Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля

В рамках моделi критичного стану розглянуто питання застосовностi отриманих Клемом i Санчезом спiввiдношень для змiнної (ac) магнiтної сприйнятливостi тонких плiвок надпровiдника 2-го роду у випадку наявностi постiйного магнiтного поля, перпендикулярного площинi плiвки. Обговорено питання “пам’ятi”...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Ковальчук, Д.Г., Чорноморець, М.П.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Відділення фізики і астрономії НАН України 2010
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/13431
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля / Д.Г. Ковальчук, М.П. Чорноморець // Укр. фіз. журн. — 2010. — Т. 55, № 4. — С. 417-423. — Бібліогр.: 11 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-13431
record_format dspace
spelling Ковальчук, Д.Г.
Чорноморець, М.П.
2010-11-08T17:16:22Z
2010-11-08T17:16:22Z
2010
Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля / Д.Г. Ковальчук, М.П. Чорноморець // Укр. фіз. журн. — 2010. — Т. 55, № 4. — С. 417-423. — Бібліогр.: 11 назв. — укр.
2071-0194
PACS 74.25.Ha, 74.78.-w
https://nasplib.isofts.kiev.ua/handle/123456789/13431
537.9
В рамках моделi критичного стану розглянуто питання застосовностi отриманих Клемом i Санчезом спiввiдношень для змiнної (ac) магнiтної сприйнятливостi тонких плiвок надпровiдника 2-го роду у випадку наявностi постiйного магнiтного поля, перпендикулярного площинi плiвки. Обговорено питання “пам’ятi” зразка i вплив передiсторiї змiн магнiтного поля на поточний стан зразка. Показано, що ac компонента магнiтного моменту, а, отже, i амплiтуди гармонiк ac магнiтної сприйнятливостi, встановлюються протягом одного перiоду ac магнiтного поля незалежно вiд передiсторiї.
В рамках модели критического состояния рассмотрен вопрос применимости полученных Клемом и Санчезом соотношений для переменной (ac) магнитной восприимчивости тонких пленок сверхпроводника 2-го рода в случае наличия постоянного магнитного поля, перпендикулярного плоскости пленки. Обсужден вопрос “памяти” образца и влияния предыстории изменений магнитного поля на текущее состояние образца. Показано, что ac компонента магнитного момента, а, значит, и амплитуды гармоник ac магнитной восприимчивости, устанавливаются на протяжении одного периода ac магнитного поля независимо от предыстории.
The applicability of relations obtained by Clem and Sanchez for the ac magnetic susceptibility of type-II superconductor thin films to the case where an additional constant magnetic field is applied perpendicularly to the film has been analyzed in the framework of the critical state model. The issues concerning the sample “memory” and the influence of the magnetic field change prehistory on the current sample state have been discussed. It has been shown that the ac component of the magnetic moment and, hence, the amplitudes of ac magnetic susceptibility harmonics are established within one period of the ac magnetic field irrespective of the field prehistory.
Автори вдячнi С.М. Рябченку за обговорення та кориснi поради. Робота пiдтримана цiльовою темою Президiї НАН України ВЦ/139-38.
uk
Відділення фізики і астрономії НАН України
Тверде тіло
Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля
Перемагничивание тонкого диска сверхпроводника 2-го рода при наличии постоянного магнитного поля
Magnetization Reversal of a Type-II Superconductor Thin Disk under the Action of a Constant Magnetic Field
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля
spellingShingle Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля
Ковальчук, Д.Г.
Чорноморець, М.П.
Тверде тіло
title_short Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля
title_full Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля
title_fullStr Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля
title_full_unstemmed Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля
title_sort перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля
author Ковальчук, Д.Г.
Чорноморець, М.П.
author_facet Ковальчук, Д.Г.
Чорноморець, М.П.
topic Тверде тіло
topic_facet Тверде тіло
publishDate 2010
language Ukrainian
publisher Відділення фізики і астрономії НАН України
format Article
title_alt Перемагничивание тонкого диска сверхпроводника 2-го рода при наличии постоянного магнитного поля
Magnetization Reversal of a Type-II Superconductor Thin Disk under the Action of a Constant Magnetic Field
description В рамках моделi критичного стану розглянуто питання застосовностi отриманих Клемом i Санчезом спiввiдношень для змiнної (ac) магнiтної сприйнятливостi тонких плiвок надпровiдника 2-го роду у випадку наявностi постiйного магнiтного поля, перпендикулярного площинi плiвки. Обговорено питання “пам’ятi” зразка i вплив передiсторiї змiн магнiтного поля на поточний стан зразка. Показано, що ac компонента магнiтного моменту, а, отже, i амплiтуди гармонiк ac магнiтної сприйнятливостi, встановлюються протягом одного перiоду ac магнiтного поля незалежно вiд передiсторiї. В рамках модели критического состояния рассмотрен вопрос применимости полученных Клемом и Санчезом соотношений для переменной (ac) магнитной восприимчивости тонких пленок сверхпроводника 2-го рода в случае наличия постоянного магнитного поля, перпендикулярного плоскости пленки. Обсужден вопрос “памяти” образца и влияния предыстории изменений магнитного поля на текущее состояние образца. Показано, что ac компонента магнитного момента, а, значит, и амплитуды гармоник ac магнитной восприимчивости, устанавливаются на протяжении одного периода ac магнитного поля независимо от предыстории. The applicability of relations obtained by Clem and Sanchez for the ac magnetic susceptibility of type-II superconductor thin films to the case where an additional constant magnetic field is applied perpendicularly to the film has been analyzed in the framework of the critical state model. The issues concerning the sample “memory” and the influence of the magnetic field change prehistory on the current sample state have been discussed. It has been shown that the ac component of the magnetic moment and, hence, the amplitudes of ac magnetic susceptibility harmonics are established within one period of the ac magnetic field irrespective of the field prehistory.
issn 2071-0194
url https://nasplib.isofts.kiev.ua/handle/123456789/13431
citation_txt Перемагнічування тонкого диска надпровідника 2-го роду за наявності постійного магнітного поля / Д.Г. Ковальчук, М.П. Чорноморець // Укр. фіз. журн. — 2010. — Т. 55, № 4. — С. 417-423. — Бібліогр.: 11 назв. — укр.
work_keys_str_mv AT kovalʹčukdg peremagníčuvannâtonkogodiskanadprovídnika2goroduzanaâvnostípostíinogomagnítnogopolâ
AT čornomorecʹmp peremagníčuvannâtonkogodiskanadprovídnika2goroduzanaâvnostípostíinogomagnítnogopolâ
AT kovalʹčukdg peremagničivanietonkogodiskasverhprovodnika2gorodaprinaličiipostoânnogomagnitnogopolâ
AT čornomorecʹmp peremagničivanietonkogodiskasverhprovodnika2gorodaprinaličiipostoânnogomagnitnogopolâ
AT kovalʹčukdg magnetizationreversalofatypeiisuperconductorthindiskundertheactionofaconstantmagneticfield
AT čornomorecʹmp magnetizationreversalofatypeiisuperconductorthindiskundertheactionofaconstantmagneticfield
first_indexed 2025-11-25T23:53:50Z
last_indexed 2025-11-25T23:53:50Z
_version_ 1850589028872617984
fulltext SOLID MATTER ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 4 415 MAGNETIZATION REVERSAL OF A TYPE-II SUPERCONDUCTOR THIN DISK UNDERTHE ACTIONOF ACONSTANTMAGNETIC FIELD D.G. KOVALCHUK, M.P. CHORNOMORETS Institute of Physics, Nat. Acad. of Sci. of Ukraine (46, Nauky Ave., Kyiv 03680, Ukraine; e-mail: kovalch@ iop. kiev. ua ) PACS 74.25.Ha, 74.78.-w c©2010 The applicability of relations obtained by Clem and Sanchez for the ac magnetic susceptibility of type-II superconductor thin films to the case where an additional constant magnetic field is applied perpendicularly to the film has been analyzed in the framework of the critical state model. The issues concerning the sample “mem- ory” and the influence of the magnetic field change prehistory on the current sample state have been discussed. It has been shown that the ac component of the magnetic moment and, hence, the amplitudes of ac magnetic susceptibility harmonics are established within one period of the ac magnetic field irrespective of the field prehistory. 1. Introduction One of the techniques aimed at determining the criti- cal current density in high-temperature superconductor thin films is the noncontact measurement of their mag- netic susceptibility in an alternating field (the ac mag- netic susceptibility). It is based on the magnetization reversal model for a superconductor of the second kind which was theoretically substantiated in works [1–3]. In work [3], Clem and Sanchez obtained a relation for the ac magnetic susceptibility of a thin disk provided that only an ac magnetic field acts on the disk (the CS-model). However, the further experimental researches of the crit- ical current density in thin superconductor films allowed the scope of the CS relation to be extended upon the results of measurements in a dc magnetic field as well [4–9]. In the literature, there are only collateral (indi- rect) verifications that such an extension is valid. The authors of work [4] believe that the imposed constant field does not change the expression for ac magnetic sus- ceptibility obtained in work [3], if the critical current density weakly depends on the magnetic field. A simi- lar conclusion can be drawn from Brandt’s remark [10] that, in the case of a periodic field with slowly grow- ing amplitude, a Bean superconductor (i.e. a supercon- ductor described in the framework of the critical state model developed by Bean [11]) “reminds” only the last cycle of magnetization reversal. The presented specu- lations may intuitively seem plausible; however, their validity is not evident a priori, and their more rigor- ous substantiation is required. The absence of such a substantiation in the literature forces experimenters to carry out additional checks of the CS-model appli- cability under that or another experimental condition [4, 5, 7]. For ordinary magnets, the amplitude of local mag- netization in a magnetic field is almost uniform over the specimen volume in the case where the specimen shape is an ellipsoid of rotation; in this case, the magne- tization is a characteristic of the medium (substance). The hysteresis phenomenon consists in an ambiguity of the local magnetization dependence on the external field. For a superconductor of the second kind in a magnetic field, primary is the spatial distribution of the screening current density on a macroscopic scale (in re- ality, on the specimen-size scale, whatever the specimen shape). The current distribution is governed, in par- ticular, by the entry/exit of Abrikosov vortices; and the magnetic moment and the volume-averaged mag- netization are integral characteristics of the specimen, being the derivatives of the current distribution. As a consequence, the hysteresis dependence of supercon- ductor magnetic characteristics on the external mag- netic field turns out to be a complicated indirect one. This circumstance makes an answer to the question on D.G. KOVALCHUK, M.P. CHORNOMORETS the specimen “memory”, i.e. on the influence of a se- quence of external conditions (“prehistory”) imposed on the specimen on its state, nonevident a priori. This prehistory includes variations of the applied magnetic field, by starting from the moment, when the speci- men is in the ZFC (zero field cooling) state, i.e. in the state obtained by cooling down the specimen in the zero external magnetic field from the temperature T > Tc, where Tc is the critical temperature of transi- tion into the superconducting state. The key parame- ters of the CS model are the external magnetic field and the critical current density, the latter being a function of the temperature. Therefore, the “prehistory” also in- cludes the sequence of temperature regimes applied to the specimen after the magnetic field having been im- posed. In this context, Brandt’s statement given above is valid only partly, and an additional explanation is re- quired. For instance, if the specimen state – i.e. the spatial distributions of the current density and the mag- netic field in it – at a definite time moment is meant, then the Bean specimen, by demonstrating a constant criti- cal current, always “remembers” the maximal, by the magnitude, value of the applied magnetic field and its sign that occurred in the sample prehistory. In general, depending on the prehistory, the distributions of cur- rent density and magnetic field over the specimen can be rather complicated, but a number of parameters which are determined in the CS model are really invariable, if a constant magnetic field is imposed. In this work, the description of the magnetization re- versal process in a thin disk made up of a type-II super- conductor in an ac magnetic field which was developed in works [1–3] has been extended to include the presence of a dc magnetic field directed perpendicularly to the disk plane. The matter was considered in the framework of the same assumptions that were formulated and used in work [3]. An algorithm for writing down the solutions for the radial distribution of azimuthal current density in a thin disk in the case of a multiple change of the exter- nal magnetic field variation direction (increase/decrease) has been formulated. Issues concerning what exactly the specimen “forgets” and under which conditions this takes place have been discussed. The consideration demon- strates that, after the temperature and the amplitude of an ac field have stabilized, the vortex entry/exit depth, as well as all variable components of specimen character- istics, including the ac magnetic susceptibility, acquire their values within a single period of ac field oscillations irrespective of the field prehistory and whether a dc mag- netic field is imposed or not. 2. Results and Their Discussion Consider a type-II superconductor specimen fabricated in the form of a thin disk of radius R and thickness d � R. The corresponding London penetration depth λ < d (or, if λ > d, Λ = λ2/d � R). The specimen is cooled down in the ZFC regime. A magnetic field which is parallel to the z-axis is applied perpendicularly to the specimen plane. The field changes quasistatically. We assume that the critical current density Jc does not de- pend on the magnetic field strength. If the external field h applied to the specimen is low (lower than the corre- sponding first critical field), the specimen behaves like a specimen made up of a superconductor of the first kind: the magnetic field does not penetrate into the specimen depth (but a near-surface region of the characteristic thickness λ). The external field is completely compen- sated in the specimen bulk by the field of the azimuthal Meissner current, the distribution of which over the disk radius is [1] J(ρ) = −4h πd ρ√ R2 − ρ2 , (1) where ρ is the distance from the disk center. Hereafter, a current creating a magnetic field which is directed along the z-axis at the specimen center is considered as posi- tive. When the external field exceeds the corresponding first critical field, Hc1s, vortices start to enter the specimen. The value of the “critical field for a specimen” corre- sponds to an “internal” field in it. The latter is equal to the external field minus the demagnetization one, and, in the case of a thin disk, is much lower than the first crit- ical field for the disk material, Hc1. In particular, in the case λ < d� R, we have Hc1s ≈ (d/R)1/2Hc1. Pinning centers, if they exist in the specimen, pin the vortices. To describe the vortex entry into the specimen, the crit- ical state model [11] is widely applied. According to it, when the applied field increases, vortices enter the spec- imen and reduce the local current density to the level of critical current density. The vortex entry depth depends on the critical current density Jc which is determined by the conditions of vortex pinning. Hence, at the stage where the field h monotonously grows from zero, two re- gions can be distinguished in the specimen. These are an external ring – in which there are vortices, and the current density is equal to −Jc – and an internal circle of radius a(h) – in which there are no vortices, so that the field is equal to zero. As was shown in work [1], the 416 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 4 MAGNETIZATION REVERSAL OF TYPE-II SUPERCONDUCTOR distribution of the current density in this case looks like J(ρ, h) =  −( 2Jc π ) tan−1 [ ρ R √ R2−a(h)2 a(h)2−ρ2 ] , ρ ≤ a(h), −Jc, a(h) ≤ ρ ≤ R, (2) where a(x) = R cosh(x/Hd) , Hd = Jcd 2 . (2a) The specimen magnetization can be determined using the current density distribution by the formula M = 1 V πd R∫ 0 ρ2J (ρ) dρ, (3a) where V is the specimen volume. The current with distribution (2) creates the magne- tization [1] M(h) = −χ0hS (h/Hd) , (3b) where S (x) = 1 2x [ cos−1 ( 1 coshx ) + sinhx cosh2 x ] , χ0 = 8R 3πd . (3c) Consider now the case where the field, having reached the value H0 at the stage of monotonous growth, de- creases to the current value h. In the course of such a re- duction of the field in the specimen, vortices change their distribution. Formally, this process can be described as an entry of vortices into the specimen, the sign of which is opposite to the sign of those vortices entered at the stage of field growth. In the framework of the critical state model, the entry of those vortices brings about a change of the current density to the value +Jc in an external ring, the width of which is equal to the vortex entry depth. Taking into account that the distribution of the current density and, therefore, the field in the inter- nal circle remain invariable at that, the authors of work [2] showed that the current density distribution at this stage can be represented as a superposition of two cur- rents, the both looking like expression (2). One of them arises owing to the switching-on of the field H0, and the other is induced by a subsequent variation of the field in the opposite direction by the value Δh1 = H0 − h: J1(ρ, h) = J(ρ,H0)− 2J ( ρ, Δh1 2 ) . (4) In this case, the quantity a ( Δh1 2 ) defines the radius of a circle, in which the field remains invariable (vortices do not enter this circle at the stage of field reduction). This circle, in turn, consists of an internal circle of ra- dius a(H0), in which the field is absent, and a ring with internal and external radii a(H0) and a ( Δh1 2 ) , respec- tively, where the field distribution was attained at the previous stage. The coefficient in the second summand reflects the fact that the current density at the specimen edge changes by 2Jc, when the field changes its direction (the field “reversal”). The formula given remains valid as long as h ≥ −H0. At h = −H0, the current distribution looks the same as it was at h = H0, but with the opposite sign. If the field diminishes further, vortices penetrate more deeply into the specimen than they did at the first stage. In so doing, the specimen “forgets” about the first stage, and the current distribution is described by for- mula (2) with the corresponding substitution of Jc by −Jc, as if the field at the second stage changed from the ZFC state rather than +H0. In the case where the field starts to increase again after having reached some value H1 > −H0, the correspond- ing distribution of the current density can be written down analogously as J2(ρ, h) = J1(ρ,H1) + 2J ( ρ, Δh2 2 ) = = J(ρ,H0)− 2J ( ρ, H0 −H1 2 ) + 2J ( ρ, Δh2 2 ) , (5) where Δh2 = h −H1 is the difference between the cur- rent field value and the field value at the last reversal of a field variation direction. Similarly to the previous case, the field distribution that arose at the previous stages remains invariable in the circle of radius a ( Δh2 2 ) , whereas the current density in the external ring of width R−a ( Δh2 2 ) is critical. Formula (5) also remains correct until the depth of vortex entry at this stage exceeds the entry depth at the previous stage, i.e. as long as h ≤ H0. When the value h = H0 is attained, the last two sum- mands in Eq. (5) are mutually compensated, so that the specimen “forgets” about the last two stages of field vari- ation. Hence, one can create an algorithm for constructing a formula which would describe the current density distri- bution in the general case and at an arbitrary sequence of quasistatic variations of the field h after the ZFC state. Let the field, alternately increasing and decreasing in the course of such variations, attain the values H0, H1, H2,. . . , HN at the “reversal” points. Introducing the ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 4 417 D.G. KOVALCHUK, M.P. CHORNOMORETS notation Ji−1(ρ) for the current distribution over the specimen at the time moment when the field achieved the “reversal” point h = Hi, one can write down the following recurrent formula for the current density dis- tribution, provided that the field varies monotonously after this point: Ji(ρ, h) = Ji−1(ρ)± 2J ( ρ, Δih 2 ) , (6) where Δih = |h − Hi|. In this case, the absolute value of current density in the external ring of the width R − a ( Δih 2 ) is equal to the critical current density, and the field in the circle of radius a ( Δih 2 ) remains invari- able and equal to that created at the previous stages. At the center, there is a circle, where the field equals zero. The radius of this circle, a(Hmax), is determined by the maximal, by the absolute value, field Hmax ap- plied to the specimen. The sign before the second term in Eq. (6) is determined by the field variation direction after the point h = Hi: it is plus, if the field increases, and minus, if it decreases. This formula remains correct until the vortex entry depth attained at this stage of field variation exceeds the corresponding value attained at the previous stage. If there are no stages with monotonous field variation, at which the vortex entry depth exceeds that reached at the previous stage, one may say that the specimen “remembers” the whole history of imposed external magnetic fields that took place after the ZFC state, and formula (6) can be presented as the sum JN (ρ) = J(ρ,H0) + 2 N∑ i=1 (−1)iJ ( ρ, ΔiH 2 ) , (7) where ΔiH = |Hi −Hi−1|. If vortices penetrate more deeply into the specimen at the j-th stage than at the previous one, two summands (j-th and (j − 1)-th) disappear from this sum (i.e. the specimen “forgets” about the corresponding stages), and Hj−2 in the (j−2)-th term is to be substituted byHj . At the same time, if the vortex penetration depth becomes larger at some stage than it was at every previous stage, all terms that describe stages before this one disappear from the sum. This means that the field maximal by its absolute value can be taken as H0, and all previous stages of field variation can be excluded from considera- tion. Let a magnetic field h = HDC + hac, where HDC > 0 is a constant field and hac is a current value of an ac field that oscillates between its peak values ±h0, be applied to the specimen perpendicularly to its plane. When the total field achieves the value HDC + h0, a certain distri- bution of current density, which we denote as Jmax(ρ), is established in the specimen. Provided that no field higher than HDC + h0 was applied to the specimen be- fore, the distribution Jmax(ρ) is determined by formulas (2) and (2a), in which the vortex-free circle radius is equal to a(HDC + h0). Otherwise, the current density distribution Jmax(ρ) depends on the field variation his- tory before the field reaches the value HDC + h0. If the total field diminishes further from HDC + h0 to HDC − h0, the current density distribution is described by formula (6): J(ρ, h) = Jmax(ρ)− 2J ( ρ, h0 − hac 2 ) . (8a) At the next stage of field growth from HDC − h0 to HDC + h0, the current density distribution looks like J(ρ, h) = Jmax(ρ)− 2J ( ρ, h0) + 2J(ρ, h0 + hac 2 ) . (8b) When the field achieves the value HDC+h0, the last two summands in Eq. (8b) become mutually compensated, the current density distribution coincides with Jmax(ρ), and formula (8a) becomes applicable again at the next stage where the field decreases. The maximal depth, to which vortices of different signs will alternately enter at subsequent hac-oscillations – i.e. the width of the ex- ternal ring, within limits of which a redistribution of the field in the specimen will take place – will be determined by only the varying part of the external field. Namely, it will be equal to R− a(h0), whereas the magnetic field within the limits of the circle ρ < a(h0) will remain invariable. At the same time, the current density distri- bution will change in the circle ρ < a(h0) too, tracing a current position of the vortex penetration depth a (see formula (2)). Substituting Eqs. (8a) and (8b) into Eq. (3a) and de- noting the specimen magnetization at HDC + h0 and HDC−h0 as Mmax and Mmin, respectively, we obtain the following formula for magnetization at the stage where the ac field decreases: M−(h) = πd V R∫ 0 ρ2Jmax (ρ) dρ− −πd V R∫ 0 ρ22J ( ρ, Δ−h 2 ) dρ = Mmax−2M ( Δ−h 2 ) , (9a) 418 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 4 MAGNETIZATION REVERSAL OF TYPE-II SUPERCONDUCTOR where Δ−h = h0 − hac. Accordingly, at the stage where the ac field increases, we have M+(h) = πd V R∫ 0 ρ2(Jmax (ρ)− 2J(ρ, h0))dρ+ + πd V R∫ 0 ρ22J ( ρ, Δ+h 2 ) dρ = Mmin +2M ( Δ+h 2 ) , (9b) where Δ+h = h0 + hac. Both quantities Δ−h and Δ+h stand for a difference between the current field value at the corresponding stage and its value at the last field “re- versal”, and both do not depend on HDC . The formulas obtained allow two basic conclusions to be drawn. First, the identical dependences of a magnetization change on the field variation at the stages of field decrease and in- crease leads to the symmetry of a hysteresis loop with respect to the point ( HDC , Mmin+Mmax 2 ) . Second, the dependence of the variable part of the magnetization on only the ac field means that the hysteresis loop shape does not depend on the dc magnetic field. In work [3], an interrelation between the critical cur- rent density and the dependence of complex magnetic susceptibility harmonics of a thin-disk-shaped specimen on the ac magnetic field amplitude h0 h(t) = h0 cos(ωt) directed perpendicularly to the disk plane was consid- ered. The harmonics of the real and imaginary parts of the ac magnetic susceptibility are defined by the formu- las χ′n = ω πh0 T∫ 0 M(t) cos(nωt)dt, (10a) χ′′n = ω πh0 T∫ 0 M(t) sin(nωt)dt. (10b) Substituting expressions (9a) and (9b) into them, we obtain that, owing to the averaging over the period of the ac field, those components of the magnetic moment of a specimen that depend on the dc field magnitude do not make any contribution to harmonic amplitudes, and, therefore, the latter depend only on the ac field strength. When applying the CS model to the description of pro- cesses in specimens, the issue concerning the influence of a prehistory of variations of the dc and ac components of the magnetic field, without returning to the ZFC state, on the ultimate results is of importance. Every change of the applied field is accompanied by a variation of the az- imuthal current density distribution in a specimen and, as a consequence, by a variation of the magnetic moment of the specimen. As a result, after a number of reversals of the applied field variation direction, a quite compli- cated distribution of current density over the specimen, which is described by formula (7), can emerge. However, the actual state of the specimen can depend not only on the prehistory of magnetic field changes, but also on the temperature by means of the temperature in- fluence on the critical current density. In the case where the dc field is constant, and the critical current density increases – e.g., as a result of temperature reduction – the external field at the center of a specimen remains completely compensated by the existing current distri- bution, and the current density in the specimen does not exceed the critical value anywhere. Hence, neither new vortices enter the specimen, nor a redistribution of vortices takes place in it. Therefore, the growth of the critical current density is not accompanied by a change of the current and field distributions in the specimen that existed at that moment. However, the conditions for the vortex motion do change, so that formula (7) loses its validity for the description of subsequent variations of the magnetic field. In the case where the temperature grows, provided that the field is constant, which results in a reduction of the critical current density, the motion of those vortices which have entered the specimen at the previous stage of field variation, becomes restored, and the entry of new ones continues. Vortices enter the specimen, move to- ward its center, and expand the external ring formed at the previous stage until the current density in this ring falls down to the actual critical value. In this case, the formulas presented above lose their applicability again. Though the influence of the prehistory of critical cur- rent density variations on the specimen state can also be considered in the framework of the CS-model formal- ism, this problem, however, is not the subject of this work. Concerning the issue of the specimen “memory” at a constant critical current density, one may assert that, at any variations of the applied field, there will re- main a vortex-free circle at the center of the specimen, the radius of which will be determined by the maximal value of a field applied to the specimen. The distribution of the current density in the specimen can be rather complicated. Nevertheless, as was shown above, when both the ac and dc fields are simultane- ously imposed perpendicularly to the specimen plane, the current density distribution, as well as the magnetic ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 4 419 D.G. KOVALCHUK, M.P. CHORNOMORETS moment, can be divided into two components. One of them does not depend on the current value of the ac field (though it depends both on the magnitude and the pre- history of the dc field), and the other depends only on the amplitude and the actual value of the ac field. There- fore, after the maximal, by magnitude, field – i.e. the sum of the constant and alternating components – has been reached, the current density distribution changes cyclically with a period equal to that of the ac compo- nent of the applied field. This means that the prehistory of establishing the dc field or the temperature can affect the results of determination of the variable part of the magnetic moment within one period of the ac magnetic field only. In view of the fact that the relations of the CS model are widely used for the interpretation of experimental re- sults, it should be noted that, in this work, the subject of consideration was an answer to the theoretical ques- tion “What will happen, if a constant magnetic field is imposed on the specimen, provided that the considera- tion is carried out in the framework of the Bean critical state model and Clem and Sanchez’s additional assump- tions are made?” An answer to another question, “Which accuracy does the CS model provide for the descrip- tion of processes in real specimens?”, does not basically depend on adding a dc magnetic field. This question requires a separate consideration in every experimen- tal situation, so that it has not been analyzed in this work. 3. Conclusions Hence, the Bean specimen always “remembers” the high- est value of applied magnetic field in its prehistory. Al- though after multiple changes of the applied field or tem- perature have been made, the specimen state can be de- scribed by rather complicated distributions of current density and magnetic field in it, the magnetic moment of the specimen can be divided into two components not later than in the applied ac field period. One of them depends on the dc field and can partly “remember” the prehistory. It does not depend on the actual value of the ac field. The other depends only on the ac field (its amplitude and the actual value). In the framework of the critical state model, the rela- tions obtained by Clem and Sanchez for the ac mag- netic susceptibility of a thin disk do not change, if a constant component of the magnetic field directed perpendicularly to the disk plane is added. Conse- quently, they can be used in experimental researches aimed at studying the dependence of the critical cur- rent density on the magnetic field in cases where this dependence can be neglected (the interval of to- tal field variation within the period of ac field oscil- lations is narrow enough). The reliability of the re- sults obtained turns out to be the same as that al- lowed by the CS model for the description of pro- cesses in real specimens without imposing a constant field. The authors are grateful to S.M. Ryabchenko for the discussion and the useful advice. The work was sup- ported in the framework of target project VTs/130-38 of the Presidium of the NAS of Ukraine. 1. P.N. Mikheenko and Yu.E. Kuzovlev, Physica C 204, 229 (1993). 2. J. Zhu, J. Mester, J. Lockhart, and J. Turneaure, Physica C 212, 216 (1993). 3. J.R. Clem and A. Sanchez, Phys. Rev. B 50, 9355 (1994). 4. E. Mezzetti, R. Gerbaldo, G. Ghigo, L. Gozzelino, B. Mi- netti, C. Camerlingo, A. Monaco, G. Cuttone, and A. Ro- velli, Phys. Rev. B 60, 7623 (1999). 5. Yu.V. Fedotov, S.M. Ryabchenko, E.A. Pashitskii, A.V. Semenov, V.I. Vakaryuk, V.M. Pan, and V.S. Flis, Fiz. Nizk. Temp. 28, 245 (2002). 6. M.P. Chernomorets, D.G. Kovalchuk, S.M. Ryabchenko, A.V. Semenov, and E.A. Pashitskii, Fiz. Nizk. Temp. 32, 1096 (2006). 7. A.I. Kosse, A.Yu. Prokhorov, V.A. Khokhlov, G.G. Lev- chenko, A.V. Semenov, D.G. Kovalchuk, M.P. Cher- nomorets, and P.N. Mikheenko, Supercond. Sci. Technol. 21, 075015 (2008). 8. B.J. Jönsson-Åkerman, K.V. Rao, and E.H. Brandt, Phys. Rev. B 60, 14913 (1999). 9. J.J. Åkerman, S.H. Yunand, U.O. Karlsson, and K.V. Rao, Phys. Rev. B 64, 184520 (2001). 10. E.H. Brandt, Phys Rev. B 55, 14513 (1997). 11. C.P. Bean, Phys. Rev. Lett. 8, 250 (1962). Received 28.11.08. Translated from Ukrainian by O.I. Voitenko ПЕРЕМАГНIЧУВАННЯ ТОНКОГО ДИСКА НАДПРОВIДНИКА 2-ГО РОДУ ЗА НАЯВНОСТI ПОСТIЙНОГО МАГНIТНОГО ПОЛЯ Д.Г. Ковальчук, М.П. Чорноморець Р е з ю м е В рамках моделi критичного стану розглянуто питання за- стосовностi отриманих Клемом i Санчезом спiввiдношень для змiнної (ac) магнiтної сприйнятливостi тонких плiвок надпро- вiдника 2-го роду у випадку наявностi постiйного магнiтного 420 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 4 MAGNETIZATION REVERSAL OF TYPE-II SUPERCONDUCTOR поля, перпендикулярного площинi плiвки. Обговорено питання “пам’ятi” зразка i вплив передiсторiї змiн магнiтного поля на поточний стан зразка. Показано, що ac компонента магнiтного моменту, а, отже, i амплiтуди гармонiк ac магнiтної сприйня- тливостi, встановлюються протягом одного перiоду ac магнi- тного поля незалежно вiд передiсторiї. ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 4 421