Плоска задача теорії пружності для квазіортотропного тіла з тріщинами

Записано основні співвідношення плоскої задачі теорії пружності для квазіортотропного тіла. Побудовано інтегральні зображення комплексних потенціалів напружень для квазіортотропної площини через стрибки переміщень на криволінійних розімкнених контурах. Першу основну задачу для площини з тріщинами зв...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Фізико-хімічна механіка матеріалів
Datum:2015
Hauptverfasser: Саврук, M.П., Чорненький, А.Б.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Фізико-механічний інститут ім. Г.В. Карпенка НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/135123
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Плоска задача теорії пружності для квазіортотропного тіла з тріщинами / M.П. Саврук, А.Б. Чорненький // Фізико-хімічна механіка матеріалів. — 2015. — Т. 51, № 3. — С. 17-24. — Бібліогр.: 21 назв. — укp.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-135123
record_format dspace
spelling Саврук, M.П.
Чорненький, А.Б.
2018-06-14T15:48:58Z
2018-06-14T15:48:58Z
2015
Плоска задача теорії пружності для квазіортотропного тіла з тріщинами / M.П. Саврук, А.Б. Чорненький // Фізико-хімічна механіка матеріалів. — 2015. — Т. 51, № 3. — С. 17-24. — Бібліогр.: 21 назв. — укp.
0430-6252
https://nasplib.isofts.kiev.ua/handle/123456789/135123
539.3
Записано основні співвідношення плоскої задачі теорії пружності для квазіортотропного тіла. Побудовано інтегральні зображення комплексних потенціалів напружень для квазіортотропної площини через стрибки переміщень на криволінійних розімкнених контурах. Першу основну задачу для площини з тріщинами зведено до сингулярних інтегральних рівнянь. Знайдено асимптотичний розподіл напружень біля вершини криволінійної тріщини. Записано аналітичний розв’язок задачі для довільно орієнтованої прямолінійної тріщини. Числово розраховано коефіцієнти інтенсивності напружень для параболічної тріщини та досліджено вплив на їх поведінку відношення основних модулів пружності матеріалу.
Записаны основные соотношения плоской задачи теории упругости для квазиортотропного тела. Построены интегральные представления комплексных потенциалов напряжений для квазиортотропной плоскости через скачки перемещений на криволинейных разомкнутых контурах. Первая основная задача для плоскости с трещинами сведена к сингулярным интегральным уравнениям. Приведено асимптотическое распределение напряжений около вершины трещины. Найдено аналитическое решение задачи для произвольно ориентированной прямолинейной трещины. Проведены численные расчеты коэффициентов интенсивности напряжений для параболической трещины и исследовано влияние на их поведение отношения основных модулей упругости материала.
The main relations of the plane problem of elasticity for a quasi-orthotropic body are written. Integral representation of the complex elastic potentials for a quasi-orthotropic plane in terms of displacement discontinuity on curvilinear open contours are constructed. The first basic problem for the plane with cracks is reduced to singular integral equations. Asymptotic stress distribution at the crack tip is presented. Analytical solution of the problem for an arbitrarily oriented rectilinear crack is obtained. Numerical calculations of the stress intensity factor for a parabolic crack are performed and influence of the ratio of elastic modules of the material on there behavior is investigated.
Робота виконана за проектом № 2011/03/B/ST8/06456, що фінансується Національним центром науки (Польща).
uk
Фізико-механічний інститут ім. Г.В. Карпенка НАН України
Фізико-хімічна механіка матеріалів
Плоска задача теорії пружності для квазіортотропного тіла з тріщинами
Плоская задача теории упругости для квазиортотропного тела с трещинами
Plane problem of the theory of elasticity for a quasi-orthotropic body with cracks
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Плоска задача теорії пружності для квазіортотропного тіла з тріщинами
spellingShingle Плоска задача теорії пружності для квазіортотропного тіла з тріщинами
Саврук, M.П.
Чорненький, А.Б.
title_short Плоска задача теорії пружності для квазіортотропного тіла з тріщинами
title_full Плоска задача теорії пружності для квазіортотропного тіла з тріщинами
title_fullStr Плоска задача теорії пружності для квазіортотропного тіла з тріщинами
title_full_unstemmed Плоска задача теорії пружності для квазіортотропного тіла з тріщинами
title_sort плоска задача теорії пружності для квазіортотропного тіла з тріщинами
author Саврук, M.П.
Чорненький, А.Б.
author_facet Саврук, M.П.
Чорненький, А.Б.
publishDate 2015
language Ukrainian
container_title Фізико-хімічна механіка матеріалів
publisher Фізико-механічний інститут ім. Г.В. Карпенка НАН України
format Article
title_alt Плоская задача теории упругости для квазиортотропного тела с трещинами
Plane problem of the theory of elasticity for a quasi-orthotropic body with cracks
description Записано основні співвідношення плоскої задачі теорії пружності для квазіортотропного тіла. Побудовано інтегральні зображення комплексних потенціалів напружень для квазіортотропної площини через стрибки переміщень на криволінійних розімкнених контурах. Першу основну задачу для площини з тріщинами зведено до сингулярних інтегральних рівнянь. Знайдено асимптотичний розподіл напружень біля вершини криволінійної тріщини. Записано аналітичний розв’язок задачі для довільно орієнтованої прямолінійної тріщини. Числово розраховано коефіцієнти інтенсивності напружень для параболічної тріщини та досліджено вплив на їх поведінку відношення основних модулів пружності матеріалу. Записаны основные соотношения плоской задачи теории упругости для квазиортотропного тела. Построены интегральные представления комплексных потенциалов напряжений для квазиортотропной плоскости через скачки перемещений на криволинейных разомкнутых контурах. Первая основная задача для плоскости с трещинами сведена к сингулярным интегральным уравнениям. Приведено асимптотическое распределение напряжений около вершины трещины. Найдено аналитическое решение задачи для произвольно ориентированной прямолинейной трещины. Проведены численные расчеты коэффициентов интенсивности напряжений для параболической трещины и исследовано влияние на их поведение отношения основных модулей упругости материала. The main relations of the plane problem of elasticity for a quasi-orthotropic body are written. Integral representation of the complex elastic potentials for a quasi-orthotropic plane in terms of displacement discontinuity on curvilinear open contours are constructed. The first basic problem for the plane with cracks is reduced to singular integral equations. Asymptotic stress distribution at the crack tip is presented. Analytical solution of the problem for an arbitrarily oriented rectilinear crack is obtained. Numerical calculations of the stress intensity factor for a parabolic crack are performed and influence of the ratio of elastic modules of the material on there behavior is investigated.
issn 0430-6252
url https://nasplib.isofts.kiev.ua/handle/123456789/135123
citation_txt Плоска задача теорії пружності для квазіортотропного тіла з тріщинами / M.П. Саврук, А.Б. Чорненький // Фізико-хімічна механіка матеріалів. — 2015. — Т. 51, № 3. — С. 17-24. — Бібліогр.: 21 назв. — укp.
work_keys_str_mv AT savrukmp ploskazadačateoríípružnostídlâkvazíortotropnogotílaztríŝinami
AT čornenʹkiiab ploskazadačateoríípružnostídlâkvazíortotropnogotílaztríŝinami
AT savrukmp ploskaâzadačateoriiuprugostidlâkvaziortotropnogotelastreŝinami
AT čornenʹkiiab ploskaâzadačateoriiuprugostidlâkvaziortotropnogotelastreŝinami
AT savrukmp planeproblemofthetheoryofelasticityforaquasiorthotropicbodywithcracks
AT čornenʹkiiab planeproblemofthetheoryofelasticityforaquasiorthotropicbodywithcracks
first_indexed 2025-12-07T17:48:02Z
last_indexed 2025-12-07T17:48:02Z
_version_ 1850872621638352896