Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear

High-performance engineering polymers that ensure the desired properties for journal bearings and give good wear results are investigated. In this study, microstructure properties of polymer-based particle reinforced PTFE composite bearings have been determined by optical and SEM wear surface ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Фізико-хімічна механіка матеріалів
Datum:2015
Hauptverfasser: Ünlü, B.S., Uzkut, M., Pi̇nar, A.M., Özdi̇n, K.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-механічний інститут ім. Г.В. Карпенка НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/134743
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear / B.S. Ünlü, M. Uzkut, A.M. Pi̇nar, K. Özdi̇n // Фізико-хімічна механіка матеріалів. — 2015. — Т. 51, № 2. — С. 48-52. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-134743
record_format dspace
spelling Ünlü, B.S.
Uzkut, M.
Pi̇nar, A.M.
Özdi̇n, K.
2018-06-14T07:53:58Z
2018-06-14T07:53:58Z
2015
Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear / B.S. Ünlü, M. Uzkut, A.M. Pi̇nar, K. Özdi̇n // Фізико-хімічна механіка матеріалів. — 2015. — Т. 51, № 2. — С. 48-52. — Бібліогр.: 30 назв. — англ.
0430-6252
https://nasplib.isofts.kiev.ua/handle/123456789/134743
High-performance engineering polymers that ensure the desired properties for journal bearings and give good wear results are investigated. In this study, microstructure properties of polymer-based particle reinforced PTFE composite bearings have been determined by optical and SEM wear surface images.
Вивчено спеціальні полімери підвищеної довговічності, які можуть забезпечити бажані властивості для буксових підшипників, зокрема, зносотривкість. За допомогою оптичної та електронної мікроскопії досліджено мікроструктурні властивості матеріалів на політетрафторетиленовій основі після зношування.
Изучены специальные полимеры повышенной долговечности, которые могут обеспечить желаемые свойства для буксовых подшипников, в частности, износостойкость. С помощью оптической и электронной микроскопии исследованы микроструктурные свойства материалов на политетрафторэтиленовой основе после износа.
Acknowledgement. I would like to thank Ersel Obuz for editing the language of the manuscript.
en
Фізико-механічний інститут ім. Г.В. Карпенка НАН України
Фізико-хімічна механіка матеріалів
Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear
Мікроструктурні властивості наповнених композиційних підшипників на політетрафторетиленовій основі після зношування
Микроструктурные свойства наполненных композиционных подшипников на политетрафторэтиленовой основе после износа
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear
spellingShingle Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear
Ünlü, B.S.
Uzkut, M.
Pi̇nar, A.M.
Özdi̇n, K.
title_short Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear
title_full Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear
title_fullStr Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear
title_full_unstemmed Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear
title_sort microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear
author Ünlü, B.S.
Uzkut, M.
Pi̇nar, A.M.
Özdi̇n, K.
author_facet Ünlü, B.S.
Uzkut, M.
Pi̇nar, A.M.
Özdi̇n, K.
publishDate 2015
language English
container_title Фізико-хімічна механіка матеріалів
publisher Фізико-механічний інститут ім. Г.В. Карпенка НАН України
format Article
title_alt Мікроструктурні властивості наповнених композиційних підшипників на політетрафторетиленовій основі після зношування
Микроструктурные свойства наполненных композиционных подшипников на политетрафторэтиленовой основе после износа
description High-performance engineering polymers that ensure the desired properties for journal bearings and give good wear results are investigated. In this study, microstructure properties of polymer-based particle reinforced PTFE composite bearings have been determined by optical and SEM wear surface images. Вивчено спеціальні полімери підвищеної довговічності, які можуть забезпечити бажані властивості для буксових підшипників, зокрема, зносотривкість. За допомогою оптичної та електронної мікроскопії досліджено мікроструктурні властивості матеріалів на політетрафторетиленовій основі після зношування. Изучены специальные полимеры повышенной долговечности, которые могут обеспечить желаемые свойства для буксовых подшипников, в частности, износостойкость. С помощью оптической и электронной микроскопии исследованы микроструктурные свойства материалов на политетрафторэтиленовой основе после износа.
issn 0430-6252
url https://nasplib.isofts.kiev.ua/handle/123456789/134743
citation_txt Microstructure properties of particles reinforced polytetrafluoroethylene composite bearings after wear / B.S. Ünlü, M. Uzkut, A.M. Pi̇nar, K. Özdi̇n // Фізико-хімічна механіка матеріалів. — 2015. — Т. 51, № 2. — С. 48-52. — Бібліогр.: 30 назв. — англ.
work_keys_str_mv AT unlubs microstructurepropertiesofparticlesreinforcedpolytetrafluoroethylenecompositebearingsafterwear
AT uzkutm microstructurepropertiesofparticlesreinforcedpolytetrafluoroethylenecompositebearingsafterwear
AT pinaram microstructurepropertiesofparticlesreinforcedpolytetrafluoroethylenecompositebearingsafterwear
AT ozdink microstructurepropertiesofparticlesreinforcedpolytetrafluoroethylenecompositebearingsafterwear
AT unlubs míkrostrukturnívlastivostínapovnenihkompozicíinihpídšipnikívnapolítetraftoretilenovíiosnovípíslâznošuvannâ
AT uzkutm míkrostrukturnívlastivostínapovnenihkompozicíinihpídšipnikívnapolítetraftoretilenovíiosnovípíslâznošuvannâ
AT pinaram míkrostrukturnívlastivostínapovnenihkompozicíinihpídšipnikívnapolítetraftoretilenovíiosnovípíslâznošuvannâ
AT ozdink míkrostrukturnívlastivostínapovnenihkompozicíinihpídšipnikívnapolítetraftoretilenovíiosnovípíslâznošuvannâ
AT unlubs mikrostrukturnyesvoistvanapolnennyhkompozicionnyhpodšipnikovnapolitetraftorétilenovoiosnoveposleiznosa
AT uzkutm mikrostrukturnyesvoistvanapolnennyhkompozicionnyhpodšipnikovnapolitetraftorétilenovoiosnoveposleiznosa
AT pinaram mikrostrukturnyesvoistvanapolnennyhkompozicionnyhpodšipnikovnapolitetraftorétilenovoiosnoveposleiznosa
AT ozdink mikrostrukturnyesvoistvanapolnennyhkompozicionnyhpodšipnikovnapolitetraftorétilenovoiosnoveposleiznosa
first_indexed 2025-11-25T15:55:39Z
last_indexed 2025-11-25T15:55:39Z
_version_ 1850519722392551424
fulltext 48 Ô³çèêî-õ³ì³÷íà ìåõàí³êà ìàòåð³àë³â. – 2015. – ¹ 2. – Physicochemical Mechanics of Materials MICROSTRUCTURE PROPERTIES OF PARTICLES REINFORCED POLYTETRAFLUOROETHYLENE COMPOSITE BEARINGS AFTER WEAR B. S. ÜNLÜ 1, M. UZKUT 2, A. M. PİNAR 1, K. ÖZDİN 3 1 Celal Bayar University, Faculty of Technology, Department of Mechanical and Manufacturing Engineering, Turgutlu, Manisa, Turkey; 2 Celal Bayar University, Vocational High School, Department of Machinery, Turgutlu, Manisa, Turkey; 3 Hitit University, Engineering Faculty, Department of Mechanical Engineering, Çorum, Turkey High-performance engineering polymers that ensure the desired properties for journal bearings and give good wear results are investigated. In this study, microstructure properties of polymer-based particle reinforced PTFE composite bearings have been determined by optical and SEM wear surface images. Keywords: wear, microstructure, polytetrafluoroethylene composite, bearing. For the past few decades, polymeric materials have been widely used in industry. Some of these materials are thermoplastics (polypropylene (PP), polyethylene (PE), polyoxymethylene (POM), polytetrafluoroethylene (PTFE) and polyamide (PA) etc.). The main advantage of these polymers is high wear and corrosion resistance. These materials (PTFE) are especially used due to their good tribological properties and solid lubricant properties in the food industry and due to their good performance in non- lubricated dry conditions in journal bearings. PE has low density, high elasticity, and strength. PA, POM and PTFE have good sliding and wear properties at low frictions. Polyoxymethylene is a material which is generally used in engineering applications and is highly self-lubricating [1–7]. PTFE bearings are frequently used in various machines due to their low friction coefficients in boundary lubrication conditions. The major problems in designing polymer bearings are selecting optimal dimensions and material type for a long life and obtaining lower friction and wear losses. Tribological properties of polymer radial bearings are affected by the adhesion on the surfaces of steel-polymer, cohesive cha- racteristics of the polymers used and thermal effects in the friction area at high p–v (pressure.velocity) values [8–10]. These (p.v) value are not valid for polymeric mate- rials. Velocity is affected by applied pressure in these materials [11, 12]. Even though some filler materials are added to the polymers, their effects on tribological properties are not clearly known. There are different opinions in literature on how fillers affect the polymer wear. These filler materials decrease wear by modifying the opposite surface and supporting the load. This increasing effect on wear is due to increased adhesion. They also reduce wear of the PTFE composites and can induce abrasive wear of the counterface [13–15]. If polymeric materials are worn in abrasive conditions, wear rate decreases with an increase in grit grade number [16]. Polymer-based PTFE materials can be used as journal bearings at low speeds [17]. The objective of this study is to determine the wear surface properties of the pure PTFE, 35% Graphite (C-PTFE), 60% CuSn10 (B-PTFE), and 25% glass-fiber (G-PTFE) particle reinforced PTFE journal bearings at low speeds (v = 0.13 m/s). Corresponding author: A. M. PİNAR, e-mail: ahmet.pinar@cbu.edu.tr 49 Experimental studies. Preparation of experimental materials. In this study, the pure PTFE, C-PTFE, B-PTFE and G-PTFE particle reinforced materials have been used as journal bearing and SAE 1050 material as a shaft. The chemical compositions of the journal material used in the experiments are (%): 0.51 C; 0.3 Si; 0.7 Mn; 0.04 P; 0.05 S; balance Fe. Dimensions of bearing specimens were as follows: inner diameter (d = 10+0.05 mm), width (B = 10 mm), outer diameter (D = 15 mm). The specimens have been worn and friction coefficients have been measured on radial journal bearing wear test rig in dry conditions as described by Atik et al. [18] and Ünlü and Atik [19]. The wear losses have been measured in dry conditions with 20 N loads, 250 rpm (v = 0.130 m/s) and every 30 min for 2.5 h (1177.5 m sliding distance). The specimens were cleaned by acetone. The microstructures of the specimens wear surfaces have been photographed using the optical microscope (Hund Wetzlar CCD-290) and scanning electron microscope (Jeol JSM-6060). Radial journal bearing wear test rig. Bearings materials in journal bearings are generally selected from materials which have lower wear strength than the shaft mate- rial, thereby lowering the shaft wearing significantly. For this reason, journal bearing wear test apparatus are designed to examine the wear of bearing materials. In this study, a special bearing wear test apparatus has been designed to examine the wearing of the bearing material and the shaft together. Therefore, it is possible to investigate different bearing and shaft materials and also the effects of heat treatments on these materials. Such a mechanism provides wear of bearings rather than using standard methods as this is a more appropriate direction [18]. The system is formed by a weight applied by a rigid bar, a steel bar connected to the bearing from a distance and a com- parator. Friction coefficient is determined from the friction force formed along the rota- ting direction of the bearing and the movement of the steel bar connected to the bearing [19]. Radial wear test rig is illustrated in Fig. 1. Fig. 1. Radial journal bearing wear test rig: 1 – comparator; 2 – rigid bar; 3 – load contact point (rolling bearing); 4 – journal sample; 5 – journal bearing samples; 6 – plate bar; 7 – motor; 8 – loads. Results and discussion. Hardness values, surface roughness, friction coefficient, bearing temperature, bearing weight loss, and bearing wear rate of PTFE bearings were determined in our previous study [20]. These values are as follows hardness – 51; 61; 65 and 54 Share-D for PTFE, C-PTFE, B-PTFE and G-PTFE, respectively. Surface roughness values are 1.59; 0.71; 1.1 and 3.95 µm for PTFE, C-PTFE, B-PTFE and G-PTFE, respectively, before wear. Surface roughness values are 2.26, 0.78, 0.92 and 3.52 µm for PTFE, C-PTFE, B-PTFE and G-PTFE respectively after wear. Friction coefficients were obtained between 0.2 and 0.3, bearing temperatures were measured between 36 and 37 °C in all journal bearings. Bearing wear rate of pure bearing is (mm3/Nm): 7.2⋅10–6; 4.7⋅10–6; 8.5⋅10–6, and 2.86⋅10–6 for PTFE, C-PTFE, B-PTFE and G-PTFE, respectively [20]. After wear tests, the roughness of pure and C-PTFE bearings have increased, but roughness values of B-PTFE and G-PTFE bearings decreased. Similarity between the friction coefficient and bearing temperature of pure and filled PTFE bearings is the 50 result of PTFE coating on the filled materials surface and thus forcing this bearing to act as pure PTFE bearing. Wear resistance of particle filled PTFE bearings increased about 2…3 times because of particle reinforcement. Graphite, bronze, and glass rein- forcement grains and wear surfaces were shown in the microstructure. These results are supported by wear surface optical and SEM images (Figs. 2, 3). In this study, few ad- hesive wear occurred for particle filled bearings, due to better wear resistance signifi- cance of bronze, glass, and graphite solid lubrication property (Figs. 2, 3b–d), corres- ponding properties for pure PTFE bearing (Figs. 2, 3a). In our previous studies [21, 22], we examined polymer based PE, PA, POM, pure PTFE, graphite, bronze and glass-fiber reinforced PTFE, pure Bakelite and bronze and ferrous reinforced Bakelite bearings [21]. We reported that particle reinforcement increased the wear resistance of polymer bearings. Fig. 2. Microstructure of wear surface: a – PTFE; b – C-PTFE; c – B-PTFE; d – G-PTFE. ×100. Authors [23, 24] have investigated wear properties of PTFE composites. They observed the less abrasive and adhesive wear in particle reinforced PTFE composites. They reported that some materials, such as graphite and bronze powder as fillers could effectively increase the wear life of PTFE-based composites. Also, graphite was a potential of lubricants, which could also form a transfer film on the sliding surface. The PTFE-filled composites showed much smoother surfaces than the same composites filled with graphite. Fig. 3. SEM Microstructure of wear surface: a – PTFE; b – C-PTFE; c – B-PTFE; d – G-PTFE. Xiang et al. [25] have investigated friction and wear properties of PTFE compo- sites. They reported that PTFE fabric composite exhibits a very low coefficient of fric- tion, high wear resistance and less wear as compared to C86300 composite under simi- lar testing conditions due to the solid lubricant structures of the two PTFE composites. 51 Khoddamzadeha et al. [26] have investigated bronze, carbon fiber and graphite reinforced PTFE composites for sliding bearing applications. They found that these fillers significantly improve the hardness and the wear resistance of PTFE. The hard- ness of the PTFE composite is affected by the content level of the fillers and the fillers hardness as well. They say: “The wear behavior of PTFE composites is a complex phenomenon, which depends on the nature of the fillers, the content level of the fillers present, and their morphology. The PTFE composites have friction coefficients similar to pure PTFE. This may be attributed to the presence of a thin transfer film of PTFE on the counter surface that enables the PTFE composites to maintain almost the same frictional properties as pure PTFE”. They also observed that the adhesive wear of the reinforced PTFE composites are less than that of pure PTFE. Khan et al. [27] wrote that the physical and tribological properties were improved by the use of PTFE micropowder in ethylene–propylene–diene–rubber (EPDM). They observed agglomerated particles having a particle size even less than 0.5 mm in microstructure. Authors [28–30] have investigated carbon nanoparticle reinforced, carbon fibers reinforced, and PA6 filled PTFE composites respectively. They reported that these reinforcement materials decrease adhesive wear and improve wear resistance in PTFE materials. In our study, we obtained similar adhesive wear surfaces in PTFE bearings. In addition, in previous studies the authors [23–30] reported that these reinforced polymer materials and bearings could be used in industry applications. This situation is important for less bearing wear. The differences in our results and those of other previous studies may be attributed to the fact that their materials were different from the materials, used by us. CONCLUSIONS When wear surfaces of samples were examined by optical microscope and scan- ning electron microscope, the adhesive wear of pure PTFE bearing sample were ob- tained higher than those of the other filled PTFE bearings. Adhesive wear decreased in particle filled bearings, because bronze, glass and graphite had better wear resistance property and graphite solid lubrication properties. Consequently, surface wear proper- ties of particle filled PTFE bearings were significantly improved. РЕЗЮМЕ. Вивчено спеціальні полімери підвищеної довговічності, які можуть забез- печити бажані властивості для буксових підшипників, зокрема, зносотривкість. За допо- могою оптичної та електронної мікроскопії досліджено мікроструктурні властивості мате- ріалів на політетрафторетиленовій основі після зношування. РЕЗЮМЕ. Изучены специальные полимеры повышенной долговечности, которые мо- гут обеспечить желаемые свойства для буксовых подшипников, в частности, износостой- кость. С помощью оптической и электронной микроскопии исследованы микроструктурные свойства материалов на политетрафторэтиленовой основе после износа. Acknowledgement. I would like to thank Ersel Obuz for editing the language of the manuscript. 1. Hutchings I. M. Tribology: friction and wear of engineering materials. – Arnold, London, 1992. 2. Bhushan B. Principles and applications of tribology. – New-York, 1999. 3. Beklet N. E. Tribological behavior of drawn polypropylene // Wear. – 1999. – 236. – P. 55–61. 4. Stuart B. H. Tribological studies of poly (ether ether ketone) blends // Tribology Int. – 1998. – 31. – P. 647–651. 5. Tsukruk V. V. Nano-composite polymer layers for molecular tribology // Tribology Letters. – 2001. – 10. – P. 1–2. 6. Hu X. Tribological behavior of modified polyacetal aganist MC nylon without lubrication // Ibid. – 1998. – 5. – P. 313–317. 52 7. Davim J. P. and Marques N. Evaluation tribological behavior polymeric materials for hip prostheses application // Ibid. – 2001. – 11. – P. 91–94. 8. Tevrüz T. Tribological behaviors of bronze-filled (PTFE) dry journal bearings // Wear. – 1999. – 230. – P. 61–69. 9. Tevrüz T. Tribological behaviors of carbon-filled (PTFE) dry journal bearings // Ibid. – 1998. – 221. – P. 61–68. 10. Tevrüz T. Tribological behaviors of pure and fiber glass-filled (PTFE) journal bearings // 1st Symp. Engng. – Isparta, Turkey, 1996. – 1. – P. 1–6. 11. Sınmazçelik T., Cürgül I., and Günay V. Effect to tribological properties sliding velocity at C-peek composites // 7th Symp. Mater. – Denizli, Turkey, 1997. – 7. – P. 79–85. 12. Lu Z. P. and Friedrich K. On sliding friction and wear of peek and its composites // Wear. – 1995. – 181–183. – P. 624–631. 13. Bahadur S. and Tabor D. The wear of filled (PTFE) // Ibid. – 1984. – 98. – P. 1–13. 14. Gong D., Xue Q., and Wang, H. ESCA study on tribo-chemical characteristics of filled PTFE // Ibid. – 1991. – 148. – P. 161–169. 15. Blanchet T., Peng A. Y. L., and Nablo S. V. Tribology of selectively irradiated PTFE surfaces // Tribology Letters. – 1998. – 4. – P. 87–94. 16. Unal H., Sen U., and Mimaroğlu A. Abrasive wear behavior of polymeric materials // Mate- rials and Design. – 2995. – 26. – P. 705–710. 17. Ünlü B. S. Determination of Usability of Boronized Ferrous Based Materials as Bearing and Tribological Properties in Journal Bearings // PhD thesis (In Turkish). – Celal Bayar Univer- sity, Manisa, Turkey, 2004. 18. Atik E., Ünlü B. S., and Meriç C. Design of Radial Journal Bearing Wear Test Rig // 2nd Conf. of Machine Materials and Technology. – Manisa, Turkey, 2001. – 2. – P. 98–103. 19. Ünlü B. S. and Atik E. Determination of friction coefficient in journal bearings // Materials and Design. – 2007. – 28. – P. 973–977. 20. Ünlü B. S., Atik E., and Uzkut M. Tribological behaviors of polymer based particle reinfor- ced PTFE bearings // J. Reinforced Plastics and Composites. – 2010. – 29. – P. 1353–1358. 21. Ünlü B. S., Atik E., and Köksal S. Tribological properties of polymer based journal bearings // Materials and Design. – 2009. – 30. – P. 2618–2622. 22. Ünlü B. S., Atik E., and Yılmaz S. S. Tribological behaviors of polymer based journal bearings manufactured from particle reinforced bakelite composites // Materials and Design. – 2009. – 30. – P. 3896–3899. 23. Wang Y. and Yan F. Tribological properties of transfer films of PTFE-based composites // Wear. – 2006. – 261. – P. 1359–1366. 24. On dry sliding friction and wear behavior of PPESK filled with PTFE and graphite / X. Zhang, G. Liao, Q. Jin, X. Feng, X. Jian // Tribology Int. – 2008. – 41. – P. 195–201. 25. Xiang D., Shu W., and Li K. Friction and wear behavior of a new 40Cr steel–PTFE fabric composite under heavy loads // Mater. Sci. and Engng. – 2008. – A 483–484. – P. 365–368. 26. Khoddamzadeha A., Liua R., and Wu X. Novel polytetrafluoroethylene (PTFE) composites with newly developed tribology alloy additive for sliding bearings // Wear. – 2009. – 266. – P. 646–657. 27. Physical and tribological properties of PTFE micropowder-filled EPDM rubber / M. S. Khan, R. Franke, D. Lehmann, and G. Heinrich // Tribology Int. – 2009. – 42. – P. 890–896. 28. Lee J. Y., Lim D. P., and Lim D. S. Tribological behavior of PTFE nanocomposite films rein- forced with carbon nanoparticles // Composites. – 2007. – P. B 38. – P. 810–816. 29. Qianqian S. and Xianhua C. Effect of rare earths on tribological properties of carbon fibers reinforced PTFE composites // J. Rare Earths. – 2007. – 25. – P. 469–473. 30. Li J. Friction and wear properties of PA6 filled PTFE composites under oil lubrication // Current Appl. Phys. – 2009. – 9. – P. 1445–1449. Received 04.03.2011