Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій

Розраховано хвильовi функцiї nd-системи, а також фази i перерiзи nd-розсiяння при енергiях, нижчих за порiг розвалу дейтрона. Виходячи з модифiкованих рiвнянь Фаддєєва, що одержанi у нашiй попереднiй роботi для повної хвильової функцiї, ми видiлили найбiльш складну її частину, яка описує рух трьох н...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Ковальчук, В.І., Козловський, І.В., Тартаковський, В.К.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Відділення фізики і астрономії НАН України 2010
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/13408
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій / В.І. Ковальчук, І.В. Козловський, В.К. Тартаковський // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 343-350. — Бібліогр.: 33 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-13408
record_format dspace
spelling Ковальчук, В.І.
Козловський, І.В.
Тартаковський, В.К.
2010-11-08T15:04:58Z
2010-11-08T15:04:58Z
2010
Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій / В.І. Ковальчук, І.В. Козловський, В.К. Тартаковський // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 343-350. — Бібліогр.: 33 назв. — укр.
2071-0194
PACS 21.45.-v, 25.10.+s, 25.40.Dn
https://nasplib.isofts.kiev.ua/handle/123456789/13408
539.17.01
Розраховано хвильовi функцiї nd-системи, а також фази i перерiзи nd-розсiяння при енергiях, нижчих за порiг розвалу дейтрона. Виходячи з модифiкованих рiвнянь Фаддєєва, що одержанi у нашiй попереднiй роботi для повної хвильової функцiї, ми видiлили найбiльш складну її частину, яка описує рух трьох нуклонiв в областi взаємодiї, i розклали її у ряд по гiперсферичним полiномам з K = 0; 1; 2. Для коефiцiєнтiв розкладу (радiальних функцiй вiд колективної змiнної) складено систему одновимiрних iнтегральних рiвнянь, яку потiм було чисельно розв’язано для енергiй нейтрона 2,45, 3 i 3,27 МеВ. У розрахунках використовували локальнi NN-потенцiали Малфлi–Тьона i Хюльтена. Результати обчислень фаз i перерiзiв nd-розсiяння задовiльно узгоджуються з вiдповiдними експериментальними даними.
Рассчитаны волновые функции nd-системы, а также фазы и сечения nd-рассеяния при энергиях ниже порога развала дейтрона. Исходя из модифицированных уравнений Фаддеева, полученных в нашей предыдущей работе для полной волновой функции, мы выделили наиболее сложную ее часть, которая описывает движение трех нуклонов в области взаимодействия, и разложили ее в ряд по гиперсферическим полиномам с K = 0; 1; 2. Для коэффициентов разложения (радиальных функций коллективной переменной) составлена система одномерных интегральных уравнений, которая была решена численно для энергий нейтрона 2,45, 3 i 3,27 МэВ. В расчетах использовались локальные NN-потенциалы Малфли–Тьона и Хюльтена. Результаты расчетов фаз и сечений nd-рассеяния удовлетворительно согласуются с соответствующими экспериментальными данными.
The neutron-deuteron wave functions, nd phases, and nd scattering cross-sections have been calculated for neutron energies below the deuteron breakup threshold. Starting from the modified Faddeev’s equations which have got in our previous paper, the most complicated part of the full wave function describing the three-nucleon motion in the NN interaction region is separated and expanded into a series in hyperspherical polynomials with K = 0; 1; 2. The system of one-dimensional integral equations for the expansion coefficients has been constructed and solved numerically for incident neutron energies of 2.45, 3, and 3.27 MeV. The Malfliet–Tjon and the Hulth´en local NN potentials were used in calculations. The calculated nd phases and nd scattering crosssections satisfactorily fit the corresponding experimental data.
uk
Відділення фізики і астрономії НАН України
Загальні питання теоретичної фізики
Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій
Расчеты волновых функций nd-системы, фаз и сечений nd-рассеяния с использованием модифицированных уравнений фаддеева и метода гиперсферических функций
Calculations of Wave Functions of the nd-system, Phases, and Cross-sections of nd-scattering with the Use of Modified Faddeev’s Equations and the Method of Hyperspherical Functions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій
spellingShingle Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій
Ковальчук, В.І.
Козловський, І.В.
Тартаковський, В.К.
Загальні питання теоретичної фізики
title_short Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій
title_full Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій
title_fullStr Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій
title_full_unstemmed Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій
title_sort розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь фаддєєва і методу гіперсферичних функцій
author Ковальчук, В.І.
Козловський, І.В.
Тартаковський, В.К.
author_facet Ковальчук, В.І.
Козловський, І.В.
Тартаковський, В.К.
topic Загальні питання теоретичної фізики
topic_facet Загальні питання теоретичної фізики
publishDate 2010
language Ukrainian
publisher Відділення фізики і астрономії НАН України
format Article
title_alt Расчеты волновых функций nd-системы, фаз и сечений nd-рассеяния с использованием модифицированных уравнений фаддеева и метода гиперсферических функций
Calculations of Wave Functions of the nd-system, Phases, and Cross-sections of nd-scattering with the Use of Modified Faddeev’s Equations and the Method of Hyperspherical Functions
description Розраховано хвильовi функцiї nd-системи, а також фази i перерiзи nd-розсiяння при енергiях, нижчих за порiг розвалу дейтрона. Виходячи з модифiкованих рiвнянь Фаддєєва, що одержанi у нашiй попереднiй роботi для повної хвильової функцiї, ми видiлили найбiльш складну її частину, яка описує рух трьох нуклонiв в областi взаємодiї, i розклали її у ряд по гiперсферичним полiномам з K = 0; 1; 2. Для коефiцiєнтiв розкладу (радiальних функцiй вiд колективної змiнної) складено систему одновимiрних iнтегральних рiвнянь, яку потiм було чисельно розв’язано для енергiй нейтрона 2,45, 3 i 3,27 МеВ. У розрахунках використовували локальнi NN-потенцiали Малфлi–Тьона i Хюльтена. Результати обчислень фаз i перерiзiв nd-розсiяння задовiльно узгоджуються з вiдповiдними експериментальними даними. Рассчитаны волновые функции nd-системы, а также фазы и сечения nd-рассеяния при энергиях ниже порога развала дейтрона. Исходя из модифицированных уравнений Фаддеева, полученных в нашей предыдущей работе для полной волновой функции, мы выделили наиболее сложную ее часть, которая описывает движение трех нуклонов в области взаимодействия, и разложили ее в ряд по гиперсферическим полиномам с K = 0; 1; 2. Для коэффициентов разложения (радиальных функций коллективной переменной) составлена система одномерных интегральных уравнений, которая была решена численно для энергий нейтрона 2,45, 3 i 3,27 МэВ. В расчетах использовались локальные NN-потенциалы Малфли–Тьона и Хюльтена. Результаты расчетов фаз и сечений nd-рассеяния удовлетворительно согласуются с соответствующими экспериментальными данными. The neutron-deuteron wave functions, nd phases, and nd scattering cross-sections have been calculated for neutron energies below the deuteron breakup threshold. Starting from the modified Faddeev’s equations which have got in our previous paper, the most complicated part of the full wave function describing the three-nucleon motion in the NN interaction region is separated and expanded into a series in hyperspherical polynomials with K = 0; 1; 2. The system of one-dimensional integral equations for the expansion coefficients has been constructed and solved numerically for incident neutron energies of 2.45, 3, and 3.27 MeV. The Malfliet–Tjon and the Hulth´en local NN potentials were used in calculations. The calculated nd phases and nd scattering crosssections satisfactorily fit the corresponding experimental data.
issn 2071-0194
url https://nasplib.isofts.kiev.ua/handle/123456789/13408
citation_txt Розрахунки хвильових функцій nd-системи, фаз і перерізів nd-розсіяння з використанням модифікованих рівнянь Фаддєєва і методу гіперсферичних функцій / В.І. Ковальчук, І.В. Козловський, В.К. Тартаковський // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 343-350. — Бібліогр.: 33 назв. — укр.
work_keys_str_mv AT kovalʹčukví rozrahunkihvilʹovihfunkcíindsistemifazípererízívndrozsíânnâzvikoristannâmmodifíkovanihrívnânʹfaddêêvaímetodugípersferičnihfunkcíi
AT kozlovsʹkiiív rozrahunkihvilʹovihfunkcíindsistemifazípererízívndrozsíânnâzvikoristannâmmodifíkovanihrívnânʹfaddêêvaímetodugípersferičnihfunkcíi
AT tartakovsʹkiivk rozrahunkihvilʹovihfunkcíindsistemifazípererízívndrozsíânnâzvikoristannâmmodifíkovanihrívnânʹfaddêêvaímetodugípersferičnihfunkcíi
AT kovalʹčukví rasčetyvolnovyhfunkciindsistemyfazisečeniindrasseâniâsispolʹzovaniemmodificirovannyhuravneniifaddeevaimetodagipersferičeskihfunkcii
AT kozlovsʹkiiív rasčetyvolnovyhfunkciindsistemyfazisečeniindrasseâniâsispolʹzovaniemmodificirovannyhuravneniifaddeevaimetodagipersferičeskihfunkcii
AT tartakovsʹkiivk rasčetyvolnovyhfunkciindsistemyfazisečeniindrasseâniâsispolʹzovaniemmodificirovannyhuravneniifaddeevaimetodagipersferičeskihfunkcii
AT kovalʹčukví calculationsofwavefunctionsofthendsystemphasesandcrosssectionsofndscatteringwiththeuseofmodifiedfaddeevsequationsandthemethodofhypersphericalfunctions
AT kozlovsʹkiiív calculationsofwavefunctionsofthendsystemphasesandcrosssectionsofndscatteringwiththeuseofmodifiedfaddeevsequationsandthemethodofhypersphericalfunctions
AT tartakovsʹkiivk calculationsofwavefunctionsofthendsystemphasesandcrosssectionsofndscatteringwiththeuseofmodifiedfaddeevsequationsandthemethodofhypersphericalfunctions
first_indexed 2025-11-24T04:30:40Z
last_indexed 2025-11-24T04:30:40Z
_version_ 1850841503316836352
fulltext V.I. KOVALCHUK, I.V. KOZLOVSKY, V.K. TARTAKOVSKY CALCULATIONS OF WAVE FUNCTIONS OF THE nd-SYSTEM, PHASES, AND CROSS-SECTIONS OF nd-SCATTERING WITH THE USE OF MODIFIED FADDEEV’S EQUATIONS AND THE METHOD OF HYPERSPHERICAL FUNCTIONS V.I. KOVALCHUK,1 I.V. KOZLOVSKY,2 V.K. TARTAKOVSKY3 1Taras Shevchenko National University of Kyiv (2/1, Academician Glushkov Ave., Kyiv 03127, Ukraine) 2Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine (14b, Metrolohichna Str., Kyiv 03680, Ukraine) 3Institute of Nuclear Research, Nat. Acad. of Sci. of Ukraine (47, Nauky Ave., Kyiv 03680, Ukraine) PACS 21.45.-v, 25.10.+s, 25.40.Dn c©2010 The neutron-deuteron wave functions, nd phases, and nd scatter- ing cross-sections have been calculated for neutron energies be- low the deuteron breakup threshold. Starting from the modified Faddeev’s equations which have got in our previous paper, the most complicated part of the full wave function describing the three-nucleon motion in the NN interaction region is separated and expanded into a series in hyperspherical polynomials with K = 0, 1, 2. The system of one-dimensional integral equations for the expansion coefficients has been constructed and solved nu- merically for incident neutron energies of 2.45, 3, and 3.27 MeV. The Malfliet–Tjon and the Hulthén local NN potentials were used in calculations. The calculated nd phases and nd scattering cross- sections satisfactorily fit the corresponding experimental data. 1. Introduction The contemporary theory of nuclei has mainly the phe- nomenological character, and its microscopic substantia- tion is very poorly developed [1]. Therefore, the impor- tant step to a better physical comprehension of multi- particle nucleonic systems and processes with their par- ticipation is the study of namely three-nucleon systems. As compared with the binary systems, the description of three-particle states in the continuous spectrum is a nontrivial theoretical problem. This is related, first of all, to the possibility of the processes of redistribution and fission in a three-particle system in addition to the elastic scattering. Second, the mentioned systems have essentially different energy spectra. Whereas the spec- trum of a binary system is composed separately from discrete levels and the continuum, a three-particle sys- tem has a purely degenerate spectrum, i.e. a certain value of the total energy can correspond to physically different states of the system. At the present time, the well-developed powerful methods of calculation of three- particle wave functions in the continuum are available. Among them, the most known methods are one based on the Faddeev equations [1–3] and the variational method of Kohn–Hulthén with the use of expansions in a hyper- spherical basis [4]. The Faddeev method consists in that the Schrödinger equation for a three-particle wave function is trans- formed and is reduced to a system of three equations [2] with boundary conditions, like the Lippmann–Schwinger equation [1]. Each of the Faddeev equations is a six- dimensional integral equation, whose solution is firstly started by its transformation into an infinite system of coupled integral equations. Then this collection of equa- tions is truncated and is solved by ordinary numerical methods [3]. An essential drawback of the method con- sists in the impossibility to directly use the potentials with infinite action radius such as, for example, the Coulomb potential [5]. Within this method, the solution of the problem on the scattering of a proton by a deutron is extremely complicated and, in addition, is not strictly mathematically substantiated [5–7], as distinct from the formalism of the Faddeev equations themselves. Another approach to the problem of nd-scattering is the solution of the input three-nucleon Schrödinger equa- tion by the variational method of Kohn–Hulthén [8]. The wave function of the system of nucleons is separated into two parts – short-range and asymptotic ones [9]. The lat- ter can be presented in the ordinary way in terms of the incident and scattered waves and the collision matrix. The short-range parts is expanded in a series in hyper- 342 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 CALCULATIONS OF WAVE FUNCTIONS spherical functions. The coefficients of this expansion and the scattering phases can be determined after the application of a variational procedure. Both approaches, the variational one and the Faddeev method, give very close results at the fitting of experimental data on the nd- and pd-scattering [10, 11]. But, in the latter case, only the variational method can be strictly substanti- ated at the consideration of the Coulomb interaction of particles. The aim of our work is to develop and to use a method of calculation of the cross-sections of nd-scattering at energies below the deuteron breakup threshold. Such a study was begun else in our previous works. Starting from the well-known Faddeev equations [2] and using the expansion in hyperspherical functions, we reduced the problem on the determination of a neutron-deuteron wave function in the continuum to a system of one- dimensional integral equations, whose solution requires a significantly less computer time than the numerical so- lution of the Faddeev equations. We used simple model NN potentials with a nonseparable interaction without spin-isospin dependence. These potentials, as test ones, are used in similar tasks by many researchers for a long time [12–18]. Of course, the Faddeev equations contain- ing only spatial variables can be extended on the case where the interaction and the wave function depend on spin and isospin variables [19]. But they will be quite different complicated equations which are not considered here. In our case of spinless wave functions and particles with identical masses, the Faddeev equations themselves can be considered, in this sense, as model equations. Moreover, the specific results obtained with their help for cross-sections indicate that the effect of the spin de- grees of freedom is quite small at fitting the experiment at least in some kinematic regions, but in many cases. In calculations, we also neglect the doublet component of the scattering amplitude, since it follows from the phase analysis data [20, 21] that the contribution of the dou- blet state to the scattering cross-section is about 1%. Despite the mentioned approximations, we managed to obtain a satisfactory agreement with experiments on the cross-sections and on the scattering phases. The present work is a continuation and a natural development of the cycle of our works devoted to the study of the scattering of a particle on a system of two coupled particles which was started in [22]. 2. Formalism We are based on the well-known Faddeev equations [2] written for a system of three strongly interacting par- ticles with identical masses m, in which one particle is free, and two ones are bound: Ψ(1) = Φ +G0(Z)T23(Z)(Ψ(2) + Ψ(3)); Ψ(2) = G0(Z)T31(Z)(Ψ(3) + Ψ(1)); Ψ(3) = G0(Z)T12(Z)(Ψ(1) + Ψ(2)), (1) Here, Ψ = Ψ(1) + Ψ(2) + Ψ(3) (2) is the total three-particle wave function; Φ is the asymp- totic wave function which the product of the plane wave with a momentum of the relative motion of the 1-st par- ticle and the coupled system of two other particles and the wave function of a bound state of particles 2 and 3; G0(Z) = (Z −H0)−1; Z = E ± i0; E is the total energy of the system; H0 is the operator of kinetic energy; Tij are the two-particle transition operators which are con- nected with the pairwise potentials Vij (ij = 12, 23, 31) by the equations Tij(Z) = Vij + VijG0(Z)Tij(Z) . (3) Here and below, we use the systems of units, in which ~= c=1; all kinematic quantities are referred to the center- of-mass system (unless otherwise stated). Substituting (3) in system (1) and adding the equations, we obtain a single equation for the total wave function Ψ = Φ+G0(Z)(UΨ−V23Φ), U = V12 +V23 +V31 , (4) which contains, like the Faddeev equation, the same boundary conditions and has also a unique solution, be- cause it was obtained from (1)–(3) with the use of only the addition without the division by operators. Let us expand the difference Ψ − Φ in a series in K- harmonics: Ψ− Φ = ∑ Kn BKn(ρ)uKn(Ω). (5) Substituting this expansion in (4) and using the condi- tion of normalization forK-harmonics, we get the system of coupled integral equations for the functions BKn(ρ) [23] BK′n′(ρ) = πm ρ2 ∞∫ 0 dρ̄ ρ̄3P (K′) ± ∫ dΩu∗K′n′(Ω)× ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 343 V.I. KOVALCHUK, I.V. KOZLOVSKY, V.K. TARTAKOVSKY × { U ∑ Kn BKn(ρ̄)uKn(Ω) + (V12 + V31)Φ } , (6) P (K′) ± ≡ P (K′) ± (ρ, ρ̄) = − 2 π ∞∫ 0 dq q J2(qρ) J2(qρ̄) q2 − k2 K′ ∓ i0 , (7) where k2 K′ = k2 0−K ′(K ′ + 4)/ρ2, k2 0 = 4m(En−ε)/3, m is the nucleon mass, En is the kinetic energy of an inci- dent neutron, ε is the binding energy of a deuteron. The potentials Vij and the function Φ on the right-hand side of Eq. (6) depend on the hyperradius ρ̄ and five angular variables Ω. We emphasize one more that the bound- ary conditions for the Faddeev equations are contained also in Eqs. (6), because they are obtained directly from (1) (see [23]). Since we consider the elastic scattering, we need only the function P (K′) + defined in (7) for the subsequent calculations. In our previous work [24], we restricted ourselves only by the first term in expansion (5) with K = 0 in calcu- lations of the nd-scattering cross-sections. By using the formalism developed in [23], we now take else the terms with K = 1 and K = 2 into account. The calculation of these terms will give us the possibility to establish, first, that series (5) converges, indeed, rapidly, and, sec- ond, that the corrections to the scattering amplitude, which are related to the harmonics K = 1, 2, are rela- tively small. Let r1, r2, r3 be the radius-vectors of particles 1,2,3. For eachK, we introduce the collection of quantum num- bers n ≡ {`x, `y, L,M} [23,25], where `x is the orbital moment of the coupled pair of particles 2 and 3, `y is the orbital moment of the 1-st particle relative to the center of masses of pair (23), x and y are the corre- sponding Jacobi coordinates: x = (r2 − r3)/ √ 2 and y = √ 2/3(r1 − (r2 + r3)/2). The quantum numbers L and M are, respectively, the total orbital moment and its projection. Retaining only the terms with K = 0, 1, 2 in expan- sion (5), we have, in the general case, 27 coupled in- tegral equations for the unknown functions BKn(ρ) (by the number of collections Kn [26]). We denote each of the K-harmonics in the following way [23]: u `x`yLM K ≡ Φj(Ω), j = 1, 2, ..., 27. (8) These K-harmonics have a rather simple form [23]. Moreover, what is very important, the system of inte- gral equations (6) is essentially simplified with their use. Namely, it becomes a collection of two systems of equa- tions with two unknowns and 23 uncoupled equations, among which 22 equations are homogeneous. Since these homogeneous equations are Volterra equations of the sec- ond kind, it follows from the results in [27, 28] that such equations have only trivial (zero) solutions (which is sup- ported, by the way, by direct calculations) under the condition of square integrability of the kernel (it holds in our case). Thus, all five inhomogeneous equations, which remain in (6) and should be solved, are related to the following K-harmonics [23, 26]: Φ1 ≡ u0000 0 = 1√ π3 , Φ7 ≡ u0110 1 = √ 6 π3 sin θ cos θy , Φ12 ≡ u2020 2 = 2√ π3 cos2 θ(3 cos2 θx − 1), Φ17 ≡ u0220 2 = 2√ π3 sin2 θ(3 cos2 θy − 1), Φ26 ≡ u0000 2 = 2√ π3 cos 2θ . (9) The corresponding coefficients B1(ρ), B7(ρ), B12(ρ), B17(ρ), and B26(ρ) in expansion (5) are the solutions of the integral equations B1(ρ) = 8m ρ2 ∞∫ 0 dρ̄ ρ̄3 P (0) + { π/2∫ 0 dθ sin2 θ cos2 θ ( B1(ρ̄)+ +2B26(ρ̄) cos 2θ ) V ∗ + √ 2/3π3/2 p ρ̄ π/2∫ 0 dθ sin θ cos2 θ φ( √ 2 ρ̄ cos θ) sin( √ 3/2 p ρ̄ sin θ)(V ∗ − 2V23) } ; (10) B26(ρ) = 16m ρ2 ∞∫ 0 dρ̄ ρ̄3 P (2) + { π/2∫ 0 dθ sin2 θ cos2 θ cos 2θ× × ( B1(ρ̄) + 2B26(ρ̄) cos 2θ ) V ∗ + √ 2/3π3/2 p ρ̄ × × π/2∫ 0 dθ sin θ cos2 θ cos 2θφ( √ 2 ρ̄ cos θ)× 344 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 CALCULATIONS OF WAVE FUNCTIONS × sin( √ 3/2 p ρ̄ sin θ)(V ∗ − 2V23) } ; (11) B7(ρ)= 16m ρ2 ∞∫ 0 dρ̄ ρ̄3 P (1) + { π/2∫ 0 dθ sin4 θ cos2 θ B7(ρ̄)V ∗+ + i π3/2 p ρ̄ π/2∫ 0 dθ sin2 θ cos2 θ φ( √ 2 ρ̄ cos θ)(V ∗ − 2V23)× × [ sin( √ 3/2 p ρ̄ sin θ)√ 3/2 p ρ̄ sin θ − cos( √ 3/2 p ρ̄ sin θ) ]} ; (12) B12(ρ) = 128m 5ρ2 ∞∫ 0 dρ̄ ρ̄3 P (2) + { π/2∫ 0 dθ sin2 θ× × cos6 θ B12(ρ̄)V ∗+ 5 √ 2/3π3/2 8p ρ̄ π/2∫ 0 dθ sin θ cos4 θ× ×φ( √ 2 ρ̄ cos θ) sin( √ 3/2 p ρ̄ sin θ)× × π∫ 0 dθx sin θx(3 cos2 θx − 1)(V12 + V31) } ; (13) B17(ρ) = 128m 5ρ2 ∞∫ 0 dρ̄ ρ̄3 P (2) + { π/2∫ 0 dθ sin6 θ ×+ × cos2 θ B17(ρ̄)V ∗+ 5π3/2 6p2 ρ̄2 π/2∫ 0 dθ sin2 θ× × cos2 θ φ( √ 2 ρ̄ cos θ)(V ∗ − 2V23) [(√ 3/2 p ρ̄ sin θ− − 3√ 3/2 p ρ̄ sin θ ) sin( √ 3/2 p ρ̄ sin θ)+ +3 cos ( √ 3/2 p ρ̄ sin θ) ]} . (14) In (10)–(14), the function φ( √ 2ρ̄ cos θ) is the wave func- tion of a deuteron, and the quantities V ∗, V23, V12, and V31 are defined as follows: V ∗ = 2V23 + π∫ 0 dθx sin θx(V12 + V31), V23 ≡ V ( √ 2ρ̄ cos θ), V12 ≡ V ( ρ̄√ 2 √ 1 + 2 sin2 θ − √ 3 sin 2θ cos θx ) , V31 ≡ V ( ρ̄√ 2 √ 1 + 2 sin2 θ + √ 3 sin 2θ cos θx ) , where V is the nucleon-nucleon potential. We note that the used approach possesses, in addition, the advantage allowing us to numerically solve a system of integral equations for a small number of functions de- pending on a single continuous variable. 3. Analysis of the Results of Calculations and Conclusions Equations (10)–(14) were solved numerically for several values of energies of incident neutrons En (2.45, 3, and 3.27 MeV in the laboratory reference system). In calcu- lations, we used the following NN interaction potentials: 1) Hulthén potential [12] V (r) = − λH exp (µHr)− 1 , λH = 0.177 fm−1, µH = 1.145 fm−1; (15) 2) Malfliet–Tjon triplet potential [13] with a repulsive soft core V (r) = −λA exp(−µAr)/r + λR exp(−µRr)/r , λA = 3.22 fm−1, µA = 1.55 fm−1, λR = 7.39 fm−1, µR = 3.11 fm−1. (16) ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 345 V.I. KOVALCHUK, I.V. KOZLOVSKY, V.K. TARTAKOVSKY Fig. 1. Functions Bj(ρ) (j = 1, 7, 12, 17, 26) calculated for the potentials of Hulthén a) and Malfliet–Tjon b) at energies of an incident neutron of 2.45 MeV (dotted curves), 3 MeV (dash-dotted), and 3.27 MeV (continuous) The wave function of a deuteron was chosen in the form [1] ϕ(r) = √ αβ(α+ β) 2π(β − α)2 exp(−αr)− exp(−βr) r (17) with the parameters α = √ mε and β ' 7α. The calculated functions Bj(ρ) (j = 1, 7, 12, 17, 26) are shown in Fig. 1. The analysis of the curves presented in this figure implies that, first, Bj(ρ) depend weakly on the energy of a neutron in the interval En = 2.45 ÷ 3.27 MeV. Second, the maximum values of B1(ρ) (for the basic K-harmonic with K = 0) exceed, in modulus, the maximum values of the functions Bj(ρ) by at least one order of magnitude for K-harmonics with K = 1 and K = 2. In Table 1, we present separate contributions of each of five nonzero partial amplitudes Aj (j = 1, 7, 12, 17, 26) to the nd-scattering amplitude A calculated for the same interaction potentials and values of En. In the last col- 346 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 CALCULATIONS OF WAVE FUNCTIONS Fig. 2. Differential nd-scattering cross-sections calculated with the use of the potentials of Hulthén (a, b) and Malfliet–Tjon (c, d) at the energies of a neutron En = 2.45 MeV (a, c) and 3.27 MeV (b, d). The explanation of the curves is given in the text. The experimental data are taken from [29] T a b l e 1. Contributions of Aj to the nd-scattering amplitude from each of five nonzero partial amplitudes (j = 1, 7, 12, 17, 26) Potential En, MeV A1 A7 A12 A17 A26 δA, % K 0 1 1 2 2 Hulthén 2.45 −7.019 −0.141 −0.158 −0.003 −0.074 5.1 3 −7.616 −0.174 −0.173 −0.004 −0.076 5.3 3.27 −8.011 −0.190 −0.179 −0.005 −0.077 5.3 Malfliet–Tjon 2.45 25.061 −1.569 -0.025 −0.013 −0.738 8.6 3 23.098 −1.991 −0.018 −0.020 −0.745 13.6 3.27 22.122 −2.212 −0.014 −0.024 −0.749 15.7 umn of Table 1, we give the relative contributions δA (in percents) for higher K-harmonics with K = 1 and K = 2, δA = A7 +A12 +A17 +A26 A1 +A7 +A12 +A17 +A26 . (18) Table 1 indicates that the quantity δA for the Hulthén potential almost does not depend on En, by reaching 5.3%, whereas δA for the Malfliet–Tjon potential in- creases significantly even within a short interval in en- ergies (from 8.6% for En = 2.45 MeV to 15.7% for En = 3.27 MeV). In Table 2, we show the calculated nd-scattering phases for the relative orbital moments ` = 0, 1, 2 for potentials (15) and (16) and two energies En = 2.45 and 3.27 MeV, for which the experimental data on the elastic scattering of neutrons on deuterons are available [29]. For comparison, Table 2 presents also the phases obtained by other authors in [18, 20, 30–32] for an anal- ogous problem on the nd-scattering. The quantities η are the dimensionless normalizing coefficients [24] for the internal part of the total wave function of the three- particle scattering problem. In Fig. 2,(a–d), we give the angular distributions of the nd elastic scattering cross-sections which are calcu- ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 347 V.I. KOVALCHUK, I.V. KOZLOVSKY, V.K. TARTAKOVSKY lated with the use of potentials (15) and (16). The con- tinuous curves in Fig. 2 are calculated with regard for all five functions Bj(ρ), i.e. three K-harmonics with K = 0, 1, 2 were taken in expansion (5). The dotted curves correspond to the case where onlyB1(ρ) (the term with K = 0) was taken in (5). The analysis of the curves presented in Fig. 2 indicates that the contribution of the higher K-harmonics (K = 1, 2) to the cross-section for the Hulthén potential is at most ∼ 5%. But such a contribution for the Malfliet–Tjon potential can be sig- nificant (especially at the minima of angular distribu- tions). The continuous curves describe the experimental data satisfactorily in all the cases. For comparison, we give the results of the Pisa group [33] in Fig. 2 (dashed curves) which fit the experimental data in [29]. Despite the fact that the calculations of the cross-sections in [33] involved the realistic NN potential AV18 (moreover, the three-particle interaction was also taken into account), the results of our work and work [33] are quite close. Some difference of the S, P , and D phases calculated by us from the results of other authors (see Table 2) can be explained by the approximation used in the solution of the problem: we considered only those factors which make the main contribution to the scattering amplitude. Thus, the method developed here for the calculation of the elastic nd-scattering cross-sections within simple models of the NN interaction allows one to satisfacto- rily describe the relevant experiments at energies of a neutron below the deuteron breakup threshold. By rep- resenting the total wave function of the problem Ψ as a sum of its asymptotic part and a part which describes the three-nucleon system in the interaction region, we reduced the problem of the determination of Ψ to the nu- merical solution of a system of one-dimensional integral equations. This solution does not require a significant computer time, as distinct from the traditional meth- ods of solution of three-nucleon problems in the contin- uum, which are based on the direct numerical solution of two-dimensional integral equations in the momentum representation. We have established, first, that the con- T a b l e 2. Phases δ` (in degrees) En, MeV ` Potential type and calculated δ` Other data Hulthén η Malfliet–Tjon η 2.45 0 −60.8 0.62 −53.3 0.78 −66.7 [18,30] 1 15.4 16.3 23.1 [31] 2 −4.0 −4.1 −4.2 [31] 3.27 1 −71.5 0.47 −64.3 0.80 −73.6 [20,32] 2 15.8 17.8 25.6 [32] 0 −7.5 −7.9 −4.6 [20] sideration of three first K-harmonics in the expansion of the internal part of the wave function of a nd-system is sufficient for the satisfactory description of the relevant experiments on nd-scattering at subthreshold energies of a neutron. Second, for such energies and the NN potentials used in calculations, the contribution of the basic K-harmonic with K = 0 to the reaction ampli- tude is dominant. All this confirms the efficiency of the proposed approach. 1. O.G. Sitenko and V.K. Tartakovsky, Nuclear Theory (Ly- bid’, Kyiv, 2000) (in Ukrainian). 2. L.D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960). 3. G.H. Berthold and H. Zankel, Phys. Rev. C 34, 1203 (1986). 4. M. Viviani, A. Kievsky, and S. Rosati, Few-Body Syst. 30, 39 (2001). 5. J.V. Noble, Phys. Rev. 161, 945 (1967). 6. S. Adya, Phys. Rev. 177, 1406 (1968). 7. K.A.-A. Hamza and S. Edwards, Phys. Rev. 181, 1494 (1969). 8. A. Kievsky, M. Viviani, and S. Rosati, Nucl. Phys. A 551, 241 (1993). 9. A. Kievsky, Nucl. Phys. A 624, 125 (1997). 10. D. Hüber, W. Glöckle, J. Golak et al., Phys. Rev. C 51, 1100 (1995). 11. A. Kievsky, M. Viviani, S. Rosati et al., Phys. Rev. C 58, 3085 (1998). 12. L. Hulthén and M. Sugawara, in Handbuch der Physik, edited by S. Flügge (Springer, Berlin, 1957), p. 174. 13. R.A. Malfliet and J.A. Tjon, Nucl. Phys. A 127, 161 (1969). 14. A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C 56, 2987 (1997). 15. J.L. Friar, B.F. Gibson, and G.L. Payne, Phys. Rev. C 28, 983 (1983). 16. J.L. Friar, B.F. Gibson, G. Berthold et al., Phys. Rev. C 42, 1838 (1990). 17. J.L. Friar, G.L. Payne, W. Glöckle et al., Phys. Rev. C 51, 2356 (1995). 18. C.R. Chen, G.L. Payne, J.L. Friar, and B.F. Gibson, Phys. Rev. C 39, 1261 (1989). 19. A.G. Sitenko and V.F. Kharchenko, Nucl. Phys. 49, 15 (1963). 348 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 CALCULATIONS OF WAVE FUNCTIONS 20. R.K. Adair, A. Okazaki, and M. Walt, Phys. Rev. 89, 1165 (1953). 21. A.J. Elwyn, R.O. Lane, and A. Langsdorf, jr., Phys. Rev. 128, 779 (1962). 22. O.G. Sitenko, V.K. Tartakovsky, I.V. Kozlovsky, Ukr. Fiz. Zh. 46, 1251 (2001). 23. V.K. Tartakovsky, I.V. Kozlovsky, V.I. Kovalchuk, Yad. Fiz. Energ. 25, 22 (2008). 24. V.I. Kovalchuk, V.K. Tartakovsky, I.V. Kozlovsky, Ukr. Fiz. Zh. 53, 758 (2008). 25. R.I. Dzhibuti and N.B. Krupennikova, Method of Hyper- spherical Functions in the Quantum Mechanics of Few Bodies (Metsniereba, Tbilisi, 1984) (in Russian). 26. Yu.A. Simonov, Yad. Fiz. 3, 630 (1966). 27. F.G. Tricomi, Integral Equations (Interscience, New York, 1957). 28. A.D. Polyanin and A.V. Manzhirov, Handbook on Inte- gral Equations (Fizmatlit, Moscow, 2003) (in Russian). 29. J.D. Seagrave and L. Cranberg, Phys. Rev. 105, 1816 (1957). 30. S. Ishikawa, Few-Body Syst. 32, 229 (2003). 31. M.G. Fuda and B.A. Girard, Phys. Rev. C 17, 1 (1978). 32. A. Kievsky, M. Viviani, and S. Rosati, Nucl. Phys. A 577, 511 (1994). 33. A. Kievsky, S. Rosati, W. Tornow, and M. Viviani, Nucl. Phys. A 607, 402 (1996). Received 21.05.09. Translated from Ukrainian by V.V. Kukhtin РОЗРАХУНКИ ХВИЛЬОВИХ ФУНКЦIЙ nd-СИСТЕМИ, ФАЗ I ПЕРЕРIЗIВ nd-РОЗСIЯННЯ З ВИКОРИСТАННЯМ МОДИФIКОВАНИХ РIВНЯНЬ ФАДДЄЄВА I МЕТОДУ ГIПЕРСФЕРИЧНИХ ФУНКЦIЙ В.I. Ковальчук, I.В. Козловський, В.К. Тартаковський Р е з ю м е Розраховано хвильовi функцiї nd-системи, а також фази i пере- рiзи nd-розсiяння при енергiях, нижчих за порiг розвалу дей- трона. Виходячи з модифiкованих рiвнянь Фаддєєва, що одер- жанi у нашiй попереднiй роботi для повної хвильової функцiї, ми видiлили найбiльш складну її частину, яка описує рух трьох нуклонiв в областi взаємодiї, i розклали її у ряд по гiперсфери- чним полiномам з K = 0, 1, 2. Для коефiцiєнтiв розкладу (ра- дiальних функцiй вiд колективної змiнної) складено систему одновимiрних iнтегральних рiвнянь, яку потiм було чисельно розв’язано для енергiй нейтрона 2,45, 3 i 3,27 МеВ. У розрахун- ках використовували локальнi NN-потенцiали Малфлi–Тьона i Хюльтена. Результати обчислень фаз i перерiзiв nd-розсiяння задовiльно узгоджуються з вiдповiдними експериментальними даними. ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 349