Оптимизация процесса сходимости периодического решения при моделировании нелинейного поверхностного эффекта методом конечных элементов

Рассмотрена проблема повышения точности моделирования переменного магнитного поля в ферромагнитной среде методом конечных элементов путем учета высших временных гармоник поля и связаннаяс ней проблема обеспечения сходимости итерационного процесса. Описана численно-гармоническая модель, а также пре...

Full description

Saved in:
Bibliographic Details
Published in:Технічна електродинаміка
Date:2016
Main Author: Петухов, И.С.
Format: Article
Language:Russian
Published: Інститут електродинаміки НАН України 2016
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/135850
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Оптимизация процесса сходимости периодического решения при моделировании нелинейного поверхностного эффекта методом конечных элементов / И.С. Петухов // Технічна електродинаміка. — 2016. — № 4. — С. 26-28. — Бібліогр.: 4 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Рассмотрена проблема повышения точности моделирования переменного магнитного поля в ферромагнитной среде методом конечных элементов путем учета высших временных гармоник поля и связаннаяс ней проблема обеспечения сходимости итерационного процесса. Описана численно-гармоническая модель, а также предложенный алгоритм решения, основанный на модифицированном методе Ньютона. Для ускорения сходимости алгоритм включает процедуру оптимизации коэффициента демпфирования методом золотого сечения, а также свод эвристических правил, обеспечивающих надежность и скорость сходимости. При решении задачи о возбуждении магнитного поля в прямоугольной области синусоидальным током предложенный алгоритм показал сходимость в несколько раз лучшую, чем пакет COMSOL версий 3.1 и 3.5. Розглянуто проблему підвищення точності моделювання змінного магнітного поля у феромагнітному середовищі методом скінченних елементів шляхом врахування вищих часових гармонік поля та пов’язана з нею проблема забезпечення збіжності ітераційного процесу. Описано чисельно-гармонічну модель, а також запропоновано алгоритм рішення, заснований на модифікованому методі Ньютона. Для прискорення збіжності алгоритм містить процедуру оптимізації коефіцієнта демпфування за методом золотого перетину, а також набір правил, які забезпечують надійність та швидкість збіжності. За умов розв’язання задачі при збудженні магнітного поля в прямокутній області синусоїдальним струмом запропонований алгоритм показав у кілька разів кращу збіжність, ніж пакет COMSOL версій 3.1 та 3.5. The problem of accuracy modeling of the alternating magnetic field in the ferromagnetic medium by the finite element method by considering higher time harmonics of the field and the associated problem of ensuring the convergence of iterative process were considered. The numerically-harmonic model and the proposed solution algorithm based on the modified Newton's method were described. To accelerate the convergence the proposed algorithm includes the optimization procedure of damping coefficient by using Golden section method, as well as a set of heuristic rules that ensure reliability and speed of convergence. When solving the problem on excitation of magnetic field in rectangular domain with sinusoidal current waveform excitation the proposed algorithm showed convergence in several times better than the package COMSOL versions 3.1 and 3.5.
ISSN:1607-7970