product of the plane wave
with a momentum of the relative motion of the 1-st par-
ticle and the coupled system of two other particles and
the wave function of a bound state of particles 2 and 3;
G0(Z) = (Z −H0)−1; Z = E ± i0; E is the total energy
of the system; H0 is the operator of kinetic energy; Tij
are the two-particle transition operators which are con-
nected with the pairwise potentials Vij (ij = 12, 23, 31)
by the equations
Tij(Z) = Vij + VijG0(Z)Tij(Z) . (3)
Here and below, we use the systems of units, in which ~=
c=1; all kinematic quantities are referred to the center-
of-mass system (unless otherwise stated). Substituting
(3) in system (1) and adding the equations, we obtain a
single equation for the total wave function
Ψ = Φ+G0(Z)(UΨ−V23Φ), U = V12 +V23 +V31 , (4)
which contains, like the Faddeev equation, the same
boundary conditions and has also a unique solution, be-
cause it was obtained from (1)–(3) with the use of only
the addition without the division by operators.
Let us expand the difference Ψ − Φ in a series in K-
harmonics:
Ψ− Φ =
∑
Kn
BKn(ρ)uKn(Ω). (5)
Substituting this expansion in (4) and using the condi-
tion of normalization forK-harmonics, we get the system
of coupled integral equations for the functions BKn(ρ)
[23]
BK′n′(ρ) =
πm
ρ2
∞∫
0
dρ̄ ρ̄3P
(K′)
±
∫
dΩu∗K′n′(Ω)×
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 343
V.I. KOVALCHUK, I.V. KOZLOVSKY, V.K. TARTAKOVSKY
×
{
U
∑
Kn
BKn(ρ̄)uKn(Ω) + (V12 + V31)Φ
}
, (6)
P
(K′)
± ≡ P (K′)
± (ρ, ρ̄) = − 2
π
∞∫
0
dq q
J2(qρ) J2(qρ̄)
q2 − k2
K′ ∓ i0
, (7)
where k2
K′ = k2
0−K ′(K ′ + 4)/ρ2, k2
0 = 4m(En−ε)/3, m
is the nucleon mass, En is the kinetic energy of an inci-
dent neutron, ε is the binding energy of a deuteron. The
potentials Vij and the function Φ on the right-hand side
of Eq. (6) depend on the hyperradius ρ̄ and five angular
variables Ω. We emphasize one more that the bound-
ary conditions for the Faddeev equations are contained
also in Eqs. (6), because they are obtained directly from
(1) (see [23]). Since we consider the elastic scattering,
we need only the function P
(K′)
+ defined in (7) for the
subsequent calculations.
In our previous work [24], we restricted ourselves only
by the first term in expansion (5) with K = 0 in calcu-
lations of the nd-scattering cross-sections. By using the
formalism developed in [23], we now take else the terms
with K = 1 and K = 2 into account. The calculation
of these terms will give us the possibility to establish,
first, that series (5) converges, indeed, rapidly, and, sec-
ond, that the corrections to the scattering amplitude,
which are related to the harmonics K = 1, 2, are rela-
tively small.
Let r1, r2, r3 be the radius-vectors of particles 1,2,3.
For eachK, we introduce the collection of quantum num-
bers n ≡ {`x, `y, L,M} [23,25], where `x is the orbital
moment of the coupled pair of particles 2 and 3, `y is
the orbital moment of the 1-st particle relative to the
center of masses of pair (23), x and y are the corre-
sponding Jacobi coordinates: x = (r2 − r3)/
√
2 and
y =
√
2/3(r1 − (r2 + r3)/2). The quantum numbers
L and M are, respectively, the total orbital moment and
its projection.
Retaining only the terms with K = 0, 1, 2 in expan-
sion (5), we have, in the general case, 27 coupled in-
tegral equations for the unknown functions BKn(ρ) (by
the number of collections Kn [26]). We denote each of
the K-harmonics in the following way [23]:
u
`x`yLM
K ≡ Φj(Ω), j = 1, 2, ..., 27. (8)
These K-harmonics have a rather simple form [23].
Moreover, what is very important, the system of inte-
gral equations (6) is essentially simplified with their use.
Namely, it becomes a collection of two systems of equa-
tions with two unknowns and 23 uncoupled equations,
among which 22 equations are homogeneous. Since these
homogeneous equations are Volterra equations of the sec-
ond kind, it follows from the results in [27, 28] that such
equations have only trivial (zero) solutions (which is sup-
ported, by the way, by direct calculations) under the
condition of square integrability of the kernel (it holds
in our case).
Thus, all five inhomogeneous equations, which remain
in (6) and should be solved, are related to the following
K-harmonics [23, 26]:
Φ1 ≡ u0000
0 =
1√
π3
, Φ7 ≡ u0110
1 =
√
6
π3
sin θ cos θy ,
Φ12 ≡ u2020
2 =
2√
π3
cos2 θ(3 cos2 θx − 1),
Φ17 ≡ u0220
2 =
2√
π3
sin2 θ(3 cos2 θy − 1),
Φ26 ≡ u0000
2 =
2√
π3
cos 2θ . (9)
The corresponding coefficients B1(ρ), B7(ρ), B12(ρ),
B17(ρ), and B26(ρ) in expansion (5) are the solutions
of the integral equations
B1(ρ) =
8m
ρ2
∞∫
0
dρ̄ ρ̄3 P
(0)
+
{ π/2∫
0
dθ sin2 θ cos2 θ
(
B1(ρ̄)+
+2B26(ρ̄) cos 2θ
)
V ∗ +
√
2/3π3/2
p ρ̄
π/2∫
0
dθ sin θ cos2 θ
φ(
√
2 ρ̄ cos θ) sin(
√
3/2 p ρ̄ sin θ)(V ∗ − 2V23)
}
; (10)
B26(ρ) =
16m
ρ2
∞∫
0
dρ̄ ρ̄3 P
(2)
+
{ π/2∫
0
dθ sin2 θ cos2 θ cos 2θ×
×
(
B1(ρ̄) + 2B26(ρ̄) cos 2θ
)
V ∗ +
√
2/3π3/2
p ρ̄
×
×
π/2∫
0
dθ sin θ cos2 θ cos 2θφ(
√
2 ρ̄ cos θ)×
344 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3
CALCULATIONS OF WAVE FUNCTIONS
× sin(
√
3/2 p ρ̄ sin θ)(V ∗ − 2V23)
}
; (11)
B7(ρ)=
16m
ρ2
∞∫
0
dρ̄ ρ̄3 P
(1)
+
{ π/2∫
0
dθ sin4 θ cos2 θ B7(ρ̄)V ∗+
+ i
π3/2
p ρ̄
π/2∫
0
dθ sin2 θ cos2 θ φ(
√
2 ρ̄ cos θ)(V ∗ − 2V23)×
×
[
sin(
√
3/2 p ρ̄ sin θ)√
3/2 p ρ̄ sin θ
− cos(
√
3/2 p ρ̄ sin θ)
]}
; (12)
B12(ρ) =
128m
5ρ2
∞∫
0
dρ̄ ρ̄3 P
(2)
+
{ π/2∫
0
dθ sin2 θ×
× cos6 θ B12(ρ̄)V ∗+
5
√
2/3π3/2
8p ρ̄
π/2∫
0
dθ sin θ cos4 θ×
×φ(
√
2 ρ̄ cos θ) sin(
√
3/2 p ρ̄ sin θ)×
×
π∫
0
dθx sin θx(3 cos2 θx − 1)(V12 + V31)
}
; (13)
B17(ρ) =
128m
5ρ2
∞∫
0
dρ̄ ρ̄3 P
(2)
+
{ π/2∫
0
dθ sin6 θ ×+
× cos2 θ B17(ρ̄)V ∗+
5π3/2
6p2 ρ̄2
π/2∫
0
dθ sin2 θ×
× cos2 θ φ(
√
2 ρ̄ cos θ)(V ∗ − 2V23)
[(√
3/2 p ρ̄ sin θ−
− 3√
3/2 p ρ̄ sin θ
)
sin(
√
3/2 p ρ̄ sin θ)+
+3 cos (
√
3/2 p ρ̄ sin θ)
]}
. (14)
In (10)–(14), the function φ(
√
2ρ̄ cos θ) is the wave func-
tion of a deuteron, and the quantities V ∗, V23, V12, and
V31 are defined as follows:
V ∗ = 2V23 +
π∫
0
dθx sin θx(V12 + V31),
V23 ≡ V (
√
2ρ̄ cos θ),
V12 ≡ V
(
ρ̄√
2
√
1 + 2 sin2 θ −
√
3 sin 2θ cos θx
)
,
V31 ≡ V
(
ρ̄√
2
√
1 + 2 sin2 θ +
√
3 sin 2θ cos θx
)
,
where V is the nucleon-nucleon potential.
We note that the used approach possesses, in addition,
the advantage allowing us to numerically solve a system
of integral equations for a small number of functions de-
pending on a single continuous variable.
3. Analysis of the Results of Calculations and
Conclusions
Equations (10)–(14) were solved numerically for several
values of energies of incident neutrons En (2.45, 3, and
3.27 MeV in the laboratory reference system). In calcu-
lations, we used the following NN interaction potentials:
1) Hulthén potential [12]
V (r) = − λH
exp (µHr)− 1
, λH = 0.177 fm−1,
µH = 1.145 fm−1; (15)
2) Malfliet–Tjon triplet potential [13] with a repulsive
soft core
V (r) = −λA exp(−µAr)/r + λR exp(−µRr)/r ,
λA = 3.22 fm−1, µA = 1.55 fm−1,
λR = 7.39 fm−1, µR = 3.11 fm−1. (16)
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 345
V.I. KOVALCHUK, I.V. KOZLOVSKY, V.K. TARTAKOVSKY
Fig. 1. Functions Bj(ρ) (j = 1, 7, 12, 17, 26) calculated for the potentials of Hulthén a) and Malfliet–Tjon b) at energies of an incident
neutron of 2.45 MeV (dotted curves), 3 MeV (dash-dotted), and 3.27 MeV (continuous)
The wave function of a deuteron was chosen in the form
[1]
ϕ(r) =
√
αβ(α+ β)
2π(β − α)2
exp(−αr)− exp(−βr)
r
(17)
with the parameters α =
√
mε and β ' 7α.
The calculated functions Bj(ρ) (j = 1, 7, 12, 17, 26)
are shown in Fig. 1. The analysis of the curves presented
in this figure implies that, first, Bj(ρ) depend weakly on
the energy of a neutron in the interval En = 2.45 ÷
3.27 MeV. Second, the maximum values of B1(ρ) (for
the basic K-harmonic with K = 0) exceed, in modulus,
the maximum values of the functions Bj(ρ) by at least
one order of magnitude for K-harmonics with K = 1
and K = 2.
In Table 1, we present separate contributions of each
of five nonzero partial amplitudes Aj (j = 1, 7, 12, 17, 26)
to the nd-scattering amplitude A calculated for the same
interaction potentials and values of En. In the last col-
346 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3
CALCULATIONS OF WAVE FUNCTIONS
Fig. 2. Differential nd-scattering cross-sections calculated with the use of the potentials of Hulthén (a, b) and Malfliet–Tjon (c, d) at the
energies of a neutron En = 2.45 MeV (a, c) and 3.27 MeV (b, d). The explanation of the curves is given in the text. The experimental
data are taken from [29]
T a b l e 1. Contributions of Aj to the nd-scattering amplitude from each of five nonzero partial amplitudes
(j = 1, 7, 12, 17, 26)
Potential En, MeV A1 A7 A12 A17 A26 δA, %
K 0 1 1 2 2
Hulthén 2.45 −7.019 −0.141 −0.158 −0.003 −0.074 5.1
3 −7.616 −0.174 −0.173 −0.004 −0.076 5.3
3.27 −8.011 −0.190 −0.179 −0.005 −0.077 5.3
Malfliet–Tjon 2.45 25.061 −1.569 -0.025 −0.013 −0.738 8.6
3 23.098 −1.991 −0.018 −0.020 −0.745 13.6
3.27 22.122 −2.212 −0.014 −0.024 −0.749 15.7
umn of Table 1, we give the relative contributions δA
(in percents) for higher K-harmonics with K = 1 and
K = 2,
δA =
A7 +A12 +A17 +A26
A1 +A7 +A12 +A17 +A26
. (18)
Table 1 indicates that the quantity δA for the Hulthén
potential almost does not depend on En, by reaching
5.3%, whereas δA for the Malfliet–Tjon potential in-
creases significantly even within a short interval in en-
ergies (from 8.6% for En = 2.45 MeV to 15.7% for
En = 3.27 MeV).
In Table 2, we show the calculated nd-scattering
phases for the relative orbital moments ` = 0, 1, 2 for
potentials (15) and (16) and two energies En = 2.45
and 3.27 MeV, for which the experimental data on the
elastic scattering of neutrons on deuterons are available
[29]. For comparison, Table 2 presents also the phases
obtained by other authors in [18, 20, 30–32] for an anal-
ogous problem on the nd-scattering. The quantities η
are the dimensionless normalizing coefficients [24] for the
internal part of the total wave function of the three-
particle scattering problem.
In Fig. 2,(a–d), we give the angular distributions of
the nd elastic scattering cross-sections which are calcu-
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 347
V.I. KOVALCHUK, I.V. KOZLOVSKY, V.K. TARTAKOVSKY
lated with the use of potentials (15) and (16). The con-
tinuous curves in Fig. 2 are calculated with regard for
all five functions Bj(ρ), i.e. three K-harmonics with
K = 0, 1, 2 were taken in expansion (5). The dotted
curves correspond to the case where onlyB1(ρ) (the term
with K = 0) was taken in (5). The analysis of the curves
presented in Fig. 2 indicates that the contribution of the
higher K-harmonics (K = 1, 2) to the cross-section for
the Hulthén potential is at most ∼ 5%. But such a
contribution for the Malfliet–Tjon potential can be sig-
nificant (especially at the minima of angular distribu-
tions). The continuous curves describe the experimental
data satisfactorily in all the cases. For comparison, we
give the results of the Pisa group [33] in Fig. 2 (dashed
curves) which fit the experimental data in [29]. Despite
the fact that the calculations of the cross-sections in [33]
involved the realistic NN potential AV18 (moreover, the
three-particle interaction was also taken into account),
the results of our work and work [33] are quite close.
Some difference of the S, P , and D phases calculated by
us from the results of other authors (see Table 2) can
be explained by the approximation used in the solution
of the problem: we considered only those factors which
make the main contribution to the scattering amplitude.
Thus, the method developed here for the calculation
of the elastic nd-scattering cross-sections within simple
models of the NN interaction allows one to satisfacto-
rily describe the relevant experiments at energies of a
neutron below the deuteron breakup threshold. By rep-
resenting the total wave function of the problem Ψ as a
sum of its asymptotic part and a part which describes
the three-nucleon system in the interaction region, we
reduced the problem of the determination of Ψ to the nu-
merical solution of a system of one-dimensional integral
equations. This solution does not require a significant
computer time, as distinct from the traditional meth-
ods of solution of three-nucleon problems in the contin-
uum, which are based on the direct numerical solution
of two-dimensional integral equations in the momentum
representation. We have established, first, that the con-
T a b l e 2. Phases δ` (in degrees)
En, MeV ` Potential type and calculated δ` Other data
Hulthén η Malfliet–Tjon η
2.45 0 −60.8 0.62 −53.3 0.78 −66.7 [18,30]
1 15.4 16.3 23.1 [31]
2 −4.0 −4.1 −4.2 [31]
3.27 1 −71.5 0.47 −64.3 0.80 −73.6 [20,32]
2 15.8 17.8 25.6 [32]
0 −7.5 −7.9 −4.6 [20]
sideration of three first K-harmonics in the expansion of
the internal part of the wave function of a nd-system is
sufficient for the satisfactory description of the relevant
experiments on nd-scattering at subthreshold energies
of a neutron. Second, for such energies and the NN
potentials used in calculations, the contribution of the
basic K-harmonic with K = 0 to the reaction ampli-
tude is dominant. All this confirms the efficiency of the
proposed approach.
1. O.G. Sitenko and V.K. Tartakovsky, Nuclear Theory (Ly-
bid’, Kyiv, 2000) (in Ukrainian).
2. L.D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960).
3. G.H. Berthold and H. Zankel, Phys. Rev. C 34, 1203
(1986).
4. M. Viviani, A. Kievsky, and S. Rosati, Few-Body Syst.
30, 39 (2001).
5. J.V. Noble, Phys. Rev. 161, 945 (1967).
6. S. Adya, Phys. Rev. 177, 1406 (1968).
7. K.A.-A. Hamza and S. Edwards, Phys. Rev. 181, 1494
(1969).
8. A. Kievsky, M. Viviani, and S. Rosati, Nucl. Phys. A
551, 241 (1993).
9. A. Kievsky, Nucl. Phys. A 624, 125 (1997).
10. D. Hüber, W. Glöckle, J. Golak et al., Phys. Rev. C 51,
1100 (1995).
11. A. Kievsky, M. Viviani, S. Rosati et al., Phys. Rev. C 58,
3085 (1998).
12. L. Hulthén and M. Sugawara, in Handbuch der Physik,
edited by S. Flügge (Springer, Berlin, 1957), p. 174.
13. R.A. Malfliet and J.A. Tjon, Nucl. Phys. A 127, 161
(1969).
14. A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 56,
2987 (1997).
15. J.L. Friar, B.F. Gibson, and G.L. Payne, Phys. Rev. C
28, 983 (1983).
16. J.L. Friar, B.F. Gibson, G. Berthold et al., Phys. Rev. C
42, 1838 (1990).
17. J.L. Friar, G.L. Payne, W. Glöckle et al., Phys. Rev. C
51, 2356 (1995).
18. C.R. Chen, G.L. Payne, J.L. Friar, and B.F. Gibson,
Phys. Rev. C 39, 1261 (1989).
19. A.G. Sitenko and V.F. Kharchenko, Nucl. Phys. 49, 15
(1963).
348 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3
CALCULATIONS OF WAVE FUNCTIONS
20. R.K. Adair, A. Okazaki, and M. Walt, Phys. Rev. 89,
1165 (1953).
21. A.J. Elwyn, R.O. Lane, and A. Langsdorf, jr., Phys. Rev.
128, 779 (1962).
22. O.G. Sitenko, V.K. Tartakovsky, I.V. Kozlovsky, Ukr.
Fiz. Zh. 46, 1251 (2001).
23. V.K. Tartakovsky, I.V. Kozlovsky, V.I. Kovalchuk, Yad.
Fiz. Energ. 25, 22 (2008).
24. V.I. Kovalchuk, V.K. Tartakovsky, I.V. Kozlovsky, Ukr.
Fiz. Zh. 53, 758 (2008).
25. R.I. Dzhibuti and N.B. Krupennikova, Method of Hyper-
spherical Functions in the Quantum Mechanics of Few
Bodies (Metsniereba, Tbilisi, 1984) (in Russian).
26. Yu.A. Simonov, Yad. Fiz. 3, 630 (1966).
27. F.G. Tricomi, Integral Equations (Interscience, New
York, 1957).
28. A.D. Polyanin and A.V. Manzhirov, Handbook on Inte-
gral Equations (Fizmatlit, Moscow, 2003) (in Russian).
29. J.D. Seagrave and L. Cranberg, Phys. Rev. 105, 1816
(1957).
30. S. Ishikawa, Few-Body Syst. 32, 229 (2003).
31. M.G. Fuda and B.A. Girard, Phys. Rev. C 17, 1 (1978).
32. A. Kievsky, M. Viviani, and S. Rosati, Nucl. Phys. A
577, 511 (1994).
33. A. Kievsky, S. Rosati, W. Tornow, and M. Viviani, Nucl.
Phys. A 607, 402 (1996).
Received 21.05.09.
Translated from Ukrainian by V.V. Kukhtin
РОЗРАХУНКИ ХВИЛЬОВИХ ФУНКЦIЙ nd-СИСТЕМИ,
ФАЗ I ПЕРЕРIЗIВ nd-РОЗСIЯННЯ З ВИКОРИСТАННЯМ
МОДИФIКОВАНИХ РIВНЯНЬ ФАДДЄЄВА
I МЕТОДУ ГIПЕРСФЕРИЧНИХ ФУНКЦIЙ
В.I. Ковальчук, I.В. Козловський, В.К. Тартаковський
Р е з ю м е
Розраховано хвильовi функцiї nd-системи, а також фази i пере-
рiзи nd-розсiяння при енергiях, нижчих за порiг розвалу дей-
трона. Виходячи з модифiкованих рiвнянь Фаддєєва, що одер-
жанi у нашiй попереднiй роботi для повної хвильової функцiї,
ми видiлили найбiльш складну її частину, яка описує рух трьох
нуклонiв в областi взаємодiї, i розклали її у ряд по гiперсфери-
чним полiномам з K = 0, 1, 2. Для коефiцiєнтiв розкладу (ра-
дiальних функцiй вiд колективної змiнної) складено систему
одновимiрних iнтегральних рiвнянь, яку потiм було чисельно
розв’язано для енергiй нейтрона 2,45, 3 i 3,27 МеВ. У розрахун-
ках використовували локальнi NN-потенцiали Малфлi–Тьона
i Хюльтена. Результати обчислень фаз i перерiзiв nd-розсiяння
задовiльно узгоджуються з вiдповiдними експериментальними
даними.
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 349
|