Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід
Методом малокутового розсiяння нейтронiв дослiджено формування мiцел в потрiйних рiдинних системах тетрадецилтриметиламонiй бромiд–важка вода–NaBr. Данi про малокутову дифракцiю нейтронiв на заряджених мiцелах було оброблено у наближеннi моделi перемасштабованої середньосферичної апроксимацiї Хайтер...
Gespeichert in:
| Datum: | 2010 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Відділення фізики і астрономії НАН України
2010
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/13412 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід / Л.А. Булавін, В.І. Горделій, О.І. Іваньков, А.Х. Ісламов, А.І. Куклін // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 289-293. — Бібліогр.: 13 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-13412 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-134122025-02-09T15:21:39Z Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід Нейтронные исследования влияния примесей NaBr на мицеллообразование в системе тяжелая вода–тетрадецилтриметиламмоний бромид Neutron Studies of the NaBr Impurity Influence on Micelle Formation in the Heavy Water–Tetradecyltrimethylammonium Bromide System Булавін, Л.А. Горделій, В.І. Іваньков, О.І. Ісламов, А.Х. Куклін, А.І. М'яка речовина Методом малокутового розсiяння нейтронiв дослiджено формування мiцел в потрiйних рiдинних системах тетрадецилтриметиламонiй бромiд–важка вода–NaBr. Данi про малокутову дифракцiю нейтронiв на заряджених мiцелах було оброблено у наближеннi моделi перемасштабованої середньосферичної апроксимацiї Хайтера–Пенфольда. Визначено залежнiсть розмiрiв мiцел та числа агрегацiї вiд температури рiдинної системи та концентрацiї NaBr. Методом малоуглового рассеяния нейтронов изучено формирование мицелл в тройных жидкостных системах тетрадецилтриметиламмоний бромид–тяжелая вода–NaBr. Данные о малоугловой дифракции нейтронов на заряженных мицеллах были обработаны в приближении модели перемасштабированной среднесферической аппроксимации Хайтера–Пенфольда. Определена зависимость размеров мицелл и числа агрегации от температуры жидкостной системы и концентрации NaBr. Micelle formation in the triple liquid system tetradecyltrimethylammonium bromide–heavy water–NaBr has been studied by means of small-angle neutron scattering (SANS). The rescaled mean-spherical approximation by Hayter–Penfold has been used to treat the small-angle neutron diffraction data on charged micelles. The dependences of the micelle size and aggregation number on the liquid system temperature and NaBr concentration have been found. 2010 Article Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід / Л.А. Булавін, В.І. Горделій, О.І. Іваньков, А.Х. Ісламов, А.І. Куклін // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 289-293. — Бібліогр.: 13 назв. — укр. 2071-0194 PACS 61.05.fg https://nasplib.isofts.kiev.ua/handle/123456789/13412 538,97 uk application/pdf application/pdf Відділення фізики і астрономії НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
Ukrainian |
| topic |
М'яка речовина М'яка речовина |
| spellingShingle |
М'яка речовина М'яка речовина Булавін, Л.А. Горделій, В.І. Іваньков, О.І. Ісламов, А.Х. Куклін, А.І. Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід |
| description |
Методом малокутового розсiяння нейтронiв дослiджено формування мiцел в потрiйних рiдинних системах тетрадецилтриметиламонiй бромiд–важка вода–NaBr. Данi про малокутову дифракцiю нейтронiв на заряджених мiцелах було оброблено у наближеннi моделi перемасштабованої середньосферичної апроксимацiї Хайтера–Пенфольда. Визначено залежнiсть розмiрiв мiцел та числа агрегацiї вiд температури рiдинної системи та концентрацiї NaBr. |
| format |
Article |
| author |
Булавін, Л.А. Горделій, В.І. Іваньков, О.І. Ісламов, А.Х. Куклін, А.І. |
| author_facet |
Булавін, Л.А. Горделій, В.І. Іваньков, О.І. Ісламов, А.Х. Куклін, А.І. |
| author_sort |
Булавін, Л.А. |
| title |
Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід |
| title_short |
Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід |
| title_full |
Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід |
| title_fullStr |
Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід |
| title_full_unstemmed |
Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід |
| title_sort |
нейтронні дослідження впливу домішок nabr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід |
| publisher |
Відділення фізики і астрономії НАН України |
| publishDate |
2010 |
| topic_facet |
М'яка речовина |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/13412 |
| citation_txt |
Нейтронні дослідження впливу домішок NaBr на міцелоутворення в системі важка вода−тетрадецилтриметиламоній бромід / Л.А. Булавін, В.І. Горделій, О.І. Іваньков, А.Х. Ісламов, А.І. Куклін // Укр. фіз. журн. — 2010. — Т. 55, № 3. — С. 289-293. — Бібліогр.: 13 назв. — укр. |
| work_keys_str_mv |
AT bulavínla nejtronnídoslídžennâvplivudomíšoknabrnamíceloutvorennâvsistemívažkavodatetradeciltrimetilamoníjbromíd AT gordelíjví nejtronnídoslídžennâvplivudomíšoknabrnamíceloutvorennâvsistemívažkavodatetradeciltrimetilamoníjbromíd AT ívanʹkovoí nejtronnídoslídžennâvplivudomíšoknabrnamíceloutvorennâvsistemívažkavodatetradeciltrimetilamoníjbromíd AT íslamovah nejtronnídoslídžennâvplivudomíšoknabrnamíceloutvorennâvsistemívažkavodatetradeciltrimetilamoníjbromíd AT kuklínaí nejtronnídoslídžennâvplivudomíšoknabrnamíceloutvorennâvsistemívažkavodatetradeciltrimetilamoníjbromíd AT bulavínla nejtronnyeissledovaniâvliâniâprimesejnabrnamicelloobrazovanievsistemetâželaâvodatetradeciltrimetilammonijbromid AT gordelíjví nejtronnyeissledovaniâvliâniâprimesejnabrnamicelloobrazovanievsistemetâželaâvodatetradeciltrimetilammonijbromid AT ívanʹkovoí nejtronnyeissledovaniâvliâniâprimesejnabrnamicelloobrazovanievsistemetâželaâvodatetradeciltrimetilammonijbromid AT íslamovah nejtronnyeissledovaniâvliâniâprimesejnabrnamicelloobrazovanievsistemetâželaâvodatetradeciltrimetilammonijbromid AT kuklínaí nejtronnyeissledovaniâvliâniâprimesejnabrnamicelloobrazovanievsistemetâželaâvodatetradeciltrimetilammonijbromid AT bulavínla neutronstudiesofthenabrimpurityinfluenceonmicelleformationintheheavywatertetradecyltrimethylammoniumbromidesystem AT gordelíjví neutronstudiesofthenabrimpurityinfluenceonmicelleformationintheheavywatertetradecyltrimethylammoniumbromidesystem AT ívanʹkovoí neutronstudiesofthenabrimpurityinfluenceonmicelleformationintheheavywatertetradecyltrimethylammoniumbromidesystem AT íslamovah neutronstudiesofthenabrimpurityinfluenceonmicelleformationintheheavywatertetradecyltrimethylammoniumbromidesystem AT kuklínaí neutronstudiesofthenabrimpurityinfluenceonmicelleformationintheheavywatertetradecyltrimethylammoniumbromidesystem |
| first_indexed |
2025-11-27T08:38:00Z |
| last_indexed |
2025-11-27T08:38:00Z |
| _version_ |
1849932051717816320 |
| fulltext |
L.A. BULAVIN, V.I. GORDELIY, O.I. IVANKOV et al.
NEUTRON STUDIES OF THE NaBr IMPURITY
INFLUENCE ON MICELLE FORMATION IN THE HEAVY
WATER–TETRADECYLTRIMETHYLAMMONIUM
BROMIDE SYSTEM
L.A. BULAVIN,1 V.I. GORDELIY,2, 3 O.I. IVANKOV,1, 2 A.KH. ISLAMOV,2
A.I. KUKLIN2
1Taras Shevchenko National University of Kyiv, Faculty of Physics
(1, Bld., 2, Academician Glushkov Ave., Kyiv 03022, Ukraine)
2I.M. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research
(6, Joliot-Curie Str., Dubna 141980, Russia)
3Institut de Biologie Structurale J.P. Ebel
(41, Jules Horowitz Str., Grenoble F-38027, France)
PACS 61.05.fg
c©2010
Micelle formation in the triple liquid system tetradecyltrimethy-
lammonium bromide–heavy water–NaBr has been studied by means
of small-angle neutron scattering (SANS). The rescaled mean-
spherical approximation by Hayter–Penfold has been used to treat
the small-angle neutron diffraction data on charged micelles. The
dependences of the micelle size and aggregation number on the liq-
uid system temperature and NaBr concentration have been found.
1. Introduction
One of the properties of surfactants in a solution is their
ability to self-organize, the mechanisms of which have
not been studied in full till now. Challenging are the
researches of the influence of the temperature and elec-
trolyte concentration in such a liquid system on the
micelle structure [1]. In work [2], the light scattering
method was used to study the dependence of a varia-
tion of micelle dimensions and shapes on the concentra-
tion of salt added to the liquid system. The authors
showed that, provided the electrolyte concentration was
high, micelles became prolate ellipsoids. The next step
in studying the behavior of such micellar systems was
their research using small-angle neutron scattering [3].
In that work, a possibility for bromine ions to arrange
on the micelle surface or for the micelle head group to
dehydrate under the electrolyte action, which changes
the micelle size, was studied. Our work continues the
researches of the micellar systems of cation surfactant
tetradecyltrimethylammonium bromide (TTABr). The
work aimed at determining the influence of the concen-
tration of an electrolyte added to the liquid system on
the micelle parameters within the temperature interval
25–60 ◦C using the small-angle scattering of thermal
neutrons.
2. Experimental Technique
To find the micelle sizes and the aggregation number [1],
we used the method of SANS. The corresponding experi-
ments were carried out on a YuMO installation [4] in the
two-detector regime [5, 6]. The installation was located
at an IBR-2 pulsed reactor of I.M. Frank Laboratory
of Neutron Physics (the Joint Institute for Nuclear Re-
search, Dubna, Russia). It allowed the researches to be
carried on in the range of transferred wave vectors with
absolute values |q| = (0.07 ÷ 5) nm−1 (or in the range
of neutron wavelengths λ = (0.05 ÷ 0.8) nm). It made
possible the density heterogeneities in the liquid system
under investigation to be measured in the range from 1
to 100 nm. The diagram of YuMO installation for small-
angle neutron scattering is presented in Fig. 1. The basic
installation components are two-reflector system (1), a
reactor zone with moderator (2), chopper (3), first (4)
and second (6) collimators, vacuum pipe (5), thermo-
stat (7), a cartridge with specimens in thermostatting
box (8), a table for specimens (9), vanadium standards
(10), ring detectors with central holes (11 and 12), and
direct beam detector (14).
In the YuMO installation, the absolute value of q-
vector was changed by varying both the wavelength λ
and the angle θ. The main change of q occurred due to
a variation of the neutron wavelength. The angle was
changed by means of two ring He detectors of scattered
neutrons. The neutron wavelength was determined by
the time-of-flight method [7]. The specimens to study
were arranged at a distance of about 18 m from the
288 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3
NEUTRON STUDIES OF THE NaBr IMPURITY INFLUENCE
Fig. 1. Diagram of the YuMO installation for small-angle neutron
scattering at the IBR-2 reactor of JINR (Dubna, Russia)
moderator surface, being imbedded into a special con-
tainer. A computer-assisted thermostat allowed the tem-
perature in the container to be maintained within the
researched temperature interval of 25–60 ◦C to an ac-
curacy of ±0.01 ◦C. During measurements, specimens
in the neutron beam were changed automatically. The
peculiarities of the YuMO installation were central aper-
tures in the scattered-neutron detectors, as well as a
vanadium scatterer that was automatically inserted into
and removed from the neutron beam and served to cali-
brate the scattered radiation. The former allowed unde-
sirable effects produced by long-periodic oscillations of
reactor power to be avoided, the latter made it possible
to obtain the scattering cross-section in absolute units
[4]. A direct beam detector was used to measure the
transmission of objects under investigation.
A neutron diffraction pattern recorded in such a man-
ner is a dependence of the pulse number produced by reg-
istered neutrons in every analyzer channel on the chan-
nel number, which corresponds to either the transit time
or the wavelength of neutrons. Therefore, the neutron
diffraction pattern recorded at the YuMO installation
represents a time scan of the diffraction pattern of ther-
mal neutrons scattered by a specimen.
3. Specimen Fabrication
We fabricated a micellar liquid system, namely, a TTABr
solution in heavy water with a concentration of 9.2 ×
10−4 m.f. (molecular fraction, m.f. = N2/(N1 + N2),
where N1 and N2 are the numbers of water and sur-
factant molecules, respectively). NaBr admixtures were
Fig. 2. SANS dependences for the micellar liquid system TTABr–
heavy water at a temperature of 40 ◦C, the TTABr concentration
9.4 × 10−4 m.f., and various NaBr concentrations: 0 (�), 4.6 ×
10−4 (�), 9.3 × 10−4 (•), 1.9 × 10−3 (◦), 3.7 × 10−3 (+), and
7.6× 10−3 m.f. (N)
added to the studied micellar system to obtain ternary
liquid systems heavy water–TTABr–NaBr with concen-
trations of 4.6×10−4, 9.3×10−4, 1.9×10−3, 3.7×10−3,
7.6× 10−3, and 1.6× 10−2 m.f. To prepare micellar liq-
uid systems of the surfactant, we used dry TTABr pro-
duced by Sigma-Aldrich Co. (a TTABr content of 99%)
and D2O produced by Isotope (Moscow) (a D2O con-
tent of 99.8%). The specimens fabricated were placed in
a Hellma quartz cuvette across a beam of neutrons with
a neutron path length of 1 or 2 mm.
4. Experimental Part
In Fig. 2, we present the SANS curves obtained for
the micellar liquid system TTABr–heavy water with a
TTABr concentration of 9.2× 10−4 m.f. at the temper-
ature t = 40 ◦C and with addition of certain NaBr con-
centrations. The analysis of the curves testifies that the
SANS curves in the liquid systems TTABr–heavy water
demonstrate a peak which corresponds to the intermi-
celle interaction or the presence of a certain short-range
order in the micelle arrangement in the given liquid sys-
tem. An addition of NaBr impurities to the TTABr–
heavy water system changes the character of the inten-
sity curve substantially, namely, the peak gradually dis-
appears. This testifies to the disappearance of the elec-
trostatic interaction between micelles [3]. Figure 2 shows
that, at NaBr concentrations higher than 1.9×10−3 m.f.,
the peak is absent. The subsequent addition of NaBr is
accompanied by a growth of the scattering intensity in
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 289
L.A. BULAVIN, V.I. GORDELIY, O.I. IVANKOV et al.
the range of small q, which evidences the growth of the
size of micellar formations.
5. Experimental Results
The neutron scattering intensity in the liquid system un-
der study can be written down as follows:
I = n〈F 2(q)〉S(q), (1)
where n is the particle concentration, and F (q) is a form-
factor that describes the intensity of neutron scattering
by a single micelle:
F 2(q) =
[∫
(ρ− ρs) exp(iqr)d3r
]2
. (2)
Here, ρ and ρs are the densities of scattering length for
a micelle and the solution, respectively. In formula (1),
S(q) describes the interaction between micelles and cor-
responds to a certain distribution of micelle centers of
masses in space. For the structure factor S(q), we have
[8]
S(q) = 1 + V −1
[∫
(g(r)− 1) exp(iqr)d3r
]
, (3)
where g(r) is the pair correlation function, and V is the
volume per one micelle. In our case, this volume is ap-
proximately equal to 550 Å3 [9].
In the absence of interaction between micelles, S(q) =
1, so that experimental data can be approximated taking
only the formfactor into account.
Provided that micelles formed in the liquid system can
be approximated as ellipsoids of rotation with semiaxes
a, a, and νa, the expression for the formfactor reads [10]
P (q) =
1∫
0
Φ2[qa
√
1 + x2(v2 − 1)]dx, (4)
where Φ(t) = 3(sin(t)− t cos(t))/t3.
If a micelle is a cylinder of radius R and height H, the
formfactor looks like
P (q) = 4
1∫
0
J2
1 (qR
√
1− x2)
(qR
√
1− x2)2
Z2(
qHx
2
)dx, (5)
where Z(t) = sin(t)/t.
The interaction between micelles makes it necessary
to consider the structure factor. To find it, it is nec-
essary to solve the Ornstein–Zernike equation. In work
[13], the authors proposed a method for determining the
structure factor, the rescaled mean-spherical approxima-
tion (RMSA). Let us write down the Ornstein–Zernike
equation:
h(r) = c(r) + nd3
∫
h(|r− r′|)c(r)d3r, (6)
where, according to the RMSA, the boundary conditions
are given by the system of equations{
c(r) = −βVc(r), r > d,
g(r) = 0, r < d,
(7)
In this formula, Vc(r) is the Coulomb repulsion potential
between two charged spherical particles which is given by
the expression
Vc(r) = πεε0d
2ψ2
0 exp[−κ(r − d)]/r, r > d, (8)
where d is the micelle diameter, r the distance between
ions, ε0 the dielectric permittivity of vacuum, ε the di-
electric constant of the medium, κ the inverse Debye
screening length, and
ψ0 =
z
εε0〈d〉(2 + κ〈d〉)
(9)
is the surface potential of a micelle with charge z.
To approximate the SANS data obtained by us for
ternary micellar systems TTABr–heavy water–NaBr, we
used two computer programs: the Fitter program [11]
which does not make allowance for the interaction be-
tween micelles (Fig. 3), and the FISH program [12]
(Fig. 4) which takes such an interaction into account
using the RMSA. Those programs were applied to ob-
tain information on micelle parameters in the following
way: we used the FISH program for concentrations lower
that 1.9 × 10−3 m.f. and the Fitter program for higher
ones. Figures 3 and 4 demonstrate that the model curve
describes the experimental data well. The micelle pa-
rameters obtained by treating the experimental data are
quoted in Table, where a = b and c are the semiaxes
of the ellipsoid of rotation, and Nagg is the number of
surfactant monomers in a micelle, i.e. the aggregation
number.
The analysis of the tabulated data shows that the mi-
celle dimensions and the aggregation number decrease,
as the temperature of the liquid system heavy water–
TTABr grows. At the same time, the addition of salt
brings about the growth of micelle dimensions and an
increase of the aggregation number.
290 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3
NEUTRON STUDIES OF THE NaBr IMPURITY INFLUENCE
Fig. 3. Approximation of SANS data for the ternary liquid system
TTABr–heavy water–NaBr using the FISH computer code (taking
the interaction between micelles into account). The TTABr con-
centration is 9.4 × 10−4 m.f., the NaBr concentration is 0 m.f.:
experiment (circles), resulting theoretical curve (solid curve), the-
oretical formfactor (dotted curve), theoretical structure factor
(dashed curve)
Micelle parameters for the ternary liquid system TTABr–
heavy water–NaBr. The TTABr concentration is 9.4 ×
10−4 m.f
XNaBr, 25 ◦C
10−4 m.f. a = b,Å c,Å Nagg χ2
0 19.9 30.22 95 2.115
4.6 20.45 34.24 113 2.33
9.3 20.58 36.4 120 2.52
19 21.16 37.82 133 2.38
37 18.92 79.50 324 2.95
76 19.21 152.8 642 3.45
40◦C
0 19.34 27.67 83 2.09
4.6 19.88 30.69 96 2.07
9.3 20.00 31.84 101 2.07
19 20.2 32.14 103 4.95
37 20.4 41.74 137 3.35
76 18.62 90.55 370 2.04
60◦C
0 18.57 25.42 70 2.132
4.6 19.05 27.99 81 2.11
9.3 19.26 28.57 85 2.37
19 19.54 31.15 92 1.77
37 19.5 32.18 95 2.05
76 19.52 45.48 134 5.05
Fig. 4. Approximation of SANS data for the ternary liquid system
TTABr–heavy water–NaBr taking no interaction between micelles
into account. The TTABr concentration is 9.4 × 10−4 m.f., the
NaBr concentration is 0.016 m.f.: experiment (circles), resulting
theoretical curve (solid curve)
6. Conclusions
The method of small-angle neutron scattering was
applied to study the influence of salt on the mi-
celle formation in the liquid system heavy water–
tetradecyltrimethylammonium bromide–NaBr in the
temperature interval 25–60 ◦C. The addition of salt to
the liquid system heavy water–TTABr has been shown
to result in the growth of micelle dimensions and the
aggregation number.
1. I.I. Adamenko and L.A. Bulavin, Physics of Liquids and
Liquid Systems (ASMI, Kyiv, 2006) (in Ukrainian).
2. T. Imae and S. Ikeda, J. Phys. Chem. 90, 5216 (1986).
3. G. Eckold and N. Gorski, Colloids Surf. A 183, 361
(2001).
4. Yu.M. Ostanevich, Makromol. Chem. Macromol. Symp.
15, 91 (1988).
5. A.I. Kuklin et al., Poverkhnost 6, 74 (2006).
6. A.I. Kuklin et al., Neutron News 16, 16 (2005).
7. L.A. Bulavin, T.V. Karmazina, V.V. Klepko et al., Neu-
tron Spectroscopy of Condensed Matters (Akademperi-
odyka, Kyiv, 2005) (in Ukrainian).
8. J. Teixeira, in Structure and Dynamics of Strongly Inter-
acting Colloids and Supramolecular Aggregates in Solu-
ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3 291
L.A. BULAVIN, V.I. GORDELIY, O.I. IVANKOV et al.
tion, edited by S.H. Chen, J.S. Huang, and P. Tartaglia
(Kluwer, Dordrecht, 1992), p. 635.
9. R. Zana, C. Picot, and R. Duplessix, J. Colloid Interface
Sci. 93, 43 (1983).
10. D.I. Svergun and L.A. Feigin, X-ray and Neutron Small-
Angle Scattering (Nauka, Moscow, 1986) (in Russian).
11. A.G. Soloviev et al., http://wwwinfo.jinr.ru/ pro-
grams/jinrlib/fitter/index.html.
12. R. Heenan, http://www.isis.rl.ac.uk/largescale/loq/
canSAS/FISH_manual.pdf.
13. J. Hansen and J. Hayter, Mol. Phys. 46, 651 (1982).
Received 18.11.09.
Translated from Ukrainian by O.I. Voitenko
НЕЙТРОННI ДОСЛIДЖЕННЯ ВПЛИВУ ДОМIШОК NaBr
НА МIЦЕЛОУТВОРЕННЯ В СИСТЕМI ВАЖКА
ВОДА–ТЕТРАДЕЦИЛТРИМЕТИЛАМОНIЙ
БРОМIД
Л.А. Булавiн, В.I. Горделiй, О.I. Iваньков, А.Х. Iсламов,
А.I. Куклiн
Р е з ю м е
Методом малокутового розсiяння нейтронiв дослiджено фор-
мування мiцел в потрiйних рiдинних системах тетрадецилтри-
метиламонiй бромiд–важка вода–NaBr. Данi про малокутову
дифракцiю нейтронiв на заряджених мiцелах було обробле-
но у наближеннi моделi перемасштабованої середньосферичної
апроксимацiї Хайтера–Пенфольда. Визначено залежнiсть роз-
мiрiв мiцел та числа агрегацiї вiд температури рiдинної систе-
ми та концентрацiї NaBr.
292 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 3
|