Variation of selected cyclic properties depending on temperature of the test
Determination of fatigue life involves many factors, among them temperature in which the structure is working. Based on the literature data, the authors present the influence of temperature on cyclic properties of the selected materials. Further analysis proves that, in the case of alloyed steels, t...
Gespeichert in:
| Datum: | 2014 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-механічний інститут ім. Г.В. Карпенка НАН України
2014
|
| Schriftenreihe: | Фізико-хімічна механіка матеріалів |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/135904 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Variation of selected cyclic properties depending on temperature of the test / M. Kurek, T. Lagoda, K. Walat // Фізико-хімічна механіка матеріалів. — 2014. — Т. 50, № 4. — С. 69-74. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-135904 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1359042025-02-09T16:47:37Z Variation of selected cyclic properties depending on temperature of the test Зміна окремих циклічних властивостей залежно від температури випробувань Изменение отдельных циклических свойств в зависимости от температуры испытаний Kurek, M. Lagoda, T. Walat, K. Determination of fatigue life involves many factors, among them temperature in which the structure is working. Based on the literature data, the authors present the influence of temperature on cyclic properties of the selected materials. Further analysis proves that, in the case of alloyed steels, temperature affects some quantities characterizing fatigue parameters. Констатовано, що умови експлуатації елементів машин і пристроїв, які використовують в енергетиці, характеризуються змінами температури від кімнатної до дуже високої. Це призводить до істотної зміни механічних властивостей досліджуваних матеріалів. В результаті аналізу зміни вибраних циклічних властивостей залежно від температури встановлено основні закономірності для низьколегованих сталей і високолегованих чавунів. Констатировано, что условия эксплуатации элементов машин и устройств, которые используют в энергетике характеризуются изменениями температуры от комнатной до весьма высокой. Это приводит к существенному изменению механических свойств исследуемых материалов. В результате анализа изменения избранных циклических свойств в зависимости от температуры установлено основные закономерности для низколегированных сталей и высоколегированных чугунов. 2014 Article Variation of selected cyclic properties depending on temperature of the test / M. Kurek, T. Lagoda, K. Walat // Фізико-хімічна механіка матеріалів. — 2014. — Т. 50, № 4. — С. 69-74. — Бібліогр.: 14 назв. — англ. 0430-6252 https://nasplib.isofts.kiev.ua/handle/123456789/135904 en Фізико-хімічна механіка матеріалів application/pdf Фізико-механічний інститут ім. Г.В. Карпенка НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
Determination of fatigue life involves many factors, among them temperature in which the structure is working. Based on the literature data, the authors present the influence of temperature on cyclic properties of the selected materials. Further analysis proves that, in the case of alloyed steels, temperature affects some quantities characterizing fatigue parameters. |
| format |
Article |
| author |
Kurek, M. Lagoda, T. Walat, K. |
| spellingShingle |
Kurek, M. Lagoda, T. Walat, K. Variation of selected cyclic properties depending on temperature of the test Фізико-хімічна механіка матеріалів |
| author_facet |
Kurek, M. Lagoda, T. Walat, K. |
| author_sort |
Kurek, M. |
| title |
Variation of selected cyclic properties depending on temperature of the test |
| title_short |
Variation of selected cyclic properties depending on temperature of the test |
| title_full |
Variation of selected cyclic properties depending on temperature of the test |
| title_fullStr |
Variation of selected cyclic properties depending on temperature of the test |
| title_full_unstemmed |
Variation of selected cyclic properties depending on temperature of the test |
| title_sort |
variation of selected cyclic properties depending on temperature of the test |
| publisher |
Фізико-механічний інститут ім. Г.В. Карпенка НАН України |
| publishDate |
2014 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/135904 |
| citation_txt |
Variation of selected cyclic properties depending on temperature of the test / M. Kurek, T. Lagoda, K. Walat // Фізико-хімічна механіка матеріалів. — 2014. — Т. 50, № 4. — С. 69-74. — Бібліогр.: 14 назв. — англ. |
| series |
Фізико-хімічна механіка матеріалів |
| work_keys_str_mv |
AT kurekm variationofselectedcyclicpropertiesdependingontemperatureofthetest AT lagodat variationofselectedcyclicpropertiesdependingontemperatureofthetest AT walatk variationofselectedcyclicpropertiesdependingontemperatureofthetest AT kurekm zmínaokremihciklíčnihvlastivostejzaležnovídtemperaturiviprobuvanʹ AT lagodat zmínaokremihciklíčnihvlastivostejzaležnovídtemperaturiviprobuvanʹ AT walatk zmínaokremihciklíčnihvlastivostejzaležnovídtemperaturiviprobuvanʹ AT kurekm izmenenieotdelʹnyhcikličeskihsvojstvvzavisimostiottemperaturyispytanij AT lagodat izmenenieotdelʹnyhcikličeskihsvojstvvzavisimostiottemperaturyispytanij AT walatk izmenenieotdelʹnyhcikličeskihsvojstvvzavisimostiottemperaturyispytanij |
| first_indexed |
2025-11-28T02:19:58Z |
| last_indexed |
2025-11-28T02:19:58Z |
| _version_ |
1849998867609681920 |
| fulltext |
69
Ô³çèêî-õ³ì³÷íà ìåõàí³êà ìàòåð³àë³â. – 2014. – ¹ 4. – Physicochemical Mechanics of Materials
VARIATION OF SELECTED CYCLIC PROPERTIES
DEPENDING ON TEMPERATURE OF THE TEST
M. KUREK, T. LAGODA, K. WALAT
Opole University of Technology, Poland
Determination of fatigue life involves many factors, among them temperature in which the
structure is working. Based on the literature data, the authors present the influence of tem-
perature on cyclic properties of the selected materials. Further analysis proves that, in the
case of alloyed steels, temperature affects some quantities characterizing fatigue parameters.
Keywords: temperature, cyclic properties, fatigue.
The determination of the fatigue life of a structural component is a complex task.
It should include all the factors strongly influencing the fatigue life, namely the
structure shape, material properties, configuration and type of loadings, the structure
state and environmental factors like temperature. The impact of high temperature on
materials strength is the current problem [1, 2], as well as the analysis of fatigue life
and fatigue crack development, including determination of fatigue characteristics [3].
Alloyed steels, as one of the strongest materials, are used in machines and
structures elements that need to be durable and reliable. However, relatively high costs
of production prevent these steels from application on a wide scale.
According to [4], the fatigue limit of a component is a function of the fatigue limit
of material (σf 0) plus some modifying factors including the temperature factor:
0f f T a b c e fK K K K K K , (1)
where f is the fatigue limit of mechanical component; f 0 is the fatigue limit of a
material laboratory-tested sample.
In this equation the temperature factor KT can be calculated by using different
relations:
1 for 70 C,
3100
for 70 C.
2460 9
T
T
K
T
T
(2)
Other author [5] proposed that equations should follow the type:
( ) (20 C)/
iT u T uK , (3)
where ( )iu T is the ultimate tensile strength at test temperature and (20 C)u is the
ultimate tensile strength at room temperature.
Influence of temperature on the material properties, including cyclic ones, is of
key-importance in food, chemical and power industries. The materials considered in
this paper focus on high-alloy steels, which are applied in many elements and struc-
tures working at elevated temperatures, such as heat exchangers or tubes for heaters.
Authors analyse the influence of temperature on different cyclic properties of the selec-
ted materials, using literature data.
Experimental data. The data from literature [6–13] were used in the analysis.
The considered materials were divided into three groups: low-alloy steels (10CrMo910,
Corresponding author: M. KUREK, e-mail: ma.kurek@po.opole.pl
70
13CrMo44, 16CrMo54, and 30CrMoNiV511), high-alloy steels (X5NiCrTi2615,
X10CrNiTi189, X10CrNiNb189, X15Cr13) and cast irons (X15CrNiSi2520).
To describe the fatigue properties, a well-known equation proposed by Manson–
Coffin–Basquin (MCB) the strain-life curve (σa–Nf) is used:
, , , (2 ) (2 )f b c
a t a e a p f f fN N
E
, (4)
where a,t is total strain amplitude expressed by the sum of elastic strain amplitude a,e
and plastic strain amplitude a,p, 2Nf are a number of half-cycles, E is the Young’s
modulus, f, b are coefficient and exponent of the fatigue strength, f, c are coefficient
and exponent of the plastic strain.
Two other models are also widely applied, namely the model proposed by
Basquin [14] for the graph (a–Nf)
(2 )b
a f fN (5)
and the model proposed by Ramberg–Osgood (RO) for the cyclic hardening curve (a–a)
1/
, , , / /
n
a t a e a p a aE K
(6)
where a is stress amplitude, K is coefficient of cyclic strength, n is exponent of
cyclic hardening.
Equations (4) and (5) are used for determination of a number of cycles to the fa-
tigue crack initiation. Eq. (6) is widely applied for assessing the elastic-plastic stresses
and strains, including the material behaviour under cyclic loading.
Fig. 1. Manson Coffin–Basquin curve (a);
Basqin curve (b), cyclic strain curves
at different test temperature
for 30CrMoNiV511 (c).
According to Eq. (4), the relation between total strain amplitude and number of
cycles also changes for different temperatures, as shown in Fig. 1a. According to Eq.
(5), the relation between stress amplitude and number of cycles also changes for diffe-
rent temperatures, as shown in Fig. 1b. The relation between stress amplitude and total
strain amplitude for different temperature according to Eq. (6) is shown in Fig. 1c. At a
higher temperature the stress and strain distribution changes.
In the main part of this paper the cyclic yield point Re, the cyclic hardening expo-
nent n, the coefficient of cyclic strength K, the coefficient of fatigue strength f, the
71
exponent of fatigue strength b, the coefficient of fatigue plastic strain f and the
exponent of fatigue plastic strain c are considered.
Influence of test temperature T on cyclic properties for the selected structural
materials. Low-alloy steels. The influence of test temperature T on cyclic properties
for low-alloy steels is presented in Fig. 2.
Fig. 2. Influence of test temperature T on cyclic yield
point Re (a); coefficient of cyclic strength K (b);
coefficient of fatigue strength f (c); exponent
of cyclic hardening n (d); exponent of fatigue
strength b (e); exponent of fatigue plastic strain c (f);
coefficient of fatigue plastic strain (g) for low-alloy
steels: – 10CrMo910; – 13CrMo44;
– 16CrMo54; – 30CrMoNiV511.
Table 1. Coefficients from Eq. (7) for low-alloy, high-alloy steels and irons
Material a d e
10CrMo910 [3] –0.0004 0.0296 405.42
13CrMo44 [3] –0.0021 1.217 275.57
16CrMo54 [3] –0.001 0.396 364.65
30CrMoNiV511[4] –0.001 0.2713 491.32
X5NiCrTi2615 [5] –0.002 1.053 689.34
X10CrNiTi189 [6] 0.0003 –0.2781 233.22
X10CrNiNb189 [7] 0.0004 –0.3481 283.09
X15Cr13 [8] –0.0009 0.061 495.77
X15CrNiSi2520 [7, 10] –0.0002 0.1016 285.18
GG30 [9] –0.0021 1.3773 230.45
GGV-30 [9] 0.0009 –0.7161 454.01
GGG-40 [9] 0.0012 –0.803 469.84
GGG-60 [9] 0.0004 –0.2537 500.62
72
Table 1 contains values of the coefficients of the equation:
2
eR aT dT e (7)
for the considered group of the materials.
Table 2 contains values of coefficients of the equation:
K aT d (8)
for low-alloy steels.
From analysis of the data from Fig. 2,
it appears that cyclic properties vary to-
gether with increase of the test tempera-
ture. In most cases the considered material
constants (Re; K; n; f; c) decrease with
increasing temperature from the ambient
temperature to a higher one.
At the initial phase of temperature
increase, the cyclic parameters values often
increase and then slowly decrease, with the
exception of the coefficient of fatigue plastic strain f with its values increase.
High-alloyed steels. The influence of test temperature T on cyclic properties for
high-alloy steels is shown in Fig. 3. Table 3 contains values of the coefficients of the
equation:
K = aT 2 + dT + e. (9)
Fig. 3. Influence of test temperature T on cyclic
yield point Re (a); coefficient of cyclic strength
K (b); exponent of cyclic hardening n (c);
coefficient of fatigue strength f (d); exponent of
fatigue strength b (e); exponent of fatigue plastic
strain c (f); coefficient of fatigue plastic strain
f (g) for high-alloy steels: – X5NiCrTi2615;
– X10CrNiTi189; – X10CrNiNb189;
– X15Cr13; – X15CrNiSi2520.
Table 2. Coefficients from Eq. (8)
for low-alloy steels
Steel a d
10CrMo910 [3] –0.6 907,96
13CrMo44 [3] –0.711 999.05
16CrMo54 [3] –0.75 981.27
30CrMoNiV511 [4] –0.81 955.04
73
Table 3. Coefficients from Eq. (9) for high-alloy steels
Steel a d e
X5NiCrTi2615 [5] 0.0005 0.17 1613
X10CrNiTi189 [6] –0.028 17.49 1737.9
X10CrNiNb189 [7] –0.0119 12.47 1403
X15Cr13 [8] –0.0011 0.149 987.6
X15CrNiSi2520 [7, 10] –0.0046 1.1 2271.8
Based on the presented figures, it appears that the tested cyclic properties vary
also in the case of high-alloy steels. The cyclic parameters decrease as the test tempe-
rature increases, like in the case of low-alloy steels. In most cases, it concerns such
parameters as Re; K; f.
Cast iron. The Influence of test temperature T on cyclic properties for cast irons is
shown in Fig. 4. Table 1 contains coefficients of Eq. (7) for cast irons.
Fig. 4. Influence of test temperature T on cyclic
yield point Re (a); coefficient of cyclic strength K
(b); exponent of cyclic hardening n (c);
coefficient of fatigue strength f (d); exponent
of fatigue strength b (e); exponent of fatigue
plastic strain c (f); coefficient of fatigue plastic
strain f (g) for cast irons: – GG30;
– GGV-30; – GGV-40; – GGV-60.
For cast irons the test temperature does not influence the values of the parameters
Re; K; f; f and n. The mentioned properties do not vary or change their values in-
significantly when temperature increases. For the remaining cyclic properties the varia-
tion of the parameters depends on the test temperature.
From the analysis it appears that in the case of using the steel working at elevated
temperature and under variable loading it is necessary to include changes of fatigue
74
characteristics depending on temperature. It can be very important while assessing the
fatigue life of structures made of such steels.
CONCLUSIONS
The analysis of some cyclic properties variability depending on the temperature
for the selected structural materials is presented. From the analysis of the obtained
results, it appears that operation of machines and devices at elevated temperature can
cause the decrease of strength and reliability of the elements of machines and devices.
Cyclic properties of low-alloy steels such as Re; K; n; f; c decrease as the tempera-
ture increases (with the exception of fatigue plastic strain coefficient f , which in-
creases). Cyclic properties of high-alloy steels also vary depending on the test tempera-
ture. The material constants, such as Re; K; f, decrease as the test temperature in-
creases. No significant changes of cyclic parameters in cast irons were noted.
РЕЗЮМЕ. Констатовано, що умови експлуатації елементів машин і пристроїв, які ви-
користовують в енергетиці, характеризуються змінами температури від кімнатної до дуже
високої. Це призводить до істотної зміни механічних властивостей досліджуваних матеріа-
лів. В результаті аналізу зміни вибраних циклічних властивостей залежно від температури
встановлено основні закономірності для низьколегованих сталей і високолегованих чавунів.
РЕЗЮМЕ. Констатировано, что условия эксплуатации элементов машин и устройств,
которые используют в энергетике характеризуются изменениями температуры от комнат-
ной до весьма высокой. Это приводит к существенному изменению механических свойств
исследуемых материалов. В результате анализа изменения избранных циклических свой-
ств в зависимости от температуры установлено основные закономерности для низколеги-
рованных сталей и высоколегированных чугунов.
1. High-temperature hydrogen resistance of stainless steels / O. I. Balyts’kyi, V. I. Vytvyts’kyi,
I. M. Ivas’kevych et al. // Materials Science. – 2010. – 46, № 2. – P. 221–233.
2. Influence of temperature on the impact toughness and dynamic crack resistance of
25Kh1M1F steel / P. O. Marushchak, R. T. Bishchak, B. Gliha, and A. P. Sorochak
// Materials Science. – 2011. – 46, № 4. – P. 568–572.
3. Rozumek D. and Marciniak Z. Fatigue crack growth in AlCu4Mg1 under nonproportional
bending-with-torsion loading // Ibid. – 2011. – 46, № 5. – P. 685–694.
4. Costa N. and Silva F. S. On a new temperature factor to predict the fatigue limit at different
temperatures // Int. J. of Fatigue. – 2011. – 33. – P. 624–631.
5. Shigley J. E., Mischke C. R., and Budynas R. G. Mechanical engineering design. 7th ed.
– McGrawHill, 2003. – P. 332.
6. Elevated-Temperature Fatigue Properties of Engineering Materials. P. III / S. Yoshida, K. Ka-
nazawa, K. Yamaguchi et al. // Trans. of the Nat. Research Inst. F. Metals. – Tokyo, 1978.
7. Data Sheet on Elevated-Temperature, Time-Dependent Low-Cycle Fatigue Properties of
ASTM A470-8 (1Cr–1Mo–0.25V) Steel Forging for Turbine Rotors and Shafts / S. Nishiji-
ma et al. // Technical report No. 58, NRIM Fatigue Data Sheet, National Research Institute
for Metals, December 1987.
8. Elevated-Temperature Fatigue Properties of Engineering Materials. P. V / K. Kanazawa, K. Yama-
guchi, M. Sato et al. // Trans. of the Nat. Research Inst. F. Metals. – Tokyo. – 1978. – 20, № 6.
9. Fleischer H. and Frank J. Ermudungsverhalten des austenitischen Stahles X 8 CrNiTi 18 10
im Temperaturbereich bis 550C. – IfL-Mitteilungen, 1988. – 27. – P. 109–117.
10. Elevated-Temperature Fatigue Properties of Engineering Materials. P. II / K. Kanazawa, K. Yama-
guchi, M. Sato et al. // Trans. of the Nat. Research Inst. F. Metals. – Tokyo. – 1978. – 20, № 1.
11. Elevated-Temperature Fatigue Properties of Engineering Materials. P. IV / K. Kanazawa,
K. Yamaguchi, M. Sato et al. // Ibid. – Tokyo. – 1978. – 20, № 5.
12. Lang K. H. Das Ermudungsverhalten von GGG-60, GGG-40, GGV-30 und GG-30 in Tem-
peraturbereich 200C ≤ T ≤ 5000C. Dissertation, Universitat Karlsruhe, 1985.
13. Baumel A. and Seeger T. Material Data for Cyclic Loading // Materials Science Mono-
graphs, Vol 42A-E (1987), Supplement 1, (1990) Elsevier Science Publishers.
14. Kurek M., Łagoda T., and Katzy D. Comparison of Fatigue Characteristics of some Selected
Materials // Materials Testing. – 2014. – 56. – P. 92–95.
Received 10.08.2011
|