Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range

A method has been elaborated to reconstruct the material absorption spectrum k(ω') in the ranges of fundamental excitations (ω') basing on the refractive index dispersion n(ω) in the material transparency range (ω). The method has been applied to evaluate of the linear dichroism Δk(ω'...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Functional Materials
Дата:2004
Автори: Andriyevsky, B.V., Romanyuk, M.O., Romanyuk, G.M.
Формат: Стаття
Мова:English
Опубліковано: НТК «Інститут монокристалів» НАН України 2004
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/134859
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range / B.V. Andriyevsky, M.O. Romanyuk , G.M. Romanyuk // Functional Materials. — 2004. — Т. 11, № 1. — С. 85-89. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-134859
record_format dspace
spelling Andriyevsky, B.V.
Romanyuk, M.O.
Romanyuk, G.M.
2018-06-14T10:18:40Z
2018-06-14T10:18:40Z
2004
Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range / B.V. Andriyevsky, M.O. Romanyuk , G.M. Romanyuk // Functional Materials. — 2004. — Т. 11, № 1. — С. 85-89. — Бібліогр.: 9 назв. — англ.
1027-5495
https://nasplib.isofts.kiev.ua/handle/123456789/134859
A method has been elaborated to reconstruct the material absorption spectrum k(ω') in the ranges of fundamental excitations (ω') basing on the refractive index dispersion n(ω) in the material transparency range (ω). The method has been applied to evaluate of the linear dichroism Δk(ω') spectra of K₂Ca(SO₄)₂-H₂O crystals (syngenite) proceeding from its birefringence dispersion Δn(ω). The Δk(ω') spectra of syngenite have been obtained and analyzed for several temperatures in the range of 293 to 450 K for mechanically free and uniaxially pressed (σ = 250 bar) samples.
Предложен метод реконструкции спектра поглощения материала k(ω') в областях фундаментальных возбуждений (ω') на основании дисперсии показателя преломления n(ω) в области прозрачности (ω). Метод применен для оценки спектра линейного дихроизма Δk(ω') кристалла K₂Ca(SO₄)₂-H₂O (сингенит) на основании дисперсии двулучепреломления Δn(ω). Полученные спектры Δk(ω') проанализированы для нескольких температур в области 293-450 K для механически ненапряженных и одноосно сжатых (σ = 250 бар) образцов.
Запропоновано метод реконструкції спектра поглинання матерiалуk(ω') в областях фундаментальних збуджень (ω') на основі дисперсії показника заломлення n(ω) в області прозорості (ω). Метод застосовано для оцінки спектра лінійного дихроїзму Δk(ω') кристалу K₂Ca(SO₄)₂-H₂O (сингеніт) на основі дисперсії двопроменезаломлення Δn(ω).Отримані спектри Δk(ω') проаналізовано для кількох температур в області 293-450 K для механічно ненапружених і одновісно стиснутих (σ = 250 бар) зразків.
en
НТК «Інститут монокристалів» НАН України
Functional Materials
Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range
Оцінка спектра фундаментального поглинанння матеріалу за дисперсию його показника заломлення в області прозорості
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range
spellingShingle Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range
Andriyevsky, B.V.
Romanyuk, M.O.
Romanyuk, G.M.
title_short Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range
title_full Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range
title_fullStr Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range
title_full_unstemmed Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range
title_sort evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range
author Andriyevsky, B.V.
Romanyuk, M.O.
Romanyuk, G.M.
author_facet Andriyevsky, B.V.
Romanyuk, M.O.
Romanyuk, G.M.
publishDate 2004
language English
container_title Functional Materials
publisher НТК «Інститут монокристалів» НАН України
format Article
title_alt Оцінка спектра фундаментального поглинанння матеріалу за дисперсию його показника заломлення в області прозорості
description A method has been elaborated to reconstruct the material absorption spectrum k(ω') in the ranges of fundamental excitations (ω') basing on the refractive index dispersion n(ω) in the material transparency range (ω). The method has been applied to evaluate of the linear dichroism Δk(ω') spectra of K₂Ca(SO₄)₂-H₂O crystals (syngenite) proceeding from its birefringence dispersion Δn(ω). The Δk(ω') spectra of syngenite have been obtained and analyzed for several temperatures in the range of 293 to 450 K for mechanically free and uniaxially pressed (σ = 250 bar) samples. Предложен метод реконструкции спектра поглощения материала k(ω') в областях фундаментальных возбуждений (ω') на основании дисперсии показателя преломления n(ω) в области прозрачности (ω). Метод применен для оценки спектра линейного дихроизма Δk(ω') кристалла K₂Ca(SO₄)₂-H₂O (сингенит) на основании дисперсии двулучепреломления Δn(ω). Полученные спектры Δk(ω') проанализированы для нескольких температур в области 293-450 K для механически ненапряженных и одноосно сжатых (σ = 250 бар) образцов. Запропоновано метод реконструкції спектра поглинання матерiалуk(ω') в областях фундаментальних збуджень (ω') на основі дисперсії показника заломлення n(ω) в області прозорості (ω). Метод застосовано для оцінки спектра лінійного дихроїзму Δk(ω') кристалу K₂Ca(SO₄)₂-H₂O (сингеніт) на основі дисперсії двопроменезаломлення Δn(ω).Отримані спектри Δk(ω') проаналізовано для кількох температур в області 293-450 K для механічно ненапружених і одновісно стиснутих (σ = 250 бар) зразків.
issn 1027-5495
url https://nasplib.isofts.kiev.ua/handle/123456789/134859
citation_txt Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range / B.V. Andriyevsky, M.O. Romanyuk , G.M. Romanyuk // Functional Materials. — 2004. — Т. 11, № 1. — С. 85-89. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT andriyevskybv evaluationofthefundamentalabsorptionspectrumofamaterialbyitsrefractiveindexdispersioninthetransparencyrange
AT romanyukmo evaluationofthefundamentalabsorptionspectrumofamaterialbyitsrefractiveindexdispersioninthetransparencyrange
AT romanyukgm evaluationofthefundamentalabsorptionspectrumofamaterialbyitsrefractiveindexdispersioninthetransparencyrange
AT andriyevskybv ocínkaspektrafundamentalʹnogopoglinannnâmateríaluzadispersiûiogopokaznikazalomlennâvoblastíprozorostí
AT romanyukmo ocínkaspektrafundamentalʹnogopoglinannnâmateríaluzadispersiûiogopokaznikazalomlennâvoblastíprozorostí
AT romanyukgm ocínkaspektrafundamentalʹnogopoglinannnâmateríaluzadispersiûiogopokaznikazalomlennâvoblastíprozorostí
first_indexed 2025-11-27T02:24:11Z
last_indexed 2025-11-27T02:24:11Z
_version_ 1850793905336877056
fulltext (YDOXDWLRQ�RI�WKH�IXQGDPHQWDO�DEVRUSWLRQVSHFWUXP�RI�D�PDWHULDO�E\�LWV�UHIUDFWLYH�LQGH[GLVSHUVLRQ�LQ�WKH�WUDQVSDUHQF\�UDQJH %�9�$QGUL\HYVN\��0�2�5RPDQ\XN ��*�0�5RPDQ\XN )DFXOW\�RI�(OHFWURQLFV��7HFKQLFDO�8QLYHUVLW\�RI�.RV]DOLQ����3DUW\]DQWRZ�6W����������.RV]DOLQ��3RODQG ,�)UDQNR�1DWLRQDO�8QLYHUVLW\�RI�/YLY���.\U\OD�L�0HIRGL\D�6W���������/YLY��8NUDLQH ,QVWLWXWH�IRU�3K\VLFDO�2SWLFV�����'UDJRPDQRYD�6W��������/YLY��8NUDLQH $�PHWKRG�KDV�EHHQ�HODERUDWHG�WR�UHFRQVWUXFW�WKH�PDWHULDO�DEVRUSWLRQ�VSHFWUXP� N�ω′��LQWKH�UDQJHV�RI�IXQGDPHQWDO�H[FLWDWLRQV� �ω′��EDVLQJ�RQ�WKH�UHIUDFWLYH� LQGH[�GLVSHUVLRQ� Q�ω�LQ� WKH�PDWHULDO� WUDQVSDUHQF\� UDQJH� �ω��� 7KH�PHWKRG�KDV� EHHQ� DSSOLHG� WR� HYDOXDWH� RI� WKHOLQHDU�GLFKURLVP�∆N�ω′��VSHFWUD�RI�.�&D�62���⋅+�2 FU\VWDOV��V\QJHQLWH��SURFHHGLQJ�IURP�LWVELUHIULQJHQFH� GLVSHUVLRQ� ∆Q�ω��� 7KH� ∆N�ω′�� VSHFWUD� RI� V\QJHQLWH� KDYH� EHHQ� REWDLQHG� DQGDQDO\]HG�IRU�VHYHUDO�WHPSHUDWXUHV�LQ�WKH�UDQJH�RI�����WR�����.�IRU�PHFKDQLFDOO\�IUHH�DQGXQLD[LDOO\�SUHVVHG��σ �����EDU��VDPSOHV� �¯Ë�ãºÎËÓ� äË�º� ¯Ë}ºÓ°�¯�}�ÒÒ� °¹Ë}�¯È� ¹º�ãº�ËÓÒ«� äÈ�˯ÒÈãÈ� N�ω′�� m� º­ãȰ�«²Á�Ó�ÈäËÓ�Èã Ó©²� mºÏ­�Î�ËÓÒ®� �ω′�� ÓÈ� º°ÓºmÈÓÒÒ� �Ò°¹Ë¯°ÒÒ� ¹º}ÈÏÈ�Ëã«� ¹¯ËãºäãËÓÒ«Q�ω��m�º­ãȰ�Ò�¹¯ºÏ¯È�Óº°�Ò��ω���lË�º� ¹¯ÒäËÓËÓ��ã«�º�ËÓ}Ò�°¹Ë}�¯È�ãÒÓˮӺ�º��Ò²¯º�ÒÏäÈ�∆N�ω′��}¯Ò°�ÈããÈ�.�&D�62���⋅+�2 �°ÒÓ�ËÓÒ���ÓÈ�º°ÓºmÈÓÒÒ��Ò°¹Ë¯°ÒÒ��m�ã��˹¯Ë�ãºäãËÓÒ«�∆Q�ω����ºã��ËÓÓ©Ë�°¹Ë}�¯©�∆N�ω′��¹¯ºÈÓÈãÒÏÒ¯ºmÈÓ©��ã«�Ó˰}ºã }Ò²��Ëä¹Ë�¯È��¯�m�º­ãȰ�Ò����Ü����.��ã«�ä˲ÈÓÒ�˰}Ò�ÓËÓȹ¯«ÎËÓÓ©²�Ò�º�Óºº°Óº�°ÎÈ�©²��σ ����­È¯��º­¯ÈÏ�ºm� ,QYHVWLJDWLRQV� RI� WKH� RSWLFDO� DEVRUSWLRQVSHFWUD� RI� VROLGV� LQ� WKH� YDFXXP�XOWUDYLROHWSKRWRQ� HQHUJ\� UDQJH� �Kω !��� H9�� E\�PHDV�XULQJ� LWV� UHIOHFWDQFH� VSHFWUD� DUH� EXUGHQHGE\� VHYHUDO� WHFKQLFDO� GLIILFXOWLHV�� 7KHVH� DUHWKH�ODFN�RI�SHUIHFW�SRODUL]HUV��HYHQWXDO�FRQ �WDPLQDWLRQ� RI� WKH� VDPSOH� VXUIDFH� E\� UHVLG �XDO�PROHFXOHV�LQ�WKH�YDFXXP�FKDPEHU��HYHQ �WXDO� GHVWUXFWLRQ� RI� WKH�PDWHULDO� VXUIDFH� LQYDFXXP�� HVSHFLDOO\� DW� KLJK� WHPSHUDWXUHV�HWF��7KHUHIRUH��DOWHUQDWLYH�PHWKRGV�IRU�JHW �WLQJ�LQIRUPDWLRQ�RQ�WKHVH�VSHFWUD�DUH�GHVLU �DEOH��2QH�RI�VXFK�PHWKRGV�SURSRVHG�LQ�>�Ü�@LV�GHYHORSHG�LQ�WKLV�ZRUN�,Q� WKH� ZRUN�� ZH� KDYH� VWXGLHG� WKH� DS �SUR[LPDWH�VSHFWUD�RI�OLQHDU�IXQGDPHQWDO�GL �FKURLVP�� ∆N�ω′��� IRU� .�&D�62���⋅+�2 FU\V�WDOV� �V\QJHQLWH�� DW� GLIIHUHQW� WHPSHUDWXUHV DQG� PHFKDQLFDO� XQLD[LDO� SUHVVXUHV� UHFRQ �VWUXFWHG� RQ� WKH� EDVLV� RI� WKH� FRUUHVSRQGLQJELUHIULQJHQFH�GLVSHUVLRQV�∆Q�ω��LQ�WKH�WUDQV�SDUHQF\� UDQJH� >�@�� 7KH�PDLQ� SHFXOLDULW\� RIV\QJHQLWH�LV�WKH�FKDUDFWHULVWLF�WHPSHUDWXUH�LQGXFHG�WUDQVIRUPDWLRQ�RI�WKH�D[HV�RULHQWD �WLRQ�RI� LWV�RSWLFDO� LQGLFDWUL[��$W�URRP�WHP �SHUDWXUH�� RSWLFDO� D[HV� RI� WKH� FU\VWDO� OLH� LQLWV�;< SODQH��7KH�DQJOH�EHWZHHQ�WKHVH�RSWL �FDO� D[HV� GHFUHDVHV� DV� WKH� WHPSHUDWXUH� HOH �YDWHV��VR�WKDW�DW�����.��WKH�FU\VWDO�EHFRPHVXQLD[LDO� IRU� WKH� ZDYHOHQJWK� λ �������QPZLWK� WKH� RSWLFDO� D[LV� EHLQJ� SDUDOOHO� WR� WKHSULQFLSDO� QS KDOI�D[LV� RI� RSWLFDO� LQGLFDWUL[�7KLV� LV� WKH� VSHFWUDO� LQYHUVLRQ� RI� ELUHIULQ �JHQFH�VLJQ��6,%6���∆Q�ωL�� ����7KH�UHODWLRQVEHWZHHQ�WKH�RSWLFDO�LQGLFDWUL[�D[HV�� QS��QP�QJ�� DQG� FU\VWDOORJUDSKLF� D[HV�� ;��<�� =�� RI )XQFWLRQDO�0DWHULDOV�����1R��������� �������Û�,QVWLWXWH�IRU�6LQJOH�&U\VWDOV )XQFWLRQDO�PDWHULDOV������������� �� V\QJHQLWH� DUH� DV� IROORZV�� QS __�;�� QJ __�<�QP __�=��$W�KLJKHU�WHPSHUDWXUHV��7 !�����.�WKH�FU\VWDO�EHFRPHV�WZR�D[LDO�DJDLQ�ZLWK�WKHRSWLFDO�D[HV�DUUDQJHG�LQ�;= SODQH�>����@�7KH�UHIUDFWLYH�LQGH[�GLVSHUVLRQ� Q�ω��RI�DGLHOHFWULF� LQ� WKH� UDQJH� RI� LWV� RSWLFDO� WUDQV �SDUHQF\�� ω� ÷ ω��� LV� GHILQHG� E\� WKH� IUH�TXHQF\� GHSHQGHQFHV� RI� DEVRUSWLRQ� LQGH[N�ω′�� LQ� WKH� IUHTXHQF\� UDQJHV� RI� HOHFWURQ� ω′ !�ω��� DQG� SKRQRQ�� ω′ ��ω��� H[FLWDWLRQVDFFRUGLQJ�WR�WKH�NQRZQ�.UDPHUV�.URQLJ�UH �ODWLRQ�>�Ü�@� Q(ω) − � = � π∫� ∞ ω′N(ω′)Gω′ ω′� − ω� = = � π∫� ω� ω′N(ω′)Gω′ ω′� − ω� + � π∫ ω� ∞ ω′N(ω′)Gω′ ω′� − ω� � ��� 7KH� ELUHIULQJHQFH� GLVSHUVLRQ� ∆QMU�ω�� RIGLHOHFWULF� FU\VWDO�� WKDW� LV�� WKH�GLIIHUHQFH�RIUHIUDFWLYH� LQGH[� GLVSHUVLRQV� IRU� WZR� VSD �WLDOO\�RUWKRJRQDO�GLUHFWLRQV� M DQG� U RI� OLJKWSRODUL]DWLRQ�� ∆QMU�ω�� �QM�ω��Ü�QU�ω��� FDQ� EHSUHVHQWHG�LQ�WKH�IRUP�����XVLQJ�WKH�UHODWLRQ����� ∆QMU(ω) = � π ∫� ∞ ω′∆NMU(ω′)Gω′ ω′� − ω� � ��� ZKHUH� ∆NMU�ω′�� LV� WKH� IUHTXHQF\� GHSHQGHQFHRI�OLQHDU�IXQGDPHQWDO�GLFKURLVP�� ∆NMU�ω′�� NM�ω′��Ü�NU�ω′��7KH�UHODWLRQ�����FDQ�EH�FRQVLGHUHG�DV�WKHLQWHJUDO� HTXDWLRQ� ZKHQ� WKH� IUHTXHQF\� GH �SHQGHQFH� RI� OLQHDU� IXQGDPHQWDO� GLFKURLVP ∆NMU�ω′��KDV�WR�EH�GHWHUPLQHG�EDVLQJ�RQ�ELUH �IULQJHQFH� GLVSHUVLRQ� ∆QMU�ω�� LQ� WKH� FU\VWDOWUDQVSDUHQF\�UDQJH��6ROYLQJ�RI�WKLV�SUREOHPLV� RI� LQWHUHVW�� EHFDXVH� WKH�H[SHULPHQWDO�PHDV �XUHPHQW�RI�WKH�ELUHIULQJHQFH�GLVSHUVLRQ�∆QMU�ω�RI�GLHOHFWULF�FU\VWDO�LQ�LWV�WUDQVSDUHQF\�UDQJH�LVPXFK� HDVLHU� WKDQ� PHDVXUHPHQW� RI� WKH� IUH �TXHQF\�GHSHQGHQFH�RI�OLQHDU�GLFKURLVP� ∆NMU�ω′�LQ�WKH�UDQJHV�RI�SKRQRQ��ω′ ��ω� ≈ ����H9��DQGHOHFWURQ��ω′ !�ω� ≈ ��H9� H[FLWDWLRQV�7R�REWDLQ�WKH�∆NMU�ω′��VSHFWUXP��WKH�LQWH�JUDO� HTXDWLRQ� ���� KDV� WR� EH� VROYHG�� ,Q� WKHFDVH�RI� V\QJHQLWH�� WUDQVSDUHQW� LQ� WKH�UDQJHRI� ���� WR� ���� H9� >�@�� WKH� ELUHIULQJHQFH� GLV �SHUVLRQ�∆Q�ω��LV�IRUPHG�E\�WKH�HOHFWURQ��HO�� ω′ !����� H9�� DQG� SKRQRQ� �SK��� ω′ ������H9�SDUWV� RI� WKH� GLFKURLVP� VSHFWUXP� ∆N�ω′��7DNLQJ� LQWR� DFFRXQW� WKH� IUHTXHQF\� UHJLRQVRI�SKRQRQ����÷ ω���DQG�HOHFWURQ��ω′ !�ω���RS�WLFDO� DEVRUSWLRQ� DQG� WKH� FU\VWDO� WUDQVSDU � HQF\� UHJLRQ� RI� �ω� ÷ ω��� DQG� WKH� UHODWLRQ����� WKH� FRQGLWLRQ� IRU�6,%6�� ∆Q�ωL�� ���� FDQEH�ZULWWHQ�LQ�WKH�IROORZLQJ�IRUP� ∆QMU(ωL) = ∫� ω�ω′∆NMU(SK)(ω′)Gω′ ω′� − ω� + + ∫ ω� ∞ ω′∆NMU(HO)(ω′)Gω′ ω′� − ω� = �� ��� /HW�XV�HYDOXDWH�WKH�UHODWLRQ�EHWZHHQ�WZRLQWHJUDOV�LQ�WKH�HTXDWLRQ������)LUVW��RQH�FDQHVWLPDWH� WKH�PDJQLWXGHV� RI� WZR� VLPLODU� LQ �WHJUDOV�����DQG�����RI�WKH�UHODWLRQ�����IRU�WKHUHIUDFWLYLW\�>Q�ω��Ü��@��RULJLQDWLQJ�IURP�WKHSKRQRQ� DQG� HOHFWURQ� OLJKW� H[FLWDWLRQV�� UH �VSHFWLYHO\� ,SK = � π∫� ω� ω′N(ω′)Gω′ ω′� − ω� �� ��� ,HO = � π∫ω′N(ω′)Gω′ ω′� − ω� ω� ∞ ≈ � π∫ω′N(ω′)Gω′ ω′� − ω� ω� ω� � ��� ,Q� WKH� FDVH� RI� V\QJHQLWH�� WKH� IROORZLQJPDJQLWXGHV� RI� SDUDPHWHUV� LQ� WKH� HTXDWLRQV���� DQG� ���� FDQ� EH� WDNHQ�� ω� ����� H9� >�@� ω ����� H9� �λ ������� QP��� ω� ��� H9� ω� ����H9�>�@��,W�LV�NQRZQ�WKDW�WKH�W\SLFDODEVRUSWLRQ�LQGH[�YDOXH�IRU�LQVXODWRUV�LQ�WKHSKRQRQ� DEVRUSWLRQ� UDQJH�� �� WR� ���� H9�� LVN�SK� ≈ ��>�@��ZKLOH�WKH�VLPLODU�YDOXH� LQ�WKHUDQJH�RI�HOHFWURQ�DEVRUSWLRQ����WR����H9��LVN�HO� ≈ ����>�@��,Q�WKLV�FDVH��WKH�FDOFXODWLRQVXVLQJ�UHODWLRQV�����DQG�����KDYH�VKRZQ�WKDWWKH�FRQWULEXWLRQ�WR�WKH�UHIUDFWLYH�LQGH[�Q LQWKH� FU\VWDO� WUDQVSDUHQF\� UDQJH� IURP� WKHHOHFWURQ� H[FLWDWLRQV� H[FHHGV� RQH� RUGHU� RIPDJQLWXGH� WKH� FRUUHVSRQGLQJ� FRQWULEXWLRQIURP�WKH�SKRQRQ�RQHV� ,HO = � π �����OQω�� − ω� ω�� − ω� ≈ ���� ,SK = − � π ���OQ ω� ω� − ω�� ≈ −����� %DVLQJ� RQ� WKH� ODVW� HVWLPDWLRQ� DQG� VXJ �JHVWLQJ� WKH� VHOI�HYLGHQW� UHODWLRQVKLS ∆N�SK��∆N�HO�≈N�SK��N�HO��� RQH� FDQ� REWDLQ� DVLPLODU� UHVXOW� IRU� HVWLPDWLRQ� RI� WKH� UHODWLRQ %�9�$QGUL\HYVN\�HW�DO����(YDOXDWLRQ�RI�WKH�IXQGDPHQWDO��� �� )XQFWLRQDO�PDWHULDOV������������� EHWZHHQ� �SKRQRQ�� DQG� �HOHFWURQ�� SDUWV� RIWKH�H[SHULPHQWDOO\�REVHUYHG�ELUHIULQJHQFH� ∆Q� ∆Q(SK) �� ∆Q(HO)� ���ZKHUH�∆Q �∆Q�SK� ��∆Q�HO��7KH� UHODWLRQ� ���� FRQILUPV� WKH� VXJJHVWLRQWKDW� WKH� SULQFLSDO� SHFXOLDULWLHV� RI� WKH� ELUH �IULQJHQFH�GLVSHUVLRQ�∆Q�ω��RI�D�FU\VWDO��SDU�WLFXODUO\� WKH� FDVH� RI� ∆Q�ω�� ZLWK� 6,%6�� DUHGHILQHG� E\� WKH� SHFXOLDULWLHV� RI� WKH� HOHFWURQGLFKURLVP�∆N�HO��ω′��VSHFWUD�$V�LW�VHHQ�LQ�WKH�LQWURGXFLQJ�VHFWLRQ��WKHSKHQRPHQRQ�RI�ELUHIULQJHQFH�VLJQ�LQYHUVLRQIRU� V\QJHQLWH� LV� REVHUYHG� IRU� WKH� GLUHFWLRQRI�OLJKW�SURSDJDWLRQ�DORQJ� S�D[HV�RI�RSWLFDOLQGLFDWUL[�� ∆QJP ��� >����@�� �+HUHDIWHU�� WKHLQGLFHV� S��P��J FRUUHVSRQG� WR� WKH�DSSURSUL �DWH�GLUHFWLRQV�RI�WKH�RSWLFDO�LQGLFDWUL[�SULQ �FLSDO� D[HV� RI� V\QJHQLWH� DW� URRP� WHPSHUD �WXUH��� 7KH� VSHFWUDO� GHSHQGHQFH� RI� ELUHIULQ �JHQFH� ∆QJP�ω�� GLIIHUV� HVVHQWLDOO\� IURPVLPLODU�GHSHQGHQFHV�∆QJS�ω��DQG�∆QPS�ω��RE�WDLQHG� IRU� WZR� RWKHUV� RUWKRJRQDO� P�� DQGJ�GLUHFWLRQV� RI� OLJKW� SURSDJDWLRQ� �)LJ�����7KLV�LV�GLVSOD\HG�LQ�UHODWLYHO\�VPDOOHU�PDJ �QLWXGHV�RI�∆QJP DQG�LQ�QHJDWLYH�PDJQLWXGHRI� WKH� YDOXH� G��∆QJP��Gω� LQVWHDG� RI� SRVL�WLYH�PDJQLWXGHV� RI� WKH�YDOXHV� G��∆QJS��Gω�DQG� G��∆QPS��Gω� LQ� WKH� KLJK�IUHTXHQF\SDUW� RI�∆QMU�ω�� GHSHQGHQFHV��7KH� FDOFXODWHGDSSUR[LPDWH� VSHFWUD� RI� FRUUHVSRQGLQJ� IXQ �GDPHQWDO� GLFKURLVP� ∆NMU�ω′�� IRU� WKH� PH�FKDQLFDOO\� IUHH� VDPSOHV� DW� ���� .� DUH� SUH � VHQWHG� LQ� )LJ����� 7DNLQJ� LQWR� DFFRXQW� WKDW ∆QMU �Ü∆QUM DQG�∆NMU �Ü∆NUM��RQH�FDQ�QRWLFHWKDW�WKH�GLVSHUVLRQV�RI�∆QMU�ω��LQ�WKH�WUDQV�SDUHQF\� UDQJH�� ���� WR� ���� H9� �)LJ������ DQGWKH� FRUUHVSRQGLQJ� VSHFWUD� ∆NMU�ω′�� LQ� WKHIXQGDPHQWDO� DEVRUSWLRQ� UDQJH�� �� WR� ��� H9�)LJ������ DUH� RI� WKH� VDPH� VLJQ� IRU� WKH� WHP �SHUDWXUH�����.�([SHULPHQWDO� ELUHIULQJHQFH� GLVSHUVLRQV ∆QJP�ω�� IRU� GLIIHUHQW� WHPSHUDWXUHV� DQGXQLD[LDO� PHFKDQLFDO� VWUHVVHV� RI� V\QJHQLWHDUH� VKRZQ� LQ� )LJ����� $W� KLJKHU� WHPSHUD �WXUHV�� ���� DQG� ���� .�� WKH� 6,%6� SKHQRPH �QRQ� LQ� WKH� WUDQVSDUHQF\� UDQJH� �)LJ����DULVHV� WRJHWKHU� ZLWK� WKH� SKHQRPHQRQ� RIVSHFWUDO�LQYHUVLRQ�RI�GLFKURLVP�VLJQ��6,'6��LQWKH� IXQGDPHQWDO� DEVRUSWLRQ� UDQJH� ω′ !���H9�)LJ������7DNLQJ�LQWR�DFFRXQW�WKLV�UHVXOW�DQGWKH�HTXDWLRQ������RQH�FDQ�FRQFOXGH�WKDW�6,%6LQ�WKH�FU\VWDO�WUDQVSDUHQF\�UDQJH��∆QMU�ωL�� ���LV�D�VSHFLDO�FDVH�RI�VXFK�VSHFWUDO�GHSHQGHQFHRI� WKH� IXQGDPHQWDO� GLFKURLVP� ∆NMU�ω′��� IRUZKLFK�WKH�FRQWULEXWLRQV�WR�∆QMU�ω��IURP�WKHRI� IXQGDPHQWDO� H[FLWDWLRQ� VSHFWUDO� UDQJHVZLWK� SRVLWLYH� DQG� QHJDWLYH� ∆NMU�ω′�� YDOXHVDFFRUGLQJ� WR� .UDPHUV�.URQLJ� UHODWLRQ� ���EHFRPH�HTXDO�DW�WKH�SKRWRQ�HQHUJ\�ωL�7HPSHUDWXUH� GHSHQGHQFHV� RI� WKHV\QJHQLWH� GLFKURLVP� ∆NJP�7�� VKRZQ� LQ� )LJ��� FRUUHVSRQG� WR� WKH� GDWD� SUHVHQWHG� LQ� )LJ���� 7KH� VROXWLRQ� RI� WKH� HTXDWLRQ� ���� VKRZVWKDW� LQ� VSLWH� RI� WKH� UHODWLRQ� ∆N�SK� !�∆N�HO��)LJ������ WKH� FRUUHVSRQGLQJ� IUDFWLRQ� RI� WKH )LJ�����([SHULPHQWDO�OLQHDU�ELUHIULQJHQFH�GLV�SHUVLRQV�∆QMU�ω���M�U �S��P��J��RI�V\QJHQLWH�LQWKH�WUDQVSDUHQF\�UDQJH�DW�����.��Û�∆QJS��� Û�∆QPS���Û ∆QJP� )LJ����� &DOFXODWHG� DSSUR[LPDWH� OLQHDU� IXQGD�PHQWDO�GLFKURLVP�∆NMU�ω′���M�U �S��P��J��VSHF�WUD�RI�V\QJHQLWH�IRU�WKUHH�SULQFLSDO�GLUHFWLRQVRI�RSWLFDO�LQGLFDWUL[�DW�����.��Û�∆NJP���� Û�∆NPS���Û∆NSJ� %�9�$QGUL\HYVN\�HW�DO����(YDOXDWLRQ�RI�WKH�IXQGDPHQWDO��� )XQFWLRQDO�PDWHULDOV������������� �� SKRQRQ� SDUW� RI� WKH� ELUHIULQJHQFH� ∆Q�SK� LQWKH�H[SHULPHQWDOO\�REVHUYHG�∆Q YDOXH�GRHV�QRWH[FHHG� ������ ∆Q�SK�≈���∆Q�� 7KHUHIRUH�� LW� LVUHDVRQDEOH� WKDW� WKH� 6,%6� LQ� V\QJHQLWH� LV� GXHPDLQO\�WR�WKH�SHFXOLDULWLHV�RI�RSWLFDO�VSHFWUD�LQWKH�HOHFWURQ�H[FLWDWLRQ�UDQJH�ω′ !���H9�5HODWLYH� WHPSHUDWXUH� FKDQJH� RI� WKH ∆NJP�7�� GHSHQGHQFH� IRU� WKH� IUHTXHQF\� RISKRQRQ�H[FLWDWLRQ�ω′ �����H9�LV�WKH�VPDOOHVW� δ�∆NJP������� ∆NJP�����≈������ DV� FRPSDUHG� WRVLPLODU�YDOXHV�IRU�WKH�IUHTXHQFLHV�ω′ �����H9DQG� ω′ ���� H9� RI� HOHFWURQ� H[FLWDWLRQ� δ�∆NJP������∆NJP����� ≈ ������ δ�∆NJP�����∆NJP���� ≈ ������7KH�JUHDWHVW�WHPSHUDWXUH�FKDQJH�RIGLFKURLVP� FRUUHVSRQGLQJ� WR� WKH� HQHUJ\ ω′ ���� H9� LV� FRQQHFWHG�ZLWK� WKH� IDFW� WKDWWKLV�IUHTXHQF\�LV�FORVH�WR�WKH�UDQJH�RI�6,'6ORFDOL]DWLRQ�UHJLRQ��ω′L !����H9��)LJ������7KHUHVXOWV� GHVFULEHG� VKRZ� WKDW� WHPSHUDWXUHFKDQJHV� RI� WKH� ELUHIULQJHQFH� GLVSHUVLRQV ∆QJP�ω�� DUH� GXH� PDLQO\� WR� WHPSHUDWXUHFKDQJHV�RI�WKH�GLFKURLVP�VSHFWUD�∆NJP�ω′��LQWKH�HOHFWURQ�H[FLWDWLRQ�UDQJH��7KHVH�FKDQJHVFDQ�EH�PRVW�SUREDEO\�FDXVHG�E\�WHPSHUDWXUHFKDQJHV� RI� WKH� IUHTXHQF\�GHSHQGHQW� DQLVRW �URSLF�SRODUL]DELOLWLHV�RI� FKHPLFDO�ERQGV�GXHWR�FRUUHVSRQGLQJ�ERQG�OHQJWK�FKDQJHV�LQ�WKHFU\VWDO�3URFHHGLQJ� IURP� WKH� VSHFWUDO� GHSHQG �HQFHV� RI� GLFKURLVP� ∆NJP�ω′�� REWDLQHG�� WKH ELUHIULQJHQFH� GLVSHUVLRQV� ∆QJP�ω�� LQ� WKHZKROH�UDQJH�RI�FU\VWDO� WUDQVSDUHQF\������WR����H9��ZHUH�FDOFXODWHG�XVLQJ�WKH�UHODWLRQ�����7KHVH� FDOFXODWHG� ELUHIULQJHQFH� GLVSHUVLRQV ∆QJP�ω��DJUHH�ZLWK�FRUUHVSRQGLQJ�H[SHULPHQ�WDO�GDWD�WR�ZLWKLQ�����RI�WKH�∆Q YDOXH�$Q� XQLD[LDO� PHFKDQLFDO� VWUHVV� σ FDXVHVWKH� FRUUHVSRQGLQJ� FKDQJHV� RI� WKH� ELUHIULQ �JHQFH� δ�∆Q�� RI� WKH� VDPH� VLJQ� ZLWKLQ� WKHVSHFWUDO� UDQJH� ���� WR� ���� H9� �)LJ������ 7KHFRUUHVSRQGLQJ� FKDQJHV� RI� WKH� GLFKURLVPVSHFWUD�δ�∆N��LQ�WKH�UDQJH�RI���WR����H9�DUH )LJ�����([SHULPHQWDO�OLQHDU�ELUHIULQJHQFH�GLV�SHUVLRQV�∆QJP�ω��RI�V\QJHQLWH�LQ�WKH�WUDQVSDU�HQF\�UDQJH�IRU�GLIIHUHQW�GLUHFWLRQV�RI�XQLD[LDOVWUHVV�DW�������������������DQG��������� .��6ROLGOLQHV�FRUUHVSRQG�WR�PHFKDQLFDOO\�IUHH�VDPSOH� σ ��� Û� GRWWHG� FXUYHV�� WR� σP ����� EDU� ÜGDVKHG� FXUYHV�� WR� σJ Ü����� EDU� Û� VPDOOSRLQWV� )LJ����� &DOFXODWHG� WHPSHUDWXUH� GHSHQGHQFHVRI� WKH� OLQHDU� IXQGDPHQWDO�GLFKURLVP� ∆NJP�7�RI�V\QJHQLWH�DW�GLIIHUHQW�SKRWRQ�HQHUJLHV�������������������DQG����������H9��IRU�PHFKDQLFDOO\IUHH�VDPSOH�σ ��� )LJ����� &DOFXODWHG� DSSUR[LPDWH� OLQHDU� IXQGD�PHQWDO� GLFKURLVP� ∆NJP�ω′�� VSHFWUD� RIV\QJHQLWH�IRU�GLIIHUHQW�WHPSHUDWXUHV������������������DQG��������� .�DQG�VWUHVVHV��σ ���ÛGRWWHG� FXUYHV�� WR� σP ����� EDU� Ü� GDVKHGFXUYHV��WR�σJ Ü�����EDU�Û�VPDOO�SRLQWV�� %�9�$QGUL\HYVN\�HW�DO����(YDOXDWLRQ�RI�WKH�IXQGDPHQWDO��� �� )XQFWLRQDO�PDWHULDOV������������� VHHQ� LQ� )LJ����� $� FKDUDFWHULVWLF� IHDWXUH� RIWKH�∆N�ω′��VSHFWUD�IRU�GLIIHUHQW�VWUHVVHV�σ DWWKH� VDPH� WHPSHUDWXUH� 7 LV� WKH� SUHVHQFH� RIWZR� VHSDUDWH� VSHFWUDO� UHJLRQV� ZKHUH� WKHUDWHV� RI� PHFKDQLFDOO\� LQGXFHG� GLFKURLVPFKDQJH� δ(∆N) ⁄ δσ ω�7 DUH� FKDUDFWHUL]HG� E\WKH� RSSRVLWH� VLJQV�� 7KXV�� WKH� VDPH� VLJQ� RIWKH� PHFKDQLFDOO\� LQGXFHG� ELUHIULQJHQFHFKDQJHV�δ�∆Q��LQ�V\QJHQLWH�ZLWKLQ�WKH�WUDQV�SDUHQF\�UHJLRQ�RI�����WR�����H9�FRUUHVSRQGVWR� VSHFWUDOO\� GLIIHUHQW� VLJQV� RI� VLPLODU� GL �FKURLVP�FKDQJHV�δ�∆N��LQ�WKH�IXQGDPHQWDO�DE�VRUSWLRQ� UDQJH� RI� �� WR� ��� H9�� 7KLV� PD\� EHGXH�WR�VRPH�LQWHUDFWLRQ�EHWZHHQ�WKH�PHFKDQL �FDOO\� LQGXFHG�FKDQJHV� LQ�DQLVRWURSLF�HOHFWURQSRODUL]DELOLWLHV� RI� WKH� FKHPLFDO� ERQGV� FRUUH �VSRQGLQJ�WR�GLIIHUHQW�SKRWRQ�HQHUJLHV�7R�FRQFOXGH��WKH�SKHQRPHQRQ�RI�VSHFWUDOLQYHUVLRQ�RI�ELUHIULQJHQFH� VLJQ� LQ� WKH�FU\V �WDO� WUDQVSDUHQF\� UDQJH�� ∆QMU�ωL�� ���� LV� DSDUWLFXODU�FDVH� RI� VXFK� VSHFWUDO� GHSHQGHQFHRI� WKH� OLQHDU� IXQGDPHQWDO� GLFKURLVP ∆NMU�ω′��� ZKHUH� WKH� FRQWULEXWLRQV� WR� ∆QMU�ω�IURP� WKH� IXQGDPHQWDO� H[FLWDWLRQ� HQHUJ\UDQJHV� RI� SRVLWLYH� DQG� QHJDWLYH� YDOXHV� RI ∆N�ω′��DFFRUGLQJ�WR�.UDPHUV�.URQLJ�UHODWLRQDUH� HTXDO� WR� RQH� DQRWKHU� DW� WKH� SKRWRQ� HQ �HUJ\� ωL�� 7HPSHUDWXUH� FKDQJHV� LQ� WKH� ELUH �IULQJHQFH�GLVSHUVLRQV�∆Q�ω��RI�V\QJHQLWH�DUHGXH� PDLQO\� WR� WHPSHUDWXUH� FKDQJHV� RI� WKHOLQHDU� GLFKURLVP� VSHFWUD� ∆N�ω′�� LQ� WKH� HOHF�WURQ� H[FLWDWLRQ� UDQJH� RI� �� WR� ��� H9��7KHVHWHPSHUDWXUH� FKDQJHV� DUH� PRVW� SUREDEO\ FDXVHG� E\� FRUUHVSRQGLQJ� FKDQJHV� RI� FKHPL �FDO�ERQG�OHQJWKV�RI�RI�WKH�FU\VWDO��7KH�VDPHVLJQ�RI�WKH�PHFKDQLFDOO\�LQGXFHG�FKDQJHV�LQWKH� ELUHIULQJHQFH� δ�∆Q�� RI� V\QJHQLWH� LQ� WKHWUDQVSDUHQF\�UHJLRQ�RI�����WR�����H9�FRUUH �VSRQG� WR� VSHFWUDOO\�GLIIHUHQW� VLJQV� RI� VLPL �ODU�FKDQJHV�LQ�WKH�OLQHDU�GLFKURLVP�∆N�ω′��LQWKH� IXQGDPHQWDO� DEVRUSWLRQ� UDQJH� RI� �� WR���H9��7KLV�PD\�EH�GXH�WR�VRPH�LQWHUDFWLRQEHWZHHQ� WKH� PHFKDQLFDOO\� LQGXFHG� FKDQJHVRI� DQLVRWURSLF� HOHFWURQ� SRODUL]DELOLWLHV� RIFKHPLFDO� ERQGV� FRUUHVSRQGLQJ� WR� GLIIHUHQWSKRWRQ�HQHUJLHV�5HIHUHQFHV���%�9�$QGUL\HYVN\�� 1�$�5RPDQ\XN�� 2SWLND� L6SHNWU���������������������7�%�$QGUL\HYVN\��3URF��63,(����������������������%�9�$QGUL\HYVN\��0�2�5RPDQ\XN�� =K��)L]\FKQ�'RVOLG]K���������������������%�9�$QGUL\HYVN\�� 5�6�%UH]YLQ�� *�0�5R�PDQ\XN��8NU��)L]��=K����������������������1�$�5RPDQ\XN�� $�0�.RVWHWVNL�� 9�0�*DED� HWDO���2SWLND�L�6SHNWU����������������������-�7�.ORSURJJH�� 5�'�6FKXLOLQJE�� =�'LQJD� HWDO���9LEUDWLRQDO�6SHFWURVFRS\��������������������1�$�5RPDQ\XN�� %�9�$QGUL\HYVN\�� 8NU��)L]�=K���������������������0�%RUQ�� .�+XDQJ�� '\QDPLF� 7KHRU\� RI� &U\V�WDOOLQH�/DWWLFHV��2[IRUG�8QLY��3UHVV�� /RQGRQ����������)�:RRWHQ��2SWLFDO�3URSHUWLHV�RI�6ROLGV��$FDG�3UHVV��1HZ�<RUN�������� |�LÓ}È�°¹Ë}�¯È�Á�Ó�ÈäËÓ�Èã Óº�º�¹º�ãÒÓÈÓÓÓ«äÈ�˯LÈã��ÏÈ��Ò°¹Ë¯°L¼ ®º�º�¹º}ÈÏÓÒ}È�ÏÈãºäãËÓÓ«m�º­ãȰ�L�¹¯ºÏº¯º°�L r�{�kÓ�¯L¼m° }Ò®��l�|�cºäÈÓ }����l�cºäÈÓ }������� ~ȹ¯º¹ºÓºmÈÓº�äË�º� ¯Ë}ºÓ°�¯�}�L��°¹Ë}�¯È�¹º�ãÒÓÈÓÓ«�äÈ�˯LÈã��N�ω′��m�º­ãȰ�«²Á�Ó�ÈäËÓ�Èã ÓÒ²� Ï­��ÎËÓ �ω′�� ÓÈ� º°ÓºmL� �Ò°¹Ë¯°L�� ¹º}ÈÏÓÒ}È� ÏÈãºäãËÓÓ«� Q�ω�� m� º­�ãȰ�L�¹¯ºÏº¯º°�L��ω���lË�º� ÏȰ�º°ºmÈÓº��ã«�º�LÓ}Ò�°¹Ë}�¯È�ãLÓL®Óº�º��Ò²¯º�Ïä��∆N�ω′�}¯Ò°�Èã�� .�&D�62���⋅+�2 �°ÒÓ�ËÓL��� ÓÈ� º°ÓºmL� �Ò°¹Ë¯°L�� �mº¹¯ºäËÓËÏÈãºäãËÓÓ«� ∆Q�ω��|�¯ÒäÈÓL� °¹Ë}�¯Ò�∆N�ω′��¹¯ºÈÓÈãLϺmÈÓº��ã«�}Lã }º²��Ëä¹Ë¯È��¯�m� º­ãȰ�L����Ü����.�ã«�ä˲ÈÓL�Óº�ÓËÓȹ¯�ÎËÓÒ²�L�º�ÓºmL°Óº�°�Ò°Ó��Ò²��σ �����­È¯��ϯÈÏ}Lm� %�9�$QGUL\HYVN\�HW�DO����(YDOXDWLRQ�RI�WKH�IXQGDPHQWDO��� )XQFWLRQDO�PDWHULDOV������������� ��