Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer
The computer modeling of electric field in the termination of medium-voltage (10 kV) cross-linked polyethylene insulated power cable is carried out. The stress-control tube and mastic are used in the termination to reduce the field nonuniformity. The electric field distributions are examined at di...
Збережено в:
| Опубліковано в: : | Технічна електродинаміка |
|---|---|
| Дата: | 2016 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут електродинаміки НАН України
2016
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/134800 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer / I.M. Kucheriava // Технічна електродинаміка. — 2016. — № 3. — С. 12-17. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-134800 |
|---|---|
| record_format |
dspace |
| spelling |
Kucheriava, I.M. 2018-06-14T08:56:54Z 2018-06-14T08:56:54Z 2016 Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer / I.M. Kucheriava // Технічна електродинаміка. — 2016. — № 3. — С. 12-17. — Бібліогр.: 11 назв. — англ. 1607-7970 https://nasplib.isofts.kiev.ua/handle/123456789/134800 621.315.687.2: 004.94 The computer modeling of electric field in the termination of medium-voltage (10 kV) cross-linked polyethylene insulated power cable is carried out. The stress-control tube and mastic are used in the termination to reduce the field nonuniformity. The electric field distributions are examined at different stress control tube positions relative to the cutting ends of the cable outer semiconducting layer and copper wire shield. The properties of stress control tube and mastic are varied to determine their influence on maximum electric intensity in the cable insulation. The results and used approaches to the study of electric field can be applied to design the terminations allowing for the appropriate materials and arrangement of structural parts. Виконано комп'ютерне моделювання електричного поля в кінцевій муфті силового кабеля з ізоляцією зі зшитого поліетилену на середню напругу (10 кВ). У муфті для зниження нерівномірності поля застосовується трубка-регулятор та мастика. Досліджено розподіл електричного поля при різних розташуваннях трубки відносно зрізу напівпровідного шару поліетиленової ізоляції та мідного екрану кабеля. Проварійовано електричні властивості матеріалів регулюючої трубки і мастики, визначено їхній вплив на максимальні значення напруженості електричного поля в ізоляції кабеля. Результати та застосовані підходи до дослідження електричного поля можуть використовуватися при проектуванні муфт із урахуванням вибору матеріалів і взаємного розташування конструктивних елементів. Выполнено компьютерное моделирование электрического поля в концевой муфте силового кабеля с изоляцией из сшитого полиэтилена на среднее напряжение (10 кВ), в которой в качестве средств снижения неравномерности поля применены трубка-регулятор и выравнивающая мастика. Исследовано распределение электрического поля при различных расположениях трубки относительно среза полупроводящего слоя полиэтиленовой изоляции и медного экрана кабеля. Проварьированы электрические свойства материалов регулирующей трубки и мастики, определено их влияние на максимальные значения напряженности электрического поля в изоляции кабеля. Результаты и использованные подходы к исследованию электрического поля могут быть применены при проектировании муфт с учетом выбора материалов и взаимного расположения конструктивных элементов. en Інститут електродинаміки НАН України Технічна електродинаміка Теоретична електротехніка та електрофізика Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer Розподіл електричного поля в муфті силового кабеля середньої напруги з урахуванням зовнішнього напівпровідного покриття його поліетиленової ізоляції Распределение электрического поля в муфте силового кабеля среднего напряжения с учетом внешнего полупроводящего покрытия его полиэтиленовой изоляции Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer |
| spellingShingle |
Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer Kucheriava, I.M. Теоретична електротехніка та електрофізика |
| title_short |
Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer |
| title_full |
Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer |
| title_fullStr |
Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer |
| title_full_unstemmed |
Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer |
| title_sort |
electric field distribution in medium-voltage xlpe cable termination taking into account outer semiconducting layer |
| author |
Kucheriava, I.M. |
| author_facet |
Kucheriava, I.M. |
| topic |
Теоретична електротехніка та електрофізика |
| topic_facet |
Теоретична електротехніка та електрофізика |
| publishDate |
2016 |
| language |
English |
| container_title |
Технічна електродинаміка |
| publisher |
Інститут електродинаміки НАН України |
| format |
Article |
| title_alt |
Розподіл електричного поля в муфті силового кабеля середньої напруги з урахуванням зовнішнього напівпровідного покриття його поліетиленової ізоляції Распределение электрического поля в муфте силового кабеля среднего напряжения с учетом внешнего полупроводящего покрытия его полиэтиленовой изоляции |
| description |
The computer modeling of electric field in the termination of medium-voltage (10 kV) cross-linked polyethylene insulated
power cable is carried out. The stress-control tube and mastic are used in the termination to reduce the field nonuniformity.
The electric field distributions are examined at different stress control tube positions relative to the cutting
ends of the cable outer semiconducting layer and copper wire shield. The properties of stress control tube and mastic
are varied to determine their influence on maximum electric intensity in the cable insulation. The results and used approaches
to the study of electric field can be applied to design the terminations allowing for the appropriate materials
and arrangement of structural parts.
Виконано комп'ютерне моделювання електричного поля в кінцевій муфті силового кабеля з ізоляцією зі зшитого
поліетилену на середню напругу (10 кВ). У муфті для зниження нерівномірності поля застосовується трубка-регулятор
та мастика. Досліджено розподіл електричного поля при різних розташуваннях трубки відносно
зрізу напівпровідного шару поліетиленової ізоляції та мідного екрану кабеля. Проварійовано електричні властивості
матеріалів регулюючої трубки і мастики, визначено їхній вплив на максимальні значення напруженості
електричного поля в ізоляції кабеля. Результати та застосовані підходи до дослідження електричного поля
можуть використовуватися при проектуванні муфт із урахуванням вибору матеріалів і взаємного розташування
конструктивних елементів.
Выполнено компьютерное моделирование электрического поля в концевой муфте силового кабеля с изоляцией
из сшитого полиэтилена на среднее напряжение (10 кВ), в которой в качестве средств снижения неравномерности
поля применены трубка-регулятор и выравнивающая мастика. Исследовано распределение электрического
поля при различных расположениях трубки относительно среза полупроводящего слоя полиэтиленовой
изоляции и медного экрана кабеля. Проварьированы электрические свойства материалов регулирующей трубки
и мастики, определено их влияние на максимальные значения напряженности электрического поля в изоляции
кабеля. Результаты и использованные подходы к исследованию электрического поля могут быть применены
при проектировании муфт с учетом выбора материалов и взаимного расположения конструктивных элементов.
|
| issn |
1607-7970 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/134800 |
| citation_txt |
Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer / I.M. Kucheriava // Технічна електродинаміка. — 2016. — № 3. — С. 12-17. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT kucheriavaim electricfielddistributioninmediumvoltagexlpecableterminationtakingintoaccountoutersemiconductinglayer AT kucheriavaim rozpodílelektričnogopolâvmuftísilovogokabelâserednʹoínaprugizurahuvannâmzovníšnʹogonapívprovídnogopokrittâiogopolíetilenovoíízolâcíí AT kucheriavaim raspredelenieélektričeskogopolâvmuftesilovogokabelâsrednegonaprâženiâsučetomvnešnegopoluprovodâŝegopokrytiâegopoliétilenovoiizolâcii |
| first_indexed |
2025-11-24T21:37:55Z |
| last_indexed |
2025-11-24T21:37:55Z |
| _version_ |
1850498287947218944 |
| fulltext |
12 ISSN 1607-7970. Техн. електродинаміка. 2016. № 3
УДК 621.315.687.2: 004.94
ELECTRIC FIELD DISTRIBUTION IN MEDIUM-VOLTAGE XLPE CABLE
TERMINATION TAKING INTO ACCOUNT OUTER SEMICONDUCTING LAYER
Kucheriava I.M.
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv-57, 03680, Ukraine. E-mail: rb.irinan@gmail.com
The computer modeling of electric field in the termination of medium-voltage (10 kV) cross-linked polyethylene insu-
lated power cable is carried out. The stress-control tube and mastic are used in the termination to reduce the field non-
uniformity. The electric field distributions are examined at different stress control tube positions relative to the cutting
ends of the cable outer semiconducting layer and copper wire shield. The properties of stress control tube and mastic
are varied to determine their influence on maximum electric intensity in the cable insulation. The results and used ap-
proaches to the study of electric field can be applied to design the terminations allowing for the appropriate materials
and arrangement of structural parts. References 11, figures 5, table 1.
Key words: cable termination, power cable, polyethylene insulation, outer semiconducting layer, field grading tube,
stress control mastic, computer modeling.
Introduction. The power cables are a component part of the electric power transmission and distri-
bution systems. The reliability of power networks depends greatly on the reliability of power cables as well
as on their connection to overhead transmission lines and electric apparatus by cable accessories.
All over the world during the last decades the developments of medium-voltage cable networks are
related to application of power cables made with cross-linked polyethylene (XLPE) insulation [4], [5]. The
cable terminations intended for connection of XLPE insulated power cables to the external electric apparatus
and lines must be designed so as to reduce the electric field nonuniformity in termination space, provide
there the electric intensity within permissible values, avoid both partial discharge initiation and insulation de-
struction, at the same time to attain long-term service life of the terminations [10].
The reduction in electric field nonuniformity inside cable termination is referred to as field grading
or stress grading. This stipulates the special stress control methods in order to decrease the electric intensity
in the active region of the termination and in particular at the cutting point of the cable shield to prevent the
breakdown of cable insulation.
The basic field grading methods such as geometrical, refractive and impedance methods used for ca-
ble terminations are described and studied, for example, in works [2], [3]. The refractive field control is
achieved with special field controlling ma-
terials integrated into terminations. The dif-
ferent polymer materials having high di-
electric permittivity (higher than the permit-
tivity of cable insulation) are utilized to
produce the field grading tube and mastics
for medium-voltage XLPE cable termina-
tions [4].
The stress control tubes are set on
the cutting end of cable constructive ele-
ments (copper wire shield and outer semi-
conducting layer) and envelop both the
shield and polyethylene cable insulation.
The arrangement of stress control tube and
cable elements in cable end termination is
shown in fig. 1, a. Here the cable conductor
is marked by 1; the inner and outer semi-
conducting layers are designated by 2 and 4,
respectively; the label 3 indicates the cable
© Kucheriava I.M., 2016
a b
Fig. 1
1
2
3
4
5
6
7
3 4 5
air
termination
filler
z
r 0
3
1
5
7
2
4
6
ISSN 1607-7970. Техн. електродинаміка. 2016. № 3 13
insulation; the cable copper shield, stress control tube and cable jacket are denoted by 5, 6 and 7, respec-
tively.
The cable termination with stress cone is studied in paper [6] by computer modeling and experiment.
As shown in [6], the outer semiconducting layer of power cable should be taken into consideration and the
proper installation of stress control means in the termination has to be provided for fail-safe operation of ca-
ble accessories.
The further improvement of the cable terminations and joints is associated with detailed analysis of
effective ways for using the field grading facilities and with study of electric processes inside cable termina-
tions taking into account the properties of materials in insulation structure, the location of stress control
means and their electrophysical characteristics. That defines topicality of the article.
This work is devoted to computer modeling of electric field distribution in cable end termination
(fig. 1). The termination of 10 kV XLPE insulated power cable is examined. The stress control tube and spe-
cial field grading mastic which is applied to the cutting end of cable outer semiconducting layer [1] (see in-
sertion in fig. 4 below) are used to smooth the electric field within the cable termination. The computations
are carried out by finite-element method in professional code Comsol [7].
The purpose and distinction of the present work are to define the influence of both stress tube posi-
tion relative to cable outer semiconducting layer and the physical properties of the tube and stress control
mastic on electric field homogeneity inside cable end termination. The study is aimed at the results as ap-
plied to choosing the materials and rational location of stress control means in the cable termination.
Model. The following simplifying assumptions are made in the computational model:
– the cable termination construction is characterized by symmetry about an axis Oz , therefore the
model is presented as two-dimensional and axially symmetric one (fig. 1, b);
– the cable structural elements such as two semiconducting layers, outer sheath are considered, al-
though the sheath and inner semiconducting layer have a slight effect on electric field distribution in the ac-
tive region of cable termination;
– the insulation materials of the cable and termination are isotropic, they are characterized by their
invariable conductivity and dielectric permittivity (note that in the general case these parameters depend on
electric intensity, in addition the conductivity is a function of temperature [9]);
– the electric field varies slowly with time; the problem is stated for quasi-static approach at fre-
quency f = 50 Hz.
The field problem is formulated in terms of complex electric potential ϕ& that satisfies the following
equation:
0][( 0 =∇+∇⋅∇ ϕεωεϕσ && rj , (1)
where σ – is the conductivity; j – is the unit imaginary number; fπω 2= – is the angular frequency; rε –
is the complex relative permittivity; =0ε 8.85·10–12 F/m – is the permittivity of free space.
The conductivity σ and permittivity rε can take different values in the insulation materials of
power cable and cable termination.
The next boundary conditions are specified. The phase voltage U=ϕ& is defined on cable conductor
boundaries; the condition 0=ϕ& is set on the surfaces of cable shield; the continuity condition is prescribed on
the inner interfaces; the outer boundaries of the computational region excepting axial symmetry are assumed
as electric insulation boundaries.
The numerical solution of differential equation (1) by Comsol model provides the electric potential
ϕ& and electric field ϕ&& −∇=E at all points of computational region.
Results and discussion. The distributions of electric intensity and equipotential lines are computed
in the cable end termination with stress control tube (sct) and field grading mastic. The electric field varia-
tion along the external surface of base polyethylene cable insulation is determined too.
The computer modeling is realized for 10 kV XLPE insulated cable with conductor cross-section
area of 120 mm2 (conductor diameter of 6.2 mm) and 6.2 mm insulation thickness. The cross-section area of
cable copper shield is 16 mm2 (the shield thickness is equal to 2.3 mm), the external diameter of the cable is
33 mm [5].
14 ISSN 1607-7970. Техн. електродинаміка. 2016. № 3
The computational region of the prob-
lem is presented in fig. 1, b. Its dimensions are
nearly twice as much than the termination
length (along an axis Oz ).
The properties of components in the
computational region are given in table [8],
[11].
The various positions of stress control
tube relative to the cutting ends of the outer
semiconducting layer and copper wire shield
of the power cable are studied. In particular,
the alternative designs when the semiconduct-
ing layer length lh is greater than the tube
length scth ( sctl hh > ), when these components are of the same height ( sctl hh = ) and when sctl hh < are
examined. Moreover, the case subject to the condition that the outer semiconducting layer of cable insulation
is cut on the equal level with cable shield ( shl hh = ) is considered. These design modifications correspond to
variants 1–4 in fig. 2.
As taken into account in the work, the stress control tube and mastic can be made from materials
possessing different physical properties (σ , rε ).
Fig. 2 gives the distribution of electric
field and equipotential lines in the vicinity of
stress control tube depending on the height of
outer semiconducting layer lh . Here and below in
fig. 4, the values of ratio U/||ϕ& corresponding to
displayed lines are indicated, the cable termina-
tion has no stress control mastic. As illustrated,
the field distribution inside the termination is
strongly nonuniform. The equipotential lines are
the densest within polyethylene insulation and the
electric field is also higher. The field lines and
equipotential lines are concentrated near the end
of copper shield of the cable. Here electric field is
sufficiently high. Generally and particularly the
shield end is the weak point of the termination.
The electric field variation along the in-
terface between the cable insulation and outer
semiconducting layer is presented in fig. 3 for
four variants in accordance with fig. 2. The elec-
Properties Components
of computational region
rε σ , S/m
Polyethylene insulation of cable 2,3 10–15
Inner semiconducting layer of cable 2,3 10–7
Outer semiconducting layer of cable 2,3 10–7
Cable outer sheath (jacket) 2,2 10–14
Silicone filling of termination 3,0 10–15
Stress control tube 4 10–7
Stress control mastic 15 10–8
Air 1 10–18
1
0,1
0,2
0,3
4,0/|| =Uϕ&
hl > hsct 3
0,2
0,4
0,3
hl < hsct 4
0,4
0,2
hl = hsh
0,1
hl = hsct
0,2
2
hl – var
3,0/|| =Uϕ&
Fig. 2
Fig. 3
|E| & , V/m
z, m
stress control tube
copper wire shield
outer semiconducting layer
1, 2
3, 4
– variants 1, 2 – – – – ––––– – variants 3, 4
ISSN 1607-7970. Техн. електродинаміка. 2016. № 3 15
tric field strength ≈max|| E&
≈ 1,76 kV/mm and is within the
admissible limits of operating
electric intensity given in [4] for
polyethylene insulated cables.
The electric field simu-
lations are implemented at dif-
ferent values of tube permittiv-
ity rε for the most realistic con-
struction when the stress control
tube covers copper shield and
semiconducting layer (variant 3
in fig. 2). As revealed, the varia-
tion of the tube permittivity
from 2.3 to 40 has a weak influ-
ence on the value of max|| E& in
the cable insulation.
The distributions of electric field and equipotential lines in close proximity to the semiconducting
layer of cable insulation and with application of stress control mastic are shown in fig. 4, a in the case with
field grading tube and in fig. 4, b without the tube. The photo of XLPE insulated cable with mastic [1] is pre-
sented in the insertion into the figure. Here the designations correspond to the labels explained above and
specified in fig. 1.
The electric field along the insulation surface is plotted in fig. 5 for cable termination without stress
control tube and mastic (curve 1), with mastic and without tube (curve 2), with tube and mastic (curve 3).
The numerical results give the greatest value of electric intensity max|| E& ≈ 2,7 kV/mm at the end of outer
semiconducting layer without any field grading means (dependence 1 in fig. 5). The least value of max|| E& ≈
≈ 1 kV/mm takes place when both stress control tube and mastic are used in the cable termination (curve 3 in
fig. 5 and pattern in fig. 4, a). The weakest areas of cable insulation for different termination designs under
consideration can be determined by depicted component lengths below an axis Oz in fig. 5. The identical
line segments are given in fig. 3.
As found by numerical simulations, provided that the conductivity of mastic cover is σ = 10–8
S/m = const and the mastic permittivity is varied from 2.3 to 40, the electric intensity max|| E& in the cable in-
sulation decreases only by 1.2%. At the same time, when the permittivity of stress control mastic is invari-
able and equal to rε = 15, the variation of mastic con-
ductivity within the range of σ = 10–6 – 10–2 S/m (or
the intensification of conductive properties of mastic
material) leads to more than 35% increase of max|| E& .
Conclusion. The computer modeling of elec-
tric field distribution in medium-voltage cable end
termination is performed taking into account the outer
semiconducting layer of cable insulation system and
the position of stress control tube relative to the cut-
ting ends of the layer and copper shield of XLPE
power cable. As shown, under the given conditions
the length of semiconducting layer has an insignifi-
cant influence on the field distribution in active region
of the termination.
The combined application of the stress control
tube and mastic gives a possibility to attain the small-
est values of electric intensity in the cable insulation
as compared with the use of alone mastic.
With stress control tube Without tube and with mastic
mastic
3
4
5
0,1
0,2
0,3
4,0/|| =Uϕ&
0,1
0,2
0,3
4,0/|| =Uϕ&
hl < hsct
а b
Fig. 4
Fig. 5
|E| & , V/m
z, m
- - - - - 1 – without tube and mastic
. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 – without tube, with mastic
–––––– 3 – with tube and mastic
1
2
3
outer semiconducting layer
copper wire shield
mastic
stress control tube
16 ISSN 1607-7970. Техн. електродинаміка. 2016. № 3
The increase of mastic conductivity (above 10–6 S/m in the case under examination) causes the higher
electric intensity in the polyethylene insulation of power cable. At specified data, the optimal values of the con-
ductivity are over the range from 10–9 to 10–7 S/m.
The developed approaches to computer study of electric field in refractive modeled cable termination
can assist in designing of the termination to improve the field distribution, keep the electric intensity within
acceptable values and allow for both arrangement of structural components and properties of their feasible
materials.
1. "Progress" cable terminations. Advanced designs for cable networks // Kabel-news. – 2009. – No 11. – Pp.
34–36. (Rus)
2. Kotov R.V. Electric field distribution in cold-shrinkable cable terminations // Elektro. – 2006. – No 5. – Pp.
40–44. – Available at: http://www.elektro-journal.ru/archive/articles/556412394 (accessed 12 January 2016). (Rus)
3. Kucheriava I.M. Computer study of the ways for electric field grading in sealing ends of polyethylene insu-
lated cables // Tekhnichna Elektrodynamika. – 2016. – No 2. – Pp. 19–24. (Rus)
4. Makarov Е.F. The handbook on 0.4–35 kV and 110–1150 kV power networks. – Vol. 3. – Moskva: Papirus-
Pro, 2004. – 688 p. (Rus)
5. Medium- and high-voltage power cables with cross-linked polyethylene insulation. – PJSC Zavod
"Yuzhkabel". – Kharkov, Ukraine. – 56 p. – Available at: http://www.elektal.com.ua/upload/iblock/218
/silovye_kabeli_s_izolyatsiey_iz_sshitogo_polietilena.pdf (accessed 12 January 2016). (Rus)
6. Chen C., Liu G., Lu G., Jin W. Influence of cable terminal stress cone install incorrectly // Proc. of IEEE 9-th
Internat. Conference on the Properties and Applications of Dielectric Materials, ICPADM 2009. – 19–23 July 2009. –
Pp. 63–65.
7. Comsol multiphysics modeling and simulation software – Available at: http://www.comsol.com/ (accessed
12 January 2016).
8. Li N., Deng G., Kong B. Defect morphological characteristic of cold-shrinkable cable terminal and its partial
discharge analysis based on finite element method // Internat. Journal of Advanced Research in Electrical, Electronics
and Instrumentation Engineering. – 2014. – Vol. 3. – Is. 1. – 8 p. – Available at: http://www.ijareeie.com/upload/
2014/january/1A_Defect.pdf (accessed 12 January 2016).
9. Olsson C.О. Modelling of thermal behaviour of polymer insulation at high electric dc field // Proc. of the 5-
th European Thermal-Sciences Conference. – The Netherlands, 18–22 May, 2008. – 8 p. – Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.491.3890&rep=rep1&type=pdf (accessed 12 January 2016).
10. Strobl R., Haverkamp W., Malin G., Fitzgerald F. Evolution of stress control systems in medium voltage
cable accessories // Proc. of Transmission and Distribution Conference and Exposition, IEEE/PES. – 2001. – Vol. 2. –
Pp. 843–848.
11. Väkeväinen K. The effect of material properties to electric field distribution in medium voltage under-
ground cable accessories // Thesis on Electrical Engineering. – 2010. – 84 p. – Available at: https://
www.theseus.fi/bitstream/handle/10024/21358/Vakevainen_Kenneth.pdf?sequence=1 (accessed 12 January 2016).
УДК 621.315.687.2: 004.94
РОЗПОДІЛ ЕЛЕКТРИЧНОГО ПОЛЯ В МУФТІ СИЛОВОГО КАБЕЛЯ
СЕРЕДНЬОЇ НАПРУГИ З УРАХУВАННЯМ ЗОВНІШНЬОГО
НАПІВПРОВІДНОГО ПОКРИТТЯ ЙОГО ПОЛІЕТИЛЕНОВОЇ ІЗОЛЯЦІЇ
Кучерява І.М., докт.техн.наук
Інститут електродинаміки НАН України,
пр. Перемоги, 56, Київ-57, 03680, Україна. E-mail: rb.irinan@gmail.com
Виконано комп'ютерне моделювання електричного поля в кінцевій муфті силового кабеля з ізоляцією зі зшито-
го поліетилену на середню напругу (10 кВ). У муфті для зниження нерівномірності поля застосовується труб-
ка-регулятор та мастика. Досліджено розподіл електричного поля при різних розташуваннях трубки відносно
зрізу напівпровідного шару поліетиленової ізоляції та мідного екрану кабеля. Проварійовано електричні влас-
тивості матеріалів регулюючої трубки і мастики, визначено їхній вплив на максимальні значення напружено-
сті електричного поля в ізоляції кабеля. Результати та застосовані підходи до дослідження електричного по-
ля можуть використовуватися при проектуванні муфт із урахуванням вибору матеріалів і взаємного розта-
шування конструктивних елементів. Бібл. 11, рис. 5, табл. 1.
Ключові слова: кабельна муфта, силовий кабель, поліетиленова ізоляція, напівпровідне покриття ізоляції, труб-
ка вирівнювання поля, мастика, комп'ютерне моделювання.
ISSN 1607-7970. Техн. електродинаміка. 2016. № 3 17
УДК 621.315.687.2: 004.94
РАСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В МУФТЕ СИЛОВОГО КАБЕЛЯ
СРЕДНЕГО НАПРЯЖЕНИЯ С УЧЕТОМ ВНЕШНЕГО ПОЛУПРОВОДЯЩЕГО
ПОКРЫТИЯ ЕГО ПОЛИЭТИЛЕНОВОЙ ИЗОЛЯЦИИ
Кучерявая И.Н., докт.техн.наук
Институт электродинамики НАН Украины,
пр. Победы, 56, Киев-57, 03680, Украина. E-mail: rb.irinan@gmail.com
Выполнено компьютерное моделирование электрического поля в концевой муфте силового кабеля с изоляцией
из сшитого полиэтилена на среднее напряжение (10 кВ), в которой в качестве средств снижения неравномер-
ности поля применены трубка-регулятор и выравнивающая мастика. Исследовано распределение электриче-
ского поля при различных расположениях трубки относительно среза полупроводящего слоя полиэтиленовой
изоляции и медного экрана кабеля. Проварьированы электрические свойства материалов регулирующей трубки
и мастики, определено их влияние на максимальные значения напряженности электрического поля в изоляции
кабеля. Результаты и использованные подходы к исследованию электрического поля могут быть применены
при проектировании муфт с учетом выбора материалов и взаимного расположения конструктивных элемен-
тов. Библ. 11, рис. 5, табл. 1.
Ключевые слова: кабельная муфта, силовой кабель, полиэтиленовая изоляция, полупроводящее покрытие изо-
ляции, трубка выравнивания поля, мастика, компьютерное моделирование.
1. Кабельные муфты "Прогресс". Современные решения для кабельных сетей // Кабель-news. – 2009. –
№ 11. – C. 34–36.
2. Котов Р.В. Распределение электрического поля в кабельных муфтах холодной усадки // Электро. –
2006. – № 5. – С. 40–44. – http://www.elektro-journal.ru/archive/articles/556412394 (accessed 12 January 2016).
3. Кучерявая И.Н. Компьютерное исследование способов выравнивания электрического поля в муфтах
кабелей с полиэтиленовой изоляцией // Технічна електродинаміка. – 2016. – № 2. – С. 19–24.
4. Макаров Е.Ф. Справочник по электрическим сетям 0,4–35 кВ и 110–1150 кВ. – Т. 3. – М.: Папирус-
Про, 2004. – 688 с.
5. Силовые кабели среднего и высокого напряжения с изоляцией из сшитого полиэтилена. – ЗАТ Завод
"Южкабель". – г. Харьков, Украина. – 56 с. – http://www.elektal.com.ua/upload/iblock/218/silovye_kabeli_s_
izolyatsiey_iz_sshitogo_polietilena.pdf (accessed 12 January 2016).
6. Chen C., Liu G., Lu G., Jin W. Influence of cable terminal stress cone install incorrectly // Proc. of IEEE 9-th
Internat. Conference on the Properties and Applications of Dielectric Materials, ICPADM 2009. – 19–23 July 2009. –
Pp. 63–65.
7. Comsol multiphysics modeling and simulation software – http://www.comsol.com/ (accessed 12 January
2016).
8. Li N., Deng G., Kong B. Defect morphological characteristic of cold-shrinkable cable terminal and its partial
discharge analysis based on finite element method // Internat. Journal of Advanced Research in Electrical, Electronics
and Instrumentation Engineering. – 2014. – Vol. 3. – Is. 1. – 8 p.
http://www.ijareeie.com/upload/2014/january /1A_Defect.pdf (accessed 12 January 2016).
9. Olsson C.О. Modelling of thermal behaviour of polymer insulation at high electric dc field // Proc. of the 5-
th European Thermal-Sciences Conference. – The Netherlands, 18–22 May, 2008. – 8 p. – http://citeseerx.ist.psu.edu
/viewdoc/download?doi=10.1.1.491.3890&rep=rep1&type=pdf (accessed 12 January 2016).
10. Strobl R., Haverkamp W., Malin G., Fitzgerald F. Evolution of stress control systems in medium voltage
cable accessories // Proc. of Transmission and Distribution Conference and Exposition, IEEE/PES. – 2001. – Vol. 2. –
Pp. 843–848.
11. Väkeväinen K. The effect of material properties to electric field distribution in medium voltage under-
ground cable accessories // Thesis on Electrical Engineering. – 2010. – 84 p. – https://www.theseus.fi
/bitstream/handle/10024/21358/Vakevainen_Kenneth.pdf?sequence=1 (accessed 12 January 2016).
Надійшла 12.01.2016
Остаточний варіант 01.02.2016
|