Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range
A method has been elaborated to reconstruct the material absorption spectrum k(ω') in the ranges of fundamental excitations (ω') basing on the refractive index dispersion n(ω) in the material transparency range (ω). The method has been applied to evaluate of the linear dichroism Δk(ω'...
Збережено в:
| Опубліковано в: : | Functional Materials |
|---|---|
| Дата: | 2004 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
НТК «Інститут монокристалів» НАН України
2004
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/134859 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range / B.V. Andriyevsky, M.O. Romanyuk , G.M. Romanyuk // Functional Materials. — 2004. — Т. 11, № 1. — С. 85-89. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-134859 |
|---|---|
| record_format |
dspace |
| spelling |
Andriyevsky, B.V. Romanyuk, M.O. Romanyuk, G.M. 2018-06-14T10:18:40Z 2018-06-14T10:18:40Z 2004 Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range / B.V. Andriyevsky, M.O. Romanyuk , G.M. Romanyuk // Functional Materials. — 2004. — Т. 11, № 1. — С. 85-89. — Бібліогр.: 9 назв. — англ. 1027-5495 https://nasplib.isofts.kiev.ua/handle/123456789/134859 A method has been elaborated to reconstruct the material absorption spectrum k(ω') in the ranges of fundamental excitations (ω') basing on the refractive index dispersion n(ω) in the material transparency range (ω). The method has been applied to evaluate of the linear dichroism Δk(ω') spectra of K₂Ca(SO₄)₂-H₂O crystals (syngenite) proceeding from its birefringence dispersion Δn(ω). The Δk(ω') spectra of syngenite have been obtained and analyzed for several temperatures in the range of 293 to 450 K for mechanically free and uniaxially pressed (σ = 250 bar) samples. Предложен метод реконструкции спектра поглощения материала k(ω') в областях фундаментальных возбуждений (ω') на основании дисперсии показателя преломления n(ω) в области прозрачности (ω). Метод применен для оценки спектра линейного дихроизма Δk(ω') кристалла K₂Ca(SO₄)₂-H₂O (сингенит) на основании дисперсии двулучепреломления Δn(ω). Полученные спектры Δk(ω') проанализированы для нескольких температур в области 293-450 K для механически ненапряженных и одноосно сжатых (σ = 250 бар) образцов. Запропоновано метод реконструкції спектра поглинання матерiалуk(ω') в областях фундаментальних збуджень (ω') на основі дисперсії показника заломлення n(ω) в області прозорості (ω). Метод застосовано для оцінки спектра лінійного дихроїзму Δk(ω') кристалу K₂Ca(SO₄)₂-H₂O (сингеніт) на основі дисперсії двопроменезаломлення Δn(ω).Отримані спектри Δk(ω') проаналізовано для кількох температур в області 293-450 K для механічно ненапружених і одновісно стиснутих (σ = 250 бар) зразків. en НТК «Інститут монокристалів» НАН України Functional Materials Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range Оцінка спектра фундаментального поглинанння матеріалу за дисперсию його показника заломлення в області прозорості Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range |
| spellingShingle |
Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range Andriyevsky, B.V. Romanyuk, M.O. Romanyuk, G.M. |
| title_short |
Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range |
| title_full |
Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range |
| title_fullStr |
Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range |
| title_full_unstemmed |
Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range |
| title_sort |
evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range |
| author |
Andriyevsky, B.V. Romanyuk, M.O. Romanyuk, G.M. |
| author_facet |
Andriyevsky, B.V. Romanyuk, M.O. Romanyuk, G.M. |
| publishDate |
2004 |
| language |
English |
| container_title |
Functional Materials |
| publisher |
НТК «Інститут монокристалів» НАН України |
| format |
Article |
| title_alt |
Оцінка спектра фундаментального поглинанння матеріалу за дисперсию його показника заломлення в області прозорості |
| description |
A method has been elaborated to reconstruct the material absorption spectrum k(ω') in the ranges of fundamental excitations (ω') basing on the refractive index dispersion n(ω) in the material transparency range (ω). The method has been applied to evaluate of the linear dichroism Δk(ω') spectra of K₂Ca(SO₄)₂-H₂O crystals (syngenite) proceeding from its birefringence dispersion Δn(ω). The Δk(ω') spectra of syngenite have been obtained and analyzed for several temperatures in the range of 293 to 450 K for mechanically free and uniaxially pressed (σ = 250 bar) samples.
Предложен метод реконструкции спектра поглощения материала k(ω') в областях фундаментальных возбуждений (ω') на основании дисперсии показателя преломления n(ω) в области прозрачности (ω). Метод применен для оценки спектра линейного дихроизма Δk(ω') кристалла K₂Ca(SO₄)₂-H₂O (сингенит) на основании дисперсии двулучепреломления Δn(ω). Полученные спектры Δk(ω') проанализированы для нескольких температур в области 293-450 K для механически ненапряженных и одноосно сжатых (σ = 250 бар) образцов.
Запропоновано метод реконструкції спектра поглинання матерiалуk(ω') в областях фундаментальних збуджень (ω') на основі дисперсії показника заломлення n(ω) в області прозорості (ω). Метод застосовано для оцінки спектра лінійного дихроїзму Δk(ω') кристалу K₂Ca(SO₄)₂-H₂O (сингеніт) на основі дисперсії двопроменезаломлення Δn(ω).Отримані спектри Δk(ω') проаналізовано для кількох температур в області 293-450 K для механічно ненапружених і одновісно стиснутих (σ = 250 бар) зразків.
|
| issn |
1027-5495 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/134859 |
| citation_txt |
Evaluation of the fundamental absorption spectrum of a material by its refractive index dispersion in the transparency range / B.V. Andriyevsky, M.O. Romanyuk , G.M. Romanyuk // Functional Materials. — 2004. — Т. 11, № 1. — С. 85-89. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT andriyevskybv evaluationofthefundamentalabsorptionspectrumofamaterialbyitsrefractiveindexdispersioninthetransparencyrange AT romanyukmo evaluationofthefundamentalabsorptionspectrumofamaterialbyitsrefractiveindexdispersioninthetransparencyrange AT romanyukgm evaluationofthefundamentalabsorptionspectrumofamaterialbyitsrefractiveindexdispersioninthetransparencyrange AT andriyevskybv ocínkaspektrafundamentalʹnogopoglinannnâmateríaluzadispersiûiogopokaznikazalomlennâvoblastíprozorostí AT romanyukmo ocínkaspektrafundamentalʹnogopoglinannnâmateríaluzadispersiûiogopokaznikazalomlennâvoblastíprozorostí AT romanyukgm ocínkaspektrafundamentalʹnogopoglinannnâmateríaluzadispersiûiogopokaznikazalomlennâvoblastíprozorostí |
| first_indexed |
2025-11-27T02:24:11Z |
| last_indexed |
2025-11-27T02:24:11Z |
| _version_ |
1850793905336877056 |
| fulltext |
(YDOXDWLRQ�RI�WKH�IXQGDPHQWDO�DEVRUSWLRQVSHFWUXP�RI�D�PDWHULDO�E\�LWV�UHIUDFWLYH�LQGH[GLVSHUVLRQ�LQ�WKH�WUDQVSDUHQF\�UDQJH
%�9�$QGUL\HYVN\��0�2�5RPDQ\XN
��*�0�5RPDQ\XN
)DFXOW\�RI�(OHFWURQLFV��7HFKQLFDO�8QLYHUVLW\�RI�.RV]DOLQ����3DUW\]DQWRZ�6W����������.RV]DOLQ��3RODQG
,�)UDQNR�1DWLRQDO�8QLYHUVLW\�RI�/YLY���.\U\OD�L�0HIRGL\D�6W���������/YLY��8NUDLQH
,QVWLWXWH�IRU�3K\VLFDO�2SWLFV�����'UDJRPDQRYD�6W��������/YLY��8NUDLQH
$�PHWKRG�KDV�EHHQ�HODERUDWHG�WR�UHFRQVWUXFW�WKH�PDWHULDO�DEVRUSWLRQ�VSHFWUXP� N�ω′��LQWKH�UDQJHV�RI�IXQGDPHQWDO�H[FLWDWLRQV� �ω′��EDVLQJ�RQ�WKH�UHIUDFWLYH� LQGH[�GLVSHUVLRQ� Q�ω�LQ� WKH�PDWHULDO� WUDQVSDUHQF\� UDQJH� �ω��� 7KH�PHWKRG�KDV� EHHQ� DSSOLHG� WR� HYDOXDWH� RI� WKHOLQHDU�GLFKURLVP�∆N�ω′��VSHFWUD�RI�.�&D�62���⋅+�2 FU\VWDOV��V\QJHQLWH��SURFHHGLQJ�IURP�LWVELUHIULQJHQFH� GLVSHUVLRQ� ∆Q�ω��� 7KH� ∆N�ω′�� VSHFWUD� RI� V\QJHQLWH� KDYH� EHHQ� REWDLQHG� DQGDQDO\]HG�IRU�VHYHUDO�WHPSHUDWXUHV�LQ�WKH�UDQJH�RI�����WR�����.�IRU�PHFKDQLFDOO\�IUHH�DQGXQLD[LDOO\�SUHVVHG��σ �����EDU��VDPSOHV�
�¯Ë�ãºÎËÓ� äË�º� ¯Ë}ºÓ°�¯�}�ÒÒ� °¹Ë}�¯È� ¹º�ãº�ËÓÒ«� äÈ�˯ÒÈãÈ� N�ω′�� m� ºãȰ�«²Á�Ó�ÈäËÓ�Èã Ó©²� mºÏ�Î�ËÓÒ®� �ω′�� ÓÈ� º°ÓºmÈÓÒÒ� �Ò°¹Ë¯°ÒÒ� ¹º}ÈÏÈ�Ëã«� ¹¯ËãºäãËÓÒ«Q�ω��m�ºãȰ�Ò�¹¯ºÏ¯È�Óº°�Ò��ω���lË�º� ¹¯ÒäËÓËÓ��ã«�º�ËÓ}Ò�°¹Ë}�¯È�ãÒÓˮӺ�º��Ò²¯º�ÒÏäÈ�∆N�ω′��}¯Ò°�ÈããÈ�.�&D�62���⋅+�2 �°ÒÓ�ËÓÒ���ÓÈ�º°ÓºmÈÓÒÒ��Ò°¹Ë¯°ÒÒ��m�ã��˹¯Ë�ãºäãËÓÒ«�∆Q�ω����ºã��ËÓÓ©Ë�°¹Ë}�¯©�∆N�ω′��¹¯ºÈÓÈãÒÏÒ¯ºmÈÓ©��ã«�Ó˰}ºã }Ò²��Ëä¹Ë�¯È��¯�m�ºãȰ�Ò����Ü����.��ã«�ä˲ÈÓÒ�˰}Ò�ÓËÓȹ¯«ÎËÓÓ©²�Ò�º�Óºº°Óº�°ÎÈ�©²��σ ����ȯ��º¯ÈÏ�ºm�
,QYHVWLJDWLRQV� RI� WKH� RSWLFDO� DEVRUSWLRQVSHFWUD� RI� VROLGV� LQ� WKH� YDFXXP�XOWUDYLROHWSKRWRQ� HQHUJ\� UDQJH� �Kω !��� H9�� E\�PHDV�XULQJ� LWV� UHIOHFWDQFH� VSHFWUD� DUH� EXUGHQHGE\� VHYHUDO� WHFKQLFDO� GLIILFXOWLHV�� 7KHVH� DUHWKH�ODFN�RI�SHUIHFW�SRODUL]HUV��HYHQWXDO�FRQ �WDPLQDWLRQ� RI� WKH� VDPSOH� VXUIDFH� E\� UHVLG �XDO�PROHFXOHV�LQ�WKH�YDFXXP�FKDPEHU��HYHQ �WXDO� GHVWUXFWLRQ� RI� WKH�PDWHULDO� VXUIDFH� LQYDFXXP�� HVSHFLDOO\� DW� KLJK� WHPSHUDWXUHV�HWF��7KHUHIRUH��DOWHUQDWLYH�PHWKRGV�IRU�JHW �WLQJ�LQIRUPDWLRQ�RQ�WKHVH�VSHFWUD�DUH�GHVLU �DEOH��2QH�RI�VXFK�PHWKRGV�SURSRVHG�LQ�>�Ü�@LV�GHYHORSHG�LQ�WKLV�ZRUN�,Q� WKH� ZRUN�� ZH� KDYH� VWXGLHG� WKH� DS �SUR[LPDWH�VSHFWUD�RI�OLQHDU�IXQGDPHQWDO�GL �FKURLVP�� ∆N�ω′��� IRU� .�&D�62���⋅+�2 FU\V�WDOV� �V\QJHQLWH�� DW� GLIIHUHQW� WHPSHUDWXUHV
DQG� PHFKDQLFDO� XQLD[LDO� SUHVVXUHV� UHFRQ �VWUXFWHG� RQ� WKH� EDVLV� RI� WKH� FRUUHVSRQGLQJELUHIULQJHQFH�GLVSHUVLRQV�∆Q�ω��LQ�WKH�WUDQV�SDUHQF\� UDQJH� >�@�� 7KH�PDLQ� SHFXOLDULW\� RIV\QJHQLWH�LV�WKH�FKDUDFWHULVWLF�WHPSHUDWXUH�LQGXFHG�WUDQVIRUPDWLRQ�RI�WKH�D[HV�RULHQWD �WLRQ�RI� LWV�RSWLFDO� LQGLFDWUL[��$W�URRP�WHP �SHUDWXUH�� RSWLFDO� D[HV� RI� WKH� FU\VWDO� OLH� LQLWV�;< SODQH��7KH�DQJOH�EHWZHHQ�WKHVH�RSWL �FDO� D[HV� GHFUHDVHV� DV� WKH� WHPSHUDWXUH� HOH �YDWHV��VR�WKDW�DW�����.��WKH�FU\VWDO�EHFRPHVXQLD[LDO� IRU� WKH� ZDYHOHQJWK� λ �������QPZLWK� WKH� RSWLFDO� D[LV� EHLQJ� SDUDOOHO� WR� WKHSULQFLSDO� QS KDOI�D[LV� RI� RSWLFDO� LQGLFDWUL[�7KLV� LV� WKH� VSHFWUDO� LQYHUVLRQ� RI� ELUHIULQ �JHQFH�VLJQ��6,%6���∆Q�ωL�� ����7KH�UHODWLRQVEHWZHHQ�WKH�RSWLFDO�LQGLFDWUL[�D[HV�� QS��QP�QJ�� DQG� FU\VWDOORJUDSKLF� D[HV�� ;��<�� =�� RI
)XQFWLRQDO�0DWHULDOV�����1R��������� ��������,QVWLWXWH�IRU�6LQJOH�&U\VWDOV
)XQFWLRQDO�PDWHULDOV������������� ��
V\QJHQLWH� DUH� DV� IROORZV�� QS __�;�� QJ __�<�QP __�=��$W�KLJKHU�WHPSHUDWXUHV��7 !�����.�WKH�FU\VWDO�EHFRPHV�WZR�D[LDO�DJDLQ�ZLWK�WKHRSWLFDO�D[HV�DUUDQJHG�LQ�;= SODQH�>����@�7KH�UHIUDFWLYH�LQGH[�GLVSHUVLRQ� Q�ω��RI�DGLHOHFWULF� LQ� WKH� UDQJH� RI� LWV� RSWLFDO� WUDQV �SDUHQF\�� ω� ÷ ω��� LV� GHILQHG� E\� WKH� IUH�TXHQF\� GHSHQGHQFHV� RI� DEVRUSWLRQ� LQGH[N�ω′�� LQ� WKH� IUHTXHQF\� UDQJHV� RI� HOHFWURQ�
ω′ !�ω��� DQG� SKRQRQ�� ω′ ��ω��� H[FLWDWLRQVDFFRUGLQJ�WR�WKH�NQRZQ�.UDPHUV�.URQLJ�UH �ODWLRQ�>�Ü�@�
Q(ω) − � = �
π∫�
∞
ω′N(ω′)Gω′
ω′� − ω� =
= �
π∫�
ω�
ω′N(ω′)Gω′
ω′� − ω� + �
π∫
ω�
∞
ω′N(ω′)Gω′
ω′� − ω� �
���
7KH� ELUHIULQJHQFH� GLVSHUVLRQ� ∆QMU�ω�� RIGLHOHFWULF� FU\VWDO�� WKDW� LV�� WKH�GLIIHUHQFH�RIUHIUDFWLYH� LQGH[� GLVSHUVLRQV� IRU� WZR� VSD �WLDOO\�RUWKRJRQDO�GLUHFWLRQV� M DQG� U RI� OLJKWSRODUL]DWLRQ�� ∆QMU�ω�� �QM�ω��Ü�QU�ω��� FDQ� EHSUHVHQWHG�LQ�WKH�IRUP�����XVLQJ�WKH�UHODWLRQ�����
∆QMU(ω) = �
π ∫�
∞ ω′∆NMU(ω′)Gω′
ω′� − ω� � ���
ZKHUH� ∆NMU�ω′�� LV� WKH� IUHTXHQF\� GHSHQGHQFHRI�OLQHDU�IXQGDPHQWDO�GLFKURLVP�� ∆NMU�ω′�� NM�ω′��Ü�NU�ω′��7KH�UHODWLRQ�����FDQ�EH�FRQVLGHUHG�DV�WKHLQWHJUDO� HTXDWLRQ� ZKHQ� WKH� IUHTXHQF\� GH �SHQGHQFH� RI� OLQHDU� IXQGDPHQWDO� GLFKURLVP
∆NMU�ω′��KDV�WR�EH�GHWHUPLQHG�EDVLQJ�RQ�ELUH �IULQJHQFH� GLVSHUVLRQ� ∆QMU�ω�� LQ� WKH� FU\VWDOWUDQVSDUHQF\�UDQJH��6ROYLQJ�RI�WKLV�SUREOHPLV� RI� LQWHUHVW�� EHFDXVH� WKH�H[SHULPHQWDO�PHDV �XUHPHQW�RI�WKH�ELUHIULQJHQFH�GLVSHUVLRQ�∆QMU�ω�RI�GLHOHFWULF�FU\VWDO�LQ�LWV�WUDQVSDUHQF\�UDQJH�LVPXFK� HDVLHU� WKDQ� PHDVXUHPHQW� RI� WKH� IUH �TXHQF\�GHSHQGHQFH�RI�OLQHDU�GLFKURLVP� ∆NMU�ω′�LQ�WKH�UDQJHV�RI�SKRQRQ��ω′ ��ω� ≈ ����H9��DQGHOHFWURQ��ω′ !�ω� ≈ ��H9� H[FLWDWLRQV�7R�REWDLQ�WKH�∆NMU�ω′��VSHFWUXP��WKH�LQWH�JUDO� HTXDWLRQ� ���� KDV� WR� EH� VROYHG�� ,Q� WKHFDVH�RI� V\QJHQLWH�� WUDQVSDUHQW� LQ� WKH�UDQJHRI� ���� WR� ���� H9� >�@�� WKH� ELUHIULQJHQFH� GLV �SHUVLRQ�∆Q�ω��LV�IRUPHG�E\�WKH�HOHFWURQ��HO��
ω′ !����� H9�� DQG� SKRQRQ� �SK��� ω′ ������H9�SDUWV� RI� WKH� GLFKURLVP� VSHFWUXP� ∆N�ω′��7DNLQJ� LQWR� DFFRXQW� WKH� IUHTXHQF\� UHJLRQVRI�SKRQRQ����÷ ω���DQG�HOHFWURQ��ω′ !�ω���RS�WLFDO� DEVRUSWLRQ� DQG� WKH� FU\VWDO� WUDQVSDU �
HQF\� UHJLRQ� RI� �ω� ÷ ω��� DQG� WKH� UHODWLRQ����� WKH� FRQGLWLRQ� IRU�6,%6�� ∆Q�ωL�� ���� FDQEH�ZULWWHQ�LQ�WKH�IROORZLQJ�IRUP�
∆QMU(ωL) = ∫�
ω�ω′∆NMU(SK)(ω′)Gω′
ω′� − ω� +
+ ∫
ω�
∞ ω′∆NMU(HO)(ω′)Gω′
ω′� − ω� = ��
���
/HW�XV�HYDOXDWH�WKH�UHODWLRQ�EHWZHHQ�WZRLQWHJUDOV�LQ�WKH�HTXDWLRQ������)LUVW��RQH�FDQHVWLPDWH� WKH�PDJQLWXGHV� RI� WZR� VLPLODU� LQ �WHJUDOV�����DQG�����RI�WKH�UHODWLRQ�����IRU�WKHUHIUDFWLYLW\�>Q�ω��Ü��@��RULJLQDWLQJ�IURP�WKHSKRQRQ� DQG� HOHFWURQ� OLJKW� H[FLWDWLRQV�� UH �VSHFWLYHO\�
,SK = �
π∫�
ω�
ω′N(ω′)Gω′
ω′� − ω� �� ���
,HO = �
π∫ω′N(ω′)Gω′
ω′� − ω�
ω�
∞
≈ �
π∫ω′N(ω′)Gω′
ω′� − ω�
ω�
ω� � ���
,Q� WKH� FDVH� RI� V\QJHQLWH�� WKH� IROORZLQJPDJQLWXGHV� RI� SDUDPHWHUV� LQ� WKH� HTXDWLRQV���� DQG� ���� FDQ� EH� WDNHQ�� ω� ����� H9� >�@�
ω ����� H9� �λ ������� QP��� ω� ��� H9�
ω� ����H9�>�@��,W�LV�NQRZQ�WKDW�WKH�W\SLFDODEVRUSWLRQ�LQGH[�YDOXH�IRU�LQVXODWRUV�LQ�WKHSKRQRQ� DEVRUSWLRQ� UDQJH�� �� WR� ���� H9�� LVN�SK� ≈ ��>�@��ZKLOH�WKH�VLPLODU�YDOXH� LQ�WKHUDQJH�RI�HOHFWURQ�DEVRUSWLRQ����WR����H9��LVN�HO� ≈ ����>�@��,Q�WKLV�FDVH��WKH�FDOFXODWLRQVXVLQJ�UHODWLRQV�����DQG�����KDYH�VKRZQ�WKDWWKH�FRQWULEXWLRQ�WR�WKH�UHIUDFWLYH�LQGH[�Q LQWKH� FU\VWDO� WUDQVSDUHQF\� UDQJH� IURP� WKHHOHFWURQ� H[FLWDWLRQV� H[FHHGV� RQH� RUGHU� RIPDJQLWXGH� WKH� FRUUHVSRQGLQJ� FRQWULEXWLRQIURP�WKH�SKRQRQ�RQHV�
,HO = �
π
�����OQω�� − ω�
ω�� − ω� ≈ ����
,SK = − �
π
���OQ ω�
ω� − ω�� ≈ −�����
%DVLQJ� RQ� WKH� ODVW� HVWLPDWLRQ� DQG� VXJ �JHVWLQJ� WKH� VHOI�HYLGHQW� UHODWLRQVKLS
∆N�SK��∆N�HO�≈N�SK��N�HO��� RQH� FDQ� REWDLQ� DVLPLODU� UHVXOW� IRU� HVWLPDWLRQ� RI� WKH� UHODWLRQ
%�9�$QGUL\HYVN\�HW�DO����(YDOXDWLRQ�RI�WKH�IXQGDPHQWDO���
�� )XQFWLRQDO�PDWHULDOV�������������
EHWZHHQ� �SKRQRQ�� DQG� �HOHFWURQ�� SDUWV� RIWKH�H[SHULPHQWDOO\�REVHUYHG�ELUHIULQJHQFH� ∆Q�
∆Q(SK) �� ∆Q(HO)� ���ZKHUH�∆Q �∆Q�SK� ��∆Q�HO��7KH� UHODWLRQ� ���� FRQILUPV� WKH� VXJJHVWLRQWKDW� WKH� SULQFLSDO� SHFXOLDULWLHV� RI� WKH� ELUH �IULQJHQFH�GLVSHUVLRQ�∆Q�ω��RI�D�FU\VWDO��SDU�WLFXODUO\� WKH� FDVH� RI� ∆Q�ω�� ZLWK� 6,%6�� DUHGHILQHG� E\� WKH� SHFXOLDULWLHV� RI� WKH� HOHFWURQGLFKURLVP�∆N�HO��ω′��VSHFWUD�$V�LW�VHHQ�LQ�WKH�LQWURGXFLQJ�VHFWLRQ��WKHSKHQRPHQRQ�RI�ELUHIULQJHQFH�VLJQ�LQYHUVLRQIRU� V\QJHQLWH� LV� REVHUYHG� IRU� WKH� GLUHFWLRQRI�OLJKW�SURSDJDWLRQ�DORQJ� S�D[HV�RI�RSWLFDOLQGLFDWUL[�� ∆QJP ��� >����@�� �+HUHDIWHU�� WKHLQGLFHV� S��P��J FRUUHVSRQG� WR� WKH�DSSURSUL �DWH�GLUHFWLRQV�RI�WKH�RSWLFDO�LQGLFDWUL[�SULQ �FLSDO� D[HV� RI� V\QJHQLWH� DW� URRP� WHPSHUD �WXUH��� 7KH� VSHFWUDO� GHSHQGHQFH� RI� ELUHIULQ �JHQFH� ∆QJP�ω�� GLIIHUV� HVVHQWLDOO\� IURPVLPLODU�GHSHQGHQFHV�∆QJS�ω��DQG�∆QPS�ω��RE�WDLQHG� IRU� WZR� RWKHUV� RUWKRJRQDO� P�� DQGJ�GLUHFWLRQV� RI� OLJKW� SURSDJDWLRQ� �)LJ�����7KLV�LV�GLVSOD\HG�LQ�UHODWLYHO\�VPDOOHU�PDJ �QLWXGHV�RI�∆QJP DQG�LQ�QHJDWLYH�PDJQLWXGHRI� WKH� YDOXH� G��∆QJP��Gω� LQVWHDG� RI� SRVL�WLYH�PDJQLWXGHV� RI� WKH�YDOXHV� G��∆QJS��Gω�DQG� G��∆QPS��Gω� LQ� WKH� KLJK�IUHTXHQF\SDUW� RI�∆QMU�ω�� GHSHQGHQFHV��7KH� FDOFXODWHGDSSUR[LPDWH� VSHFWUD� RI� FRUUHVSRQGLQJ� IXQ �GDPHQWDO� GLFKURLVP� ∆NMU�ω′�� IRU� WKH� PH�FKDQLFDOO\� IUHH� VDPSOHV� DW� ���� .� DUH� SUH �
VHQWHG� LQ� )LJ����� 7DNLQJ� LQWR� DFFRXQW� WKDW
∆QMU �Ü∆QUM DQG�∆NMU �Ü∆NUM��RQH�FDQ�QRWLFHWKDW�WKH�GLVSHUVLRQV�RI�∆QMU�ω��LQ�WKH�WUDQV�SDUHQF\� UDQJH�� ���� WR� ���� H9� �)LJ������ DQGWKH� FRUUHVSRQGLQJ� VSHFWUD� ∆NMU�ω′�� LQ� WKHIXQGDPHQWDO� DEVRUSWLRQ� UDQJH�� �� WR� ��� H9�)LJ������ DUH� RI� WKH� VDPH� VLJQ� IRU� WKH� WHP �SHUDWXUH�����.�([SHULPHQWDO� ELUHIULQJHQFH� GLVSHUVLRQV
∆QJP�ω�� IRU� GLIIHUHQW� WHPSHUDWXUHV� DQGXQLD[LDO� PHFKDQLFDO� VWUHVVHV� RI� V\QJHQLWHDUH� VKRZQ� LQ� )LJ����� $W� KLJKHU� WHPSHUD �WXUHV�� ���� DQG� ���� .�� WKH� 6,%6� SKHQRPH �QRQ� LQ� WKH� WUDQVSDUHQF\� UDQJH� �)LJ����DULVHV� WRJHWKHU� ZLWK� WKH� SKHQRPHQRQ� RIVSHFWUDO�LQYHUVLRQ�RI�GLFKURLVP�VLJQ��6,'6��LQWKH� IXQGDPHQWDO� DEVRUSWLRQ� UDQJH� ω′ !���H9�)LJ������7DNLQJ�LQWR�DFFRXQW�WKLV�UHVXOW�DQGWKH�HTXDWLRQ������RQH�FDQ�FRQFOXGH�WKDW�6,%6LQ�WKH�FU\VWDO�WUDQVSDUHQF\�UDQJH��∆QMU�ωL�� ���LV�D�VSHFLDO�FDVH�RI�VXFK�VSHFWUDO�GHSHQGHQFHRI� WKH� IXQGDPHQWDO� GLFKURLVP� ∆NMU�ω′��� IRUZKLFK�WKH�FRQWULEXWLRQV�WR�∆QMU�ω��IURP�WKHRI� IXQGDPHQWDO� H[FLWDWLRQ� VSHFWUDO� UDQJHVZLWK� SRVLWLYH� DQG� QHJDWLYH� ∆NMU�ω′�� YDOXHVDFFRUGLQJ� WR� .UDPHUV�.URQLJ� UHODWLRQ� ���EHFRPH�HTXDO�DW�WKH�SKRWRQ�HQHUJ\�ωL�7HPSHUDWXUH� GHSHQGHQFHV� RI� WKHV\QJHQLWH� GLFKURLVP� ∆NJP�7�� VKRZQ� LQ� )LJ��� FRUUHVSRQG� WR� WKH� GDWD� SUHVHQWHG� LQ� )LJ���� 7KH� VROXWLRQ� RI� WKH� HTXDWLRQ� ���� VKRZVWKDW� LQ� VSLWH� RI� WKH� UHODWLRQ� ∆N�SK� !�∆N�HO��)LJ������ WKH� FRUUHVSRQGLQJ� IUDFWLRQ� RI� WKH
)LJ�����([SHULPHQWDO�OLQHDU�ELUHIULQJHQFH�GLV�SHUVLRQV�∆QMU�ω���M�U �S��P��J��RI�V\QJHQLWH�LQWKH�WUDQVSDUHQF\�UDQJH�DW�����.��Û�∆QJS��� Û�∆QPS���Û ∆QJP�
)LJ����� &DOFXODWHG� DSSUR[LPDWH� OLQHDU� IXQGD�PHQWDO�GLFKURLVP�∆NMU�ω′���M�U �S��P��J��VSHF�WUD�RI�V\QJHQLWH�IRU�WKUHH�SULQFLSDO�GLUHFWLRQVRI�RSWLFDO�LQGLFDWUL[�DW�����.��Û�∆NJP���� Û�∆NPS���Û∆NSJ�
%�9�$QGUL\HYVN\�HW�DO����(YDOXDWLRQ�RI�WKH�IXQGDPHQWDO���
)XQFWLRQDO�PDWHULDOV������������� ��
SKRQRQ� SDUW� RI� WKH� ELUHIULQJHQFH� ∆Q�SK� LQWKH�H[SHULPHQWDOO\�REVHUYHG�∆Q YDOXH�GRHV�QRWH[FHHG� ������ ∆Q�SK�≈���∆Q�� 7KHUHIRUH�� LW� LVUHDVRQDEOH� WKDW� WKH� 6,%6� LQ� V\QJHQLWH� LV� GXHPDLQO\�WR�WKH�SHFXOLDULWLHV�RI�RSWLFDO�VSHFWUD�LQWKH�HOHFWURQ�H[FLWDWLRQ�UDQJH�ω′ !���H9�5HODWLYH� WHPSHUDWXUH� FKDQJH� RI� WKH
∆NJP�7�� GHSHQGHQFH� IRU� WKH� IUHTXHQF\� RISKRQRQ�H[FLWDWLRQ�ω′ �����H9�LV�WKH�VPDOOHVW�
δ�∆NJP������� ∆NJP�����≈������ DV� FRPSDUHG� WRVLPLODU�YDOXHV�IRU�WKH�IUHTXHQFLHV�ω′ �����H9DQG� ω′ ���� H9� RI� HOHFWURQ� H[FLWDWLRQ�
δ�∆NJP������∆NJP����� ≈ ������ δ�∆NJP�����∆NJP����
≈ ������7KH�JUHDWHVW�WHPSHUDWXUH�FKDQJH�RIGLFKURLVP� FRUUHVSRQGLQJ� WR� WKH� HQHUJ\
ω′ ���� H9� LV� FRQQHFWHG�ZLWK� WKH� IDFW� WKDWWKLV�IUHTXHQF\�LV�FORVH�WR�WKH�UDQJH�RI�6,'6ORFDOL]DWLRQ�UHJLRQ��ω′L !����H9��)LJ������7KHUHVXOWV� GHVFULEHG� VKRZ� WKDW� WHPSHUDWXUHFKDQJHV� RI� WKH� ELUHIULQJHQFH� GLVSHUVLRQV
∆QJP�ω�� DUH� GXH� PDLQO\� WR� WHPSHUDWXUHFKDQJHV�RI�WKH�GLFKURLVP�VSHFWUD�∆NJP�ω′��LQWKH�HOHFWURQ�H[FLWDWLRQ�UDQJH��7KHVH�FKDQJHVFDQ�EH�PRVW�SUREDEO\�FDXVHG�E\�WHPSHUDWXUHFKDQJHV� RI� WKH� IUHTXHQF\�GHSHQGHQW� DQLVRW �URSLF�SRODUL]DELOLWLHV�RI� FKHPLFDO�ERQGV�GXHWR�FRUUHVSRQGLQJ�ERQG�OHQJWK�FKDQJHV�LQ�WKHFU\VWDO�3URFHHGLQJ� IURP� WKH� VSHFWUDO� GHSHQG �HQFHV� RI� GLFKURLVP� ∆NJP�ω′�� REWDLQHG�� WKH
ELUHIULQJHQFH� GLVSHUVLRQV� ∆QJP�ω�� LQ� WKHZKROH�UDQJH�RI�FU\VWDO� WUDQVSDUHQF\������WR����H9��ZHUH�FDOFXODWHG�XVLQJ�WKH�UHODWLRQ�����7KHVH� FDOFXODWHG� ELUHIULQJHQFH� GLVSHUVLRQV
∆QJP�ω��DJUHH�ZLWK�FRUUHVSRQGLQJ�H[SHULPHQ�WDO�GDWD�WR�ZLWKLQ�����RI�WKH�∆Q YDOXH�$Q� XQLD[LDO� PHFKDQLFDO� VWUHVV� σ FDXVHVWKH� FRUUHVSRQGLQJ� FKDQJHV� RI� WKH� ELUHIULQ �JHQFH� δ�∆Q�� RI� WKH� VDPH� VLJQ� ZLWKLQ� WKHVSHFWUDO� UDQJH� ���� WR� ���� H9� �)LJ������ 7KHFRUUHVSRQGLQJ� FKDQJHV� RI� WKH� GLFKURLVPVSHFWUD�δ�∆N��LQ�WKH�UDQJH�RI���WR����H9�DUH
)LJ�����([SHULPHQWDO�OLQHDU�ELUHIULQJHQFH�GLV�SHUVLRQV�∆QJP�ω��RI�V\QJHQLWH�LQ�WKH�WUDQVSDU�HQF\�UDQJH�IRU�GLIIHUHQW�GLUHFWLRQV�RI�XQLD[LDOVWUHVV�DW�������������������DQG��������� .��6ROLGOLQHV�FRUUHVSRQG�WR�PHFKDQLFDOO\�IUHH�VDPSOH�
σ ��� Û� GRWWHG� FXUYHV�� WR� σP ����� EDU� ÜGDVKHG� FXUYHV�� WR� σJ Ü����� EDU� Û� VPDOOSRLQWV�
)LJ����� &DOFXODWHG� WHPSHUDWXUH� GHSHQGHQFHVRI� WKH� OLQHDU� IXQGDPHQWDO�GLFKURLVP� ∆NJP�7�RI�V\QJHQLWH�DW�GLIIHUHQW�SKRWRQ�HQHUJLHV�������������������DQG����������H9��IRU�PHFKDQLFDOO\IUHH�VDPSOH�σ ���
)LJ����� &DOFXODWHG� DSSUR[LPDWH� OLQHDU� IXQGD�PHQWDO� GLFKURLVP� ∆NJP�ω′�� VSHFWUD� RIV\QJHQLWH�IRU�GLIIHUHQW�WHPSHUDWXUHV������������������DQG��������� .�DQG�VWUHVVHV��σ ���ÛGRWWHG� FXUYHV�� WR� σP ����� EDU� Ü� GDVKHGFXUYHV��WR�σJ Ü�����EDU�Û�VPDOO�SRLQWV��
%�9�$QGUL\HYVN\�HW�DO����(YDOXDWLRQ�RI�WKH�IXQGDPHQWDO���
�� )XQFWLRQDO�PDWHULDOV�������������
VHHQ� LQ� )LJ����� $� FKDUDFWHULVWLF� IHDWXUH� RIWKH�∆N�ω′��VSHFWUD�IRU�GLIIHUHQW�VWUHVVHV�σ DWWKH� VDPH� WHPSHUDWXUH� 7 LV� WKH� SUHVHQFH� RIWZR� VHSDUDWH� VSHFWUDO� UHJLRQV� ZKHUH� WKHUDWHV� RI� PHFKDQLFDOO\� LQGXFHG� GLFKURLVPFKDQJH� δ(∆N) ⁄ δσ ω�7 DUH� FKDUDFWHUL]HG� E\WKH� RSSRVLWH� VLJQV�� 7KXV�� WKH� VDPH� VLJQ� RIWKH� PHFKDQLFDOO\� LQGXFHG� ELUHIULQJHQFHFKDQJHV�δ�∆Q��LQ�V\QJHQLWH�ZLWKLQ�WKH�WUDQV�SDUHQF\�UHJLRQ�RI�����WR�����H9�FRUUHVSRQGVWR� VSHFWUDOO\� GLIIHUHQW� VLJQV� RI� VLPLODU� GL �FKURLVP�FKDQJHV�δ�∆N��LQ�WKH�IXQGDPHQWDO�DE�VRUSWLRQ� UDQJH� RI� �� WR� ��� H9�� 7KLV� PD\� EHGXH�WR�VRPH�LQWHUDFWLRQ�EHWZHHQ�WKH�PHFKDQL �FDOO\� LQGXFHG�FKDQJHV� LQ�DQLVRWURSLF�HOHFWURQSRODUL]DELOLWLHV� RI� WKH� FKHPLFDO� ERQGV� FRUUH �VSRQGLQJ�WR�GLIIHUHQW�SKRWRQ�HQHUJLHV�7R�FRQFOXGH��WKH�SKHQRPHQRQ�RI�VSHFWUDOLQYHUVLRQ�RI�ELUHIULQJHQFH� VLJQ� LQ� WKH�FU\V �WDO� WUDQVSDUHQF\� UDQJH�� ∆QMU�ωL�� ���� LV� DSDUWLFXODU�FDVH� RI� VXFK� VSHFWUDO� GHSHQGHQFHRI� WKH� OLQHDU� IXQGDPHQWDO� GLFKURLVP
∆NMU�ω′��� ZKHUH� WKH� FRQWULEXWLRQV� WR� ∆QMU�ω�IURP� WKH� IXQGDPHQWDO� H[FLWDWLRQ� HQHUJ\UDQJHV� RI� SRVLWLYH� DQG� QHJDWLYH� YDOXHV� RI
∆N�ω′��DFFRUGLQJ�WR�.UDPHUV�.URQLJ�UHODWLRQDUH� HTXDO� WR� RQH� DQRWKHU� DW� WKH� SKRWRQ� HQ �HUJ\� ωL�� 7HPSHUDWXUH� FKDQJHV� LQ� WKH� ELUH �IULQJHQFH�GLVSHUVLRQV�∆Q�ω��RI�V\QJHQLWH�DUHGXH� PDLQO\� WR� WHPSHUDWXUH� FKDQJHV� RI� WKHOLQHDU� GLFKURLVP� VSHFWUD� ∆N�ω′�� LQ� WKH� HOHF�WURQ� H[FLWDWLRQ� UDQJH� RI� �� WR� ��� H9��7KHVHWHPSHUDWXUH� FKDQJHV� DUH� PRVW� SUREDEO\
FDXVHG� E\� FRUUHVSRQGLQJ� FKDQJHV� RI� FKHPL �FDO�ERQG�OHQJWKV�RI�RI�WKH�FU\VWDO��7KH�VDPHVLJQ�RI�WKH�PHFKDQLFDOO\�LQGXFHG�FKDQJHV�LQWKH� ELUHIULQJHQFH� δ�∆Q�� RI� V\QJHQLWH� LQ� WKHWUDQVSDUHQF\�UHJLRQ�RI�����WR�����H9�FRUUH �VSRQG� WR� VSHFWUDOO\�GLIIHUHQW� VLJQV� RI� VLPL �ODU�FKDQJHV�LQ�WKH�OLQHDU�GLFKURLVP�∆N�ω′��LQWKH� IXQGDPHQWDO� DEVRUSWLRQ� UDQJH� RI� �� WR���H9��7KLV�PD\�EH�GXH�WR�VRPH�LQWHUDFWLRQEHWZHHQ� WKH� PHFKDQLFDOO\� LQGXFHG� FKDQJHVRI� DQLVRWURSLF� HOHFWURQ� SRODUL]DELOLWLHV� RIFKHPLFDO� ERQGV� FRUUHVSRQGLQJ� WR� GLIIHUHQWSKRWRQ�HQHUJLHV�5HIHUHQFHV���%�9�$QGUL\HYVN\�� 1�$�5RPDQ\XN�� 2SWLND� L6SHNWU���������������������7�%�$QGUL\HYVN\��3URF��63,(����������������������%�9�$QGUL\HYVN\��0�2�5RPDQ\XN�� =K��)L]\FKQ�'RVOLG]K���������������������%�9�$QGUL\HYVN\�� 5�6�%UH]YLQ�� *�0�5R�PDQ\XN��8NU��)L]��=K����������������������1�$�5RPDQ\XN�� $�0�.RVWHWVNL�� 9�0�*DED� HWDO���2SWLND�L�6SHNWU����������������������-�7�.ORSURJJH�� 5�'�6FKXLOLQJE�� =�'LQJD� HWDO���9LEUDWLRQDO�6SHFWURVFRS\��������������������1�$�5RPDQ\XN�� %�9�$QGUL\HYVN\�� 8NU��)L]�=K���������������������0�%RUQ�� .�+XDQJ�� '\QDPLF� 7KHRU\� RI� &U\V�WDOOLQH�/DWWLFHV��2[IRUG�8QLY��3UHVV�� /RQGRQ����������)�:RRWHQ��2SWLFDO�3URSHUWLHV�RI�6ROLGV��$FDG�3UHVV��1HZ�<RUN��������
|�LÓ}È�°¹Ë}�¯È�Á�Ó�ÈäËÓ�Èã Óº�º�¹º�ãÒÓÈÓÓÓ«äÈ�˯LÈã��ÏÈ��Ò°¹Ë¯°L¼
®º�º�¹º}ÈÏÓÒ}È�ÏÈãºäãËÓÓ«m�ºãȰ�L�¹¯ºÏº¯º°�L
r�{�kÓ�¯L¼m° }Ò®��l�|�cºäÈÓ
}����l�cºäÈÓ
}�������
~ȹ¯º¹ºÓºmÈÓº�äË�º� ¯Ë}ºÓ°�¯�}�L��°¹Ë}�¯È�¹º�ãÒÓÈÓÓ«�äÈ�˯LÈã��N�ω′��m�ºãȰ�«²Á�Ó�ÈäËÓ�Èã ÓÒ²� Ï��ÎËÓ �ω′�� ÓÈ� º°ÓºmL� �Ò°¹Ë¯°L�� ¹º}ÈÏÓÒ}È� ÏÈãºäãËÓÓ«� Q�ω�� m� º�ãȰ�L�¹¯ºÏº¯º°�L��ω���lË�º� ÏȰ�º°ºmÈÓº��ã«�º�LÓ}Ò�°¹Ë}�¯È�ãLÓL®Óº�º��Ò²¯º�Ïä��∆N�ω′�}¯Ò°�Èã�� .�&D�62���⋅+�2 �°ÒÓ�ËÓL��� ÓÈ� º°ÓºmL� �Ò°¹Ë¯°L�� �mº¹¯ºäËÓËÏÈãºäãËÓÓ«� ∆Q�ω��|�¯ÒäÈÓL� °¹Ë}�¯Ò�∆N�ω′��¹¯ºÈÓÈãLϺmÈÓº��ã«�}Lã }º²��Ëä¹Ë¯È��¯�m� ºãȰ�L����Ü����.�ã«�ä˲ÈÓL�Óº�ÓËÓȹ¯�ÎËÓÒ²�L�º�ÓºmL°Óº�°�Ò°Ó��Ò²��σ �����ȯ��ϯÈÏ}Lm�
%�9�$QGUL\HYVN\�HW�DO����(YDOXDWLRQ�RI�WKH�IXQGDPHQWDO���
)XQFWLRQDO�PDWHULDOV������������� ��
|