The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals

Green's function method is used for hexagonal crystals according to Lifshitz-Rosenzweig and Kröner. Analytical expressions have been derived for the energy of elastic interaction of radiation point defects with dislocation edge loops of two types: c-loop (in the basal plane; the Burger’s vector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2017
Hauptverfasser: Trotsenko, O.G., Ostapchuk, P.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/136012
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals / O.G. Trotsenko, P.N. Ostapchuk // Вопросы атомной науки и техники. — 2017. — № 2. — С. 83-90. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-136012
record_format dspace
spelling Trotsenko, O.G.
Ostapchuk, P.N.
2018-06-15T18:00:29Z
2018-06-15T18:00:29Z
2017
The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals / O.G. Trotsenko, P.N. Ostapchuk // Вопросы атомной науки и техники. — 2017. — № 2. — С. 83-90. — Бібліогр.: 17 назв. — англ.
1562-6016
PACS: 62.20.Dc; 62.20.Fe
https://nasplib.isofts.kiev.ua/handle/123456789/136012
Green's function method is used for hexagonal crystals according to Lifshitz-Rosenzweig and Kröner. Analytical expressions have been derived for the energy of elastic interaction of radiation point defects with dislocation edge loops of two types: c-loop (in the basal plane; the Burger’s vector bᴰ=½[0001]) and α-loop (in the plane {112¯0}, the Burger’s vector bᴰ=⅓[112¯0]). In the case of the basal loop an analogous expression is obtained by the independent solution of the equilibrium equations by the Eliot’s method. Numerical comparison of the expressions for zirconium showed complete identity of these approaches.
Методом функцій Гріна для гексагональних кристалів у підходах Ліфшиця-Розенцвейга і Кренера отримані аналітичні вирази енергії пружної взаємодії радіаційних точкових дефектів з дислокаційними крайовими петлями двох видів: c-петлею (базисна площина залягання, вектор Бюргерса bᴰ=½[0001]) і α-петлею (площина залягання {112¯0}, вектор Бюргерса bᴰ=⅓[112¯0]). У разі базисної петлі аналогічний вираз отримано незалежно рішенням рівнянь рівноваги методом Еліота. Чисельне порівняння отриманих результатів для цирконію показало повний збіг розглянутих підходів.
Методом функций Грина для гексагональных кристаллов в подходах Лифшица-Розенцвейга и Кренера получены аналитические выражения энергии упругого взаимодействия радиационных точечных дефектов с дислокационными краевыми петлями двух видов: c-петлей (базисная плоскость залегания, вектор Бюргерса bᴰ=½[0001]) и α-петлей (плоскость залегания {112¯0}, вектор Бюргерса bᴰ=⅓[112¯0]). В случае базисной петли аналогичное выражение получено независимо решением уравнений равновесия методом Элиота. Численное сравнение полученных результатов для циркония показало полное совпадение рассмотренных подходов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Проблемы современной ядерной энергетики
The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals
Методи розрахунку пружної взаємодії точкових дефектів з дислокаційними петлями в гексагональних кристалах
Методы расчета упругого взаимодействия точечных дефектов с дислокационными петлями в гексагональных кристаллах
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals
spellingShingle The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals
Trotsenko, O.G.
Ostapchuk, P.N.
Проблемы современной ядерной энергетики
title_short The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals
title_full The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals
title_fullStr The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals
title_full_unstemmed The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals
title_sort methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals
author Trotsenko, O.G.
Ostapchuk, P.N.
author_facet Trotsenko, O.G.
Ostapchuk, P.N.
topic Проблемы современной ядерной энергетики
topic_facet Проблемы современной ядерной энергетики
publishDate 2017
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Методи розрахунку пружної взаємодії точкових дефектів з дислокаційними петлями в гексагональних кристалах
Методы расчета упругого взаимодействия точечных дефектов с дислокационными петлями в гексагональных кристаллах
description Green's function method is used for hexagonal crystals according to Lifshitz-Rosenzweig and Kröner. Analytical expressions have been derived for the energy of elastic interaction of radiation point defects with dislocation edge loops of two types: c-loop (in the basal plane; the Burger’s vector bᴰ=½[0001]) and α-loop (in the plane {112¯0}, the Burger’s vector bᴰ=⅓[112¯0]). In the case of the basal loop an analogous expression is obtained by the independent solution of the equilibrium equations by the Eliot’s method. Numerical comparison of the expressions for zirconium showed complete identity of these approaches. Методом функцій Гріна для гексагональних кристалів у підходах Ліфшиця-Розенцвейга і Кренера отримані аналітичні вирази енергії пружної взаємодії радіаційних точкових дефектів з дислокаційними крайовими петлями двох видів: c-петлею (базисна площина залягання, вектор Бюргерса bᴰ=½[0001]) і α-петлею (площина залягання {112¯0}, вектор Бюргерса bᴰ=⅓[112¯0]). У разі базисної петлі аналогічний вираз отримано незалежно рішенням рівнянь рівноваги методом Еліота. Чисельне порівняння отриманих результатів для цирконію показало повний збіг розглянутих підходів. Методом функций Грина для гексагональных кристаллов в подходах Лифшица-Розенцвейга и Кренера получены аналитические выражения энергии упругого взаимодействия радиационных точечных дефектов с дислокационными краевыми петлями двух видов: c-петлей (базисная плоскость залегания, вектор Бюргерса bᴰ=½[0001]) и α-петлей (плоскость залегания {112¯0}, вектор Бюргерса bᴰ=⅓[112¯0]). В случае базисной петли аналогичное выражение получено независимо решением уравнений равновесия методом Элиота. Численное сравнение полученных результатов для циркония показало полное совпадение рассмотренных подходов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/136012
citation_txt The methods for the calculation of the elastic interaction of point defects with a dislocation loops in hexagonal crystals / O.G. Trotsenko, P.N. Ostapchuk // Вопросы атомной науки и техники. — 2017. — № 2. — С. 83-90. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT trotsenkoog themethodsforthecalculationoftheelasticinteractionofpointdefectswithadislocationloopsinhexagonalcrystals
AT ostapchukpn themethodsforthecalculationoftheelasticinteractionofpointdefectswithadislocationloopsinhexagonalcrystals
AT trotsenkoog metodirozrahunkupružnoívzaêmodíítočkovihdefektívzdislokacíinimipetlâmivgeksagonalʹnihkristalah
AT ostapchukpn metodirozrahunkupružnoívzaêmodíítočkovihdefektívzdislokacíinimipetlâmivgeksagonalʹnihkristalah
AT trotsenkoog metodyrasčetauprugogovzaimodeistviâtočečnyhdefektovsdislokacionnymipetlâmivgeksagonalʹnyhkristallah
AT ostapchukpn metodyrasčetauprugogovzaimodeistviâtočečnyhdefektovsdislokacionnymipetlâmivgeksagonalʹnyhkristallah
AT trotsenkoog methodsforthecalculationoftheelasticinteractionofpointdefectswithadislocationloopsinhexagonalcrystals
AT ostapchukpn methodsforthecalculationoftheelasticinteractionofpointdefectswithadislocationloopsinhexagonalcrystals
first_indexed 2025-11-25T22:22:40Z
last_indexed 2025-11-25T22:22:40Z
_version_ 1850563294671142912
fulltext ISSN 1562-6016. PASТ. 2017. №2(108), p. 83-90. THE METHODS FOR THE CALCULATION OF THE ELASTIC INTERACTION OF POINT DEFECTS WITH A DISLOCATION LOOPS IN HEXAGONAL CRYSTALS O.G. Trotsenko, P.N. Ostapchuk Institute of Electrophysics and Radiation Technologies, National Academy of Sciences of Ukraine, Kharkov, Ukraine E-mail: ostapchuk@kipt.kharkov.ua Green's function method is used for hexagonal crystals according to Lifshitz-Rosenzweig and Kröner. Analytical expressions have been derived for the energy of elastic interaction of radiation point defects with dislocation edge loops of two types: c -loop (in the basal plane; the Burger’s vector 1/ 2 0001=D b ) and a -loop (in the plane  1120 , the Burger’s vector 1/ 3 1120=D b ). In the case of the basal loop an analogous expression is obtained by the independent solution of the equilibrium equations by the Eliot’s method. Numerical comparison of the expressions for zirconium showed complete identity of these approaches. PACS: 62.20.Dc; 62.20.Fe 1. INTRODUTION AND THE BASIC Irradiation by high-energy particles of the constructions of nuclear facilities significantly change their physical properties and entails a number of phenomena that limit the duration of their operation [1] (radiation embrittlement, radiation growth and creep, radiation swelling). They adversely affect on the performance of the elements of the reactors designs, disabling them in unscheduled time. The physical mechanisms underlying these phenomena are connected with the evolution of the defect structure of the original material, which is caused by diffusion fluxes of radiation point defects (PD) (SIAs, vacancies) for specific components of this structure. Density of flow of PD to internal sinks S , which are the elements of the defect structure of the material, contains two terms at a constant temperature T and an isotropic coefficient of diffusion D :   int ( )( ) ( ) S S ED DC C kT     rr r rj   . (1) The first (stochastic) connected with the gradient of the concentration ( )C r of PD in the material volume and at the sink boundary, the second (drift current)  connected with the interaction of PD with the sink elastic field int ( )SE r . Therefore, the theoretical description of the sinks system evolution implies the ability to calculate the value int ( )SE r . The most important element of the defect structure of any metal is a system of dislocations in the form of single loops or clusters (network in cubic and rows or layers in hexagonal close-packed crystals). With regard to clusters, it is the task of the future, but the version of a single loops is quite observable today. We are interested, first of all zirconium, so the proposed material is focused on hcp crystals. Thus, the purpose of the article is to show how we can analytically calculate the energy of the elastic interaction of PD with the specific dislocation loops in real hexagonal crystal. As an example, we considered the edge dislocation loops of two types: c -loop (in the basal plane, the Burger’s vector 1/ 2 0001=D b ) and – a -loop (in the plane  1120 , the Burger’s vector 1/ 3 1120=D b ). In addition, for c -loop required energy directly calculated by solution of the equilibrium equations. In the theory of elasticity PD is described by the volume distribution of dipole forces without moments, i. e. by the expression of the form: ( ) ( )i i j jf P   r r , i j j iP P . (2) According Eshelby [2], the energy of interaction of such an object with a source of stress S ( S u , S iju , S ij ) in an elastic medium is given by int ( ) ( )S ij ijE P u r r , (3) where r is coordinate of PD. If ij ijP P , i. e. PD is modeled by the dilation center, and source of stress S is dislocation loop, for the energy of their interaction finally we have: int ( ) / ( )D ijE P Spu  rr , (4) where P is the power of dilatation center; and the coordinate system is associated with dislocation. Our task is the calculation of the value D ijSpu for a particular dislocation loop. There are two methods for calculating the elastic field of the loops D iju . The first method is the solution of the quilibrium equations in the terms of displacements with appropriate boundary conditions. The second method is the Green's function method allowing to calculate the displacement caused by the dislocation of any form in an arbitrary anisotropic elastic medium, according to the classical formula [3, 4]     D i jD D D i jklm m l kS G u C b n dS x     r r r , (5) where jklmC is the tensor of the elastic moduli of the medium simulating the crystal; D mb is mth component of the Burger’s vector of the dislocation; D ln is l th component of the normal vector to any surface DS , lying on the dislocation line; r is the coordinate of the point on the surface DS ; r is the coordinate of the point of observation and i jG is the tensor Green's function (TFG ) of the elastic medium. According Elliott [5], the equilibrium equations are solved in terms of two stress functions. As for the TFG, two approaches are cited in the literature: Lifshitz-Rosenzweig (1947) [6] and Kröner (1953) [7] with a modified coefficient [8]. The first approach is valid for any unlimited elastic anisotropic medium, and the second is valid seemingly only for the hexagonal system. 2. EDGE LOOP IN THE BASAL PLANE OF THE HEXAGONAL CRYSTAL We consider a circular vacancy loop of radius R lying in the plane 0z  (basal plane) of the cylindrical coordinate system ( r , , z ), the Burger’s vector which is perpendicular to the plane of the loop and has the only z -component D(0,0,b )=D b . The normal vector to the plane of the loop (0,0,1)=n coincides with the positive direction of the axis “ z ”, which is also the axis of symmetry of the crystal. An example of such an object can serve, according to [9], the so-called c -loop  b 1/ 2 0001= in zirconium under electron irradiation at the temperature 715T K . 2.1. SOLUTION OF THE EQUILIBRIUM EQUATIONS (ELLIOTT’S APPROACH) Since the problem is axially symmetric, the angular dependence is absent, and the stress state is uniquely determined by four components of the stress tensor: rr ,  , zz , rz , which satisfy the equations of equilibrium 0 rrrr rz r z r           ; (6) 0rz zz rz r z r          . (7) In terms of displacement, taking into account the substitution ru r    ; zu k z    they take the form 2 2 2 44 13 44 11 ( ) 0; k r z C C C C               2 2 33 2 44 13 44 0 C k z C k C C z              , (8) where 2 2 2 1 r rr        and 11C , 12C , 13C , 33C , 44 55C C is the minimum number of non-zero elastic moduli of hexagonal crystal. Equations (8) have a solution under the condition   33 44 13 44 44 13 44 11 ( )k C k C k C C C C C C        . This condition reduces (8) in the form 2 2 2 ( , ) 0r z z            , 1, 2  , (9) where coefficients  are the roots of a quadratic equation  2 2 44 33 33 11 13 44 13 11 44 2 0. C C C C C C C C C        (10) Meanwhile, 2 1 ru r        ; 2 1 zu k z         ;   33 44 13 4411 44 13 44 k C C C CC C C C           (11) and the desired quantity D ijSpu in terms of the functions  is given by the expression 22 2 1 ( )D ijSpu k z             . (12) Hankel’s transform [10] reduces (9) to ordinary differential equations 2 2 2 ( , ) 0 d G z dz            , (13) whose solution is trivial ( , ) ( )exp( / ) ( )exp( / ). G z A z B z                 In our case we consider the solutions when all components of the displacement and stress converges to zero, when z  . Then we have 0B  , and the coefficients A are determined from the boundary conditions of the problem in the plane 0z  . They are as follows [11]: 1 ( ,0) 2 D zu r b  , 0 r R  ; ( ,0) 0zu r  , r R , ( ,0) 0rz r  . (14) Using Hankel’s inversion theorem [10], we obtain for shear stress: 2 3 44 1 0 1 ( , ) 1 ( )exp( / ) ( ) , rz r z k C A z J r d                         (15) where 0J , 1J are Bessel functions of the first kind. And then the second boundary condition (14) gives the relationship 21 2 1 2 1 1 ( ) ( ) 1 k A A k         . Acting in a similar way for z -component of the displacement we receive the following expression 2 2 0 0 1 ( , ) ( )exp( / ) ( ) . zu r z k A z J r d                         (16) It is convenient to use dimensionless variables t R ; /r R  . Then the first boundary condition (14) gives two integral equations 2 1 0 0 3 2 1 1 2 ( / ) ( ) 1 , 0 1; 2 D t A t R J t dt k b R k k            2 1 0 0 ( / ) ( ) 0t A t R J t dt   , 1  , which are satisfied under the condition 3 2 2 1 1 1 1 2 1 ( / ) ( ) 2 Dk b R t A t R J t k k     . As a result, the function  takes the form: 1 2 1 1 0 1 0 1 2 ( , ) 1 1 ( ) ( )exp( / ) ; 2 D r z k b R J R J r z d k k                (17) 2 1 2 1 0 2 0 1 2 ( , ) 1 1 ( ) ( )exp( / ) . 2 D r z k b R J R J r z d k k                 Accordingly, for the desired quantity D ijSpu from (12) we obtain: 1 12 1 1 1 2 2 0 0 1 2 1 21 1 2 2 1 1 , , , 2 4 D D D ij k k k kb r z r z b r z Spu I I I R k k R k k R R R RR R                                     , (18) where 1 0 , ( )expn n m m r z r z I t J t J t t dt R R R R                     and thus, the problem is solved. 2.2. THE GREEN’S FUNCTIONS METHOD: LIFSHITZ-ROSENZWEIG’S APPROACH From formula (5) we have: 2 2 13 , 33 3,3 1 ( ) ( ) ( ) D D D i i i i S ij b d r C G C GSpu              r r r r r , ,ij k ij k G G x    , (19) where the index “i” is summation from 1 to 3. Analytical universal expressions for the component of TFG of hexagonal crystal are given in [12] 2 2 3 3 33 3 1 ( )) 4 ( ( ) kk k FG                 r r r r , k k k x x    r r ; 2 2 2 3 3 3 3 3 1 ( ) ( ) ( )( ) 4 k k k kG                         r r r r . (20) As a result, 2 2 2 2 2 3 3 3 33 2 3 (1 3 ) ( ) 2 (1 ) 4 ( ) D D D ij S b d r dQ QSp d u                   r r r ; 2 2 2 2 3 13 3 33 3 13 33 3( ) ( ) ( ) ( ) ( )Q C C W C C V        ; 2 2 2 2 2 3 3 3 3 3 2 3 ( ) (1 3 ) ( ) 2 (1 ) d V d             ; 2 2 2 3 3 3 2 3 ( ) ( ) 2(1 ) dF W F d        ; 2 2 2 2 2 2 2 3 3 3 3 3 3 32 2 3 3 ( ) ( ) 2 3 ( ) 2 (1 ) d d d d                    . (21) Functions 2 3( ) , 2 3( )F  , 2 3( ) , and 2 3( ) are quite cumbersom and carried to appendix. 2.3. THE GREEN’S FUNCTIONS METHOD: KRÖNER’S APPROACH Original formula is (19), but the components of TFG are other here. According to Kröner we have: 2 2 2 2 23 11 1/2 42 2 1 ( )1 k k k k k x z y r z G A B rr z               , 2 2 2r x y  ; 2 2 2 2 23 22 1/2 42 2 1 ( )1 k k k k k y z x r z G A B rr z               ; 3 33 1/2 2 2 1 k k k D G r z      ; 2 2 3 12 1/24 2 2 1 2k k k k r zxy G A r r z          ; 3 31 1/22 2 2 1 k k k Cxz G r r z      ; 3 32 1/22 2 2 1 k k k Cyz G r r z      . (22) Performing the appropriate summation in (19), we obtain 2 2 2 2 13 1 3 33 2 3 13 33 3 33 (( ) ( ) ( ) ( )) 4 D D D i S j b d r C C C CSpu                 r r r ; 2 1 2 2 3 1 ( )A F         ; 2 2 2 3 1 ( )D F       ; 33 2 2 1 ( )C F         ; 2 2 2 3 3 3 5/2 2 2 3 3 2 (1 ) ( ) (1 ) F                  , (23) where  are the roots of the same quadratic equation (10), and the coefficients in (22) and (23) have the form      2 66 11 33 44 13 44 /A C C C C C C E          ,  66 11 12 / 2C C C  ;   44 11 44 66 /D C C C C E       ;   13 44 44 66 /C C C C C E     ;   1 11 44 66 1 3 1 2E C C C       ;   2 11 44 66 2 3 2 1E C C C       . (24) Thus, the problem reduces to the integration of (19) and (23) in a plane of the circular loop of radius R (recall that 0z  since the loop lies in the basal plane of the crystal). So, we have three independent variants for solving the same problem. Their numerical comparison was carried out with respect to zirconium. The experimental values of its modulus of elasticity are following [12] (Mbar): 11 1.554C  ; 12 0.672C  ; 13 0.646C  ; 33 1.725C  ; 55 44 0.363C C  . The comparison results are presented in Figs. 1, 2 in dimensionless cylindrical coordinates; /r R  ; /z R  . Fig. 1. Dependence of the functions ( , )EI   (solid line), ( , )LRI   (dotted line) ( , )KI   (points) according (18), (21), and (23) on the relative distance /r R  in the plane 0.1  of zirconium Fig. 2. Dependence of the functions ( , )EI   (solid line), ( , )LRI   (dotted line) ( , )KI   (points) according (18), (21), and (23) on the relative distance /r R  in the plane 0.5  of zirconium Formulas (18), (21), (23) are reduced to a united form ( , ) 4 D ij Db I R Spu     , so in Figs. 1, 2 the function ( , )EI   (solid line) corresponds to the formula (18), ( , )LRI   (dotted line) corresponds to the formula (21) (Lifshitz-Rosenzweig), ( , )KI   (points) corresponds to the formula (23) (Kröner). They show the dependence of the functions EI , LRI , KI on the relative distance  for the two planes 0.1  and 0.5  above the plane of the loop 0  . We see the perfect agreement of all three approaches. The qualitative nature of the interaction does not change (vacancy loop, the formula (4)): vacancy ( 0P  ) is pushed out from the inside of the loop 1  , and attracted in the external region 1  (SIA  on the contrary). However, if on a sufficiently large distances from the plane of the loop ( 0.5  ) interaction smoothly changes its sign at the boundary of the loop 1  , then with the approaching to the plane of loop ( 0.1  ) the interaction varies substantially step-wise on its boundary. 3. EDGE LOOP IN PRISMATIC PLANE OF THE HEXAGONAL CRYSTAL Consider a circular vacancy loop of radius R lying in the plane 0x  of the Cartesian coordinate system (prismatic plane of hexagonal crystal). The Burger's vector is perpendicular to the plane of loop and has only x -component D(b ,0,0)=D b . The vector of normal to the plane of the loop (1,0,0)=n coincides with the positive direction of the axis “x”. An example of such an object may be, according to [9], the so-called a -loops 1/ 3 1120=D b in zirconium. It is the dominant form of loops under neutron irradiation as the vacancy as and the interstitial in nature. The axial symmetry in this case is absent so well-developed methods for solving equilibrium equations are not applicable. It remains TFG’s method. From (5) we again have: 2 2 12 , 13 3,3 1 2 11 12 1,1 ( ) ( ) ( ) , D D D D ij i i i i S D i i S Spu b C G C G d r b C C G d r                  r r r (25) where the repeated suffix “i”, as previously, is summed over the values 13. Note that the first term in (25) coincides up to the coefficient with the expression (19), for which the result is already known both Lifshitz- Rosenzweig (21), and by Kröner (23). Therefore, only the sum 1,1i iG to be calculated. The result of calculations by Lifshitz-Rosenzweig is following: 2 2 2 2 2 2 3 11 12 1 3 33 3 2 3 ( ) (( 3 ( ) 2 4 4 ) ) D D D D i D S S j b d r b d r dY Q C C Ypu d S                       r r r r r ; (26) 2 2 2 2 2 2 2 2 2 3 3 12 3 13 3 3 3 12 3 13 3 11 12 32 3 ( ) (1 3 ) ( ) ( ) 2 (1 ) ( ) ( ) ( ) ( ); d Q C Y C C Y C C C Y d                           2 2 2 3 3 3( ) ( ) ( )V W     , 2 2 2 3 3 3( ) ( ) ( )Y V     . The functions 2 3( ) , 2 3( )W  , 2 3( )V  are the same as in (21). A similar result for Kröner is: 2 2 2 2 12 1 3 13 2 3 12 13 3 33 2 2 2 11 12 1 33 ( ) ( ) ( ) ( ) 4 ( ) ( ) ( , ); 4 D D D S D i S D j b d r C C C C b r C u d p C S                             r r r r r (27) 2 22 2 2 1 1 3 3/2 2 22 2 1 3 33 3 ( ) 3 ( , ) 1 (1 )(1 ) A C B                                    . All functions and constants are as defined above (23), (24). Here we must remember that the loop lies in the plane «yz» of Cartesian coordinate system, i.e. 1 /x  r r , ( 0x  ), and 3 ( ) /z z    r r . Therefore the dimensionless cylindrical coordinates used for the numerical comparison of formulas (26) and (27) are following: /x R  , /r R  ( 2 2 2r y z  , cosy r  , sinz r  , and  is an azimuth angle, but in the plane of the loop “yz”). As earlier, formulas (26), (27) are reduced to the standard form ( , , ) 4 D ij Db I R Spu      , however, in order not to overload the article by the pictures, we give them a qualitative description. Firstly, we emphasize again full coincidence of Lifshitz-Rosenzweig’s and Kröner’s approaches. Secondly, we note that, unlike the base loop the functions LRI (26) and KI (27) include a weak dependence on the azimuthal angle in the plane of the loop, but the character of interaction (their sign on both sides of the conditional boundary loop) from  is independent. Moreover, the dependence of the functions LRI , KI on the relative distance  for different planes const  almost coincides with a similar for the base loop (see Figs. 1, 2). It is quite natural in view of the weak sensitivity of these functions to the angle  . 4. DISCUSSION OF RESULTS So, the different methods are used to derive analytical expressions for the energy of elastic interaction of PD with the specific dislocation loops in real hexagonal crystal. As an example, we were taken vacancy edge loops of two types: c - and a -loop in zirconium. Simplifies circumstance in cases considered above is that the normal vector to the plane of the loop and its Burgers vector has only one component in a Cartesian coordinate system. In general, it is not. And the initial formula (5) then become much more complicated. However, the method of calculation remains the same and does not contain principal mathematical difficulties. Knowing the energy of elastic interaction PD with a loop allows one to calculate the diffusion fluxes of radiation PD on it [13, 14], as well as its bias factor to a specific type of PD. The bias is the most important characteristic of dislocations which made possible to explane such phenomena as swelling, radiation creep, radiation hardening structural materials of nuclear reactors [1517], etc. Here, however, we should note the following. In all theories bias factor of dislocation was calculated assuming an elastically isotropic crystal when the energy of interaction of PD with a straight dislocation or a loop is harmonic function. For a hexagonal crystal it is not. This follows, for example, from the expression (18) for the base prismatic loop. Therefore, the corresponding diffusion problem [13, 14] is complicated by the presence of the additional term, and the authors' conclusions regarding of the depending of the bias factor from the radius of the loop, the type and ratio of dilatation volume of TD, can change. REFERENCES 1. В.Н. Воеводин, И.М. Неклюдов. Эволюция структурно-фазового состояния и радиационная стойкость конструкционных материалов. Киев: «Наукова думка», 2006, 376 с. 2. Дж. Эшелби. Континуальная теория дислокаций. М.: «Наука», 1963, 215 с. 3. Л.Д. Ландау, Е.М. Лифшиц. Теория упругости. М.: «Наука», 1987, 246 с. 4. Дж. Хирт, И. Лоте. Теория дислокаций. М.: «Атомиздат», 1972, 600 с. 5. H.A. Elliott // Proc. Cambridge Phil. Soc. 1948, v. 44, p. 522; 1949, v. 45, p. 621. 6. И.М. Лифшиц, Л.Н. Розенцвейг // ЖЭТФ. 1947, т. 17, с. 783. 7. E. Kröner // Zeitschrift fur Phyzik. 1953, v. 136, p. 402. 8. J.R. Willis // Quart. J. Mech. Appl. Math. 1965, v. 18, p. 419. 9. M. Griffiths // J. Nucl. Mater. 1988, v. 159, p. 190. 10. Ian. N. Sneddon. Fourier Transforms. Mc Graw Hill, New York, 1951, 542 p. 11. F. Kroupa // Czech. J. Phys. B. 1960, v. 10, p. 284. 12. П.Н. Остапчук, О.Г. Троценко // ФТТ. 2016, v. 58, p. 1749. 13. V.I. Dubinko, A.S. Abyzov, A.A. Turkin // J. Nucl. Mater. 2005, v. 336, p. 11. 14. T. Jourdan // J. Nucl. Mater. 2015, v. 467, p. 286. 15. P.T. Heald, M.V. Speight // Philos. Mag. 1974, v. 29, p. 1075. 16. L.K. Mansur // Philos. Mag. A. 1979, v. 39, p. 497. 17. V.I. Dubinko, S.A. Kotrechko, V.F. Klepikov // Radiat. Eff. Defects Solids. 2009, v. 164, p. 647. APPENDIX   2 3 2 1 2 3 2 ( ) ( ) i a b z z A           ;      2 2 3 32 1 2 3 1 2 2 2 ( ) ( ) i a b F b a b z z A z z                  ; 2 2 2 3 3 3 2 2 2 1 2 3 3 3 ( )2 ( ) ( ) ( ) ( ) ( )(1 ) R bi z z b A b P b              ; 2 2 2 2 3 3 3 3 2 2 2 2 2 1 2 3 3 3 3 ( ) ( )2 ( ) ( ) 1 ) ( ) ( ) ( )(1( ) P bi S z z A b P bb                  ; 2 2 2 3 3 3 1 22 2 1 2 3 3 ( ) ( ) ( ) 2 (1 ) ( )( ) ( )) ( a b A P b z z b bz R z P                  ; 2 2 2 2 2 2 23 3 3 3 1 2 1 2 1 2 32 1 2 3 ( )( ) ( ( ) ( )1 2 ( 2 )) ) (1 A P b b B S z z z z z z z z P P b A a b b                                         ; 2 2 2 2 3 3 3( ) 2 (1 ) (1 )A k l m         ; 2 2 3 3( ) 2 (1 )B k l    2 2 3 3( ) (1 )P b     ;   2k a b b    ;     2 2m a b         ;     2 2 2l a b b        ; 12a C ; 11 12 66 1 ( ) 2 b C C C   ; 13 12C C   ; 44 11 12 1 ( ) 2 C C C    ; 11 33 44 134 2C C C C     ; 1 2 2 3 2 ( ) k z z A    ; 2 3 1 1/ 2 2 2 3 3 2 ( )2 2 ( ) ( ) Bk z A A z i             . Article received 29.12.2016 МЕТОДЫ РАСЧЕТА УПРУГОГО ВЗАИМОДЕЙСТВИЯ ТОЧЕЧНЫХ ДЕФЕКТОВ С ДИСЛОКАЦИОННЫМИ ПЕТЛЯМИ В ГЕКСАГОНАЛЬНЫХ КРИСТАЛЛАХ О.Г. Троценко, П.Н. Остапчук Методом функций Грина для гексагональных кристаллов в подходах Лифшица-Розенцвейга и Кренера получены аналитические выражения энергии упругого взаимодействия радиационных точечных дефектов с дислокационными краевыми петлями двух видов: c -петлей (базисная плоскость залегания, вектор Бюргерса 1/ 2[0001]=D b ) и a -петлей (плоскость залегания  1120 , вектор Бюргерса 1/ 3 1120=D b ). В случае базисной петли аналогичное выражение получено независимо решением уравнений равновесия методом Элиота. Численное сравнение полученных результатов для циркония показало полное совпадение рассмотренных подходов. МЕТОДИ РОЗРАХУНКУ ПРУЖНОЇ ВЗАЄМОДІЇ ТОЧКОВИХ ДЕФЕКТІВ З ДИСЛОКАЦІЙНИМИ ПЕТЛЯМИ В ГЕКСАГОНАЛЬНИХ КРИСТАЛАХ О.Г. Троценко, П.М. Остапчук Методом функцій Гріна для гексагональних кристалів у підходах Ліфшиця-Розенцвейга і Кренера отримані аналітичні вирази енергії пружної взаємодії радіаційних точкових дефектів з дислокаційними крайовими петлями двох видів: c -петлею (базисна площина залягання, вектор Бюргерса 1/ 2[0001]=D b ) і a -петлею (площина залягання 1120 , вектор Бюргерса 1/ 3 1120=D b ). У разі базисної петлі аналогічний вираз отримано незалежно рішенням рівнянь рівноваги методом Еліота. Чисельне порівняння отриманих результатів для цирконію показало повний збіг розглянутих підходів.