Dispersion fuel for nuclear research facilities
Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-ХD with disper-sion composition UO₂+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of the...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2017 |
| Автори: | , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/136036 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Dispersion fuel for nuclear research facilities / А.V. Kushtym, M.M. Belash, V.V. Zigunov, O.O. Slabospitska, V.A. Zuyok // Вопросы атомной науки и техники. — 2017. — № 2. — С. 124-130. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-136036 |
|---|---|
| record_format |
dspace |
| spelling |
Kushtym, А.V. Belash, M.M. Zigunov, V.V. Slabospitska, O.O. Zuyok, V.A. 2018-06-15T18:34:52Z 2018-06-15T18:34:52Z 2017 Dispersion fuel for nuclear research facilities / А.V. Kushtym, M.M. Belash, V.V. Zigunov, O.O. Slabospitska, V.A. Zuyok // Вопросы атомной науки и техники. — 2017. — № 2. — С. 124-130. — Бібліогр.: 10 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/136036 621.039.54 Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-ХD with disper-sion composition UO₂+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metal-lographic analyses and corrosion tests of fuel pellets are given in this paper. Представлені конструкції і схеми виготовлення стрижневих твелів і складання ТВЗ-ХД з дисперсійною композицією UO₂+Al. Наведено результати теплового розрахунку твелів стосовно харківської підкритичної установки та київського реактора ВВР-M, їхні порівняльні характеристики, результати металографічних досліджень та корозійних випробувань паливних таблеток. Представлены конструкции и схемы изготовления стержневых твэлов и сборок ТВС-ХД с дисперсионной композицией UO₂+Al. Приведены результаты теплового расчета твэлов применительно к харьковской подкритической установке и киевскому исследовательскому реактору ВВР-М, их сравнительные характеристики, результаты металлографических исследований и коррозионных испытаний топливных таблеток. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Проблемы современной ядерной энергетики Dispersion fuel for nuclear research facilities Паливо дисперсійного типу для дослідницьких ядерних установок Топливо дисперсионного типа для исследовательских ядерных установок Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Dispersion fuel for nuclear research facilities |
| spellingShingle |
Dispersion fuel for nuclear research facilities Kushtym, А.V. Belash, M.M. Zigunov, V.V. Slabospitska, O.O. Zuyok, V.A. Проблемы современной ядерной энергетики |
| title_short |
Dispersion fuel for nuclear research facilities |
| title_full |
Dispersion fuel for nuclear research facilities |
| title_fullStr |
Dispersion fuel for nuclear research facilities |
| title_full_unstemmed |
Dispersion fuel for nuclear research facilities |
| title_sort |
dispersion fuel for nuclear research facilities |
| author |
Kushtym, А.V. Belash, M.M. Zigunov, V.V. Slabospitska, O.O. Zuyok, V.A. |
| author_facet |
Kushtym, А.V. Belash, M.M. Zigunov, V.V. Slabospitska, O.O. Zuyok, V.A. |
| topic |
Проблемы современной ядерной энергетики |
| topic_facet |
Проблемы современной ядерной энергетики |
| publishDate |
2017 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Паливо дисперсійного типу для дослідницьких ядерних установок Топливо дисперсионного типа для исследовательских ядерных установок |
| description |
Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-ХD with disper-sion composition UO₂+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metal-lographic analyses and corrosion tests of fuel pellets are given in this paper.
Представлені конструкції і схеми виготовлення стрижневих твелів і складання ТВЗ-ХД з дисперсійною композицією UO₂+Al. Наведено результати теплового розрахунку твелів стосовно харківської підкритичної установки та київського реактора ВВР-M, їхні порівняльні характеристики, результати металографічних досліджень та корозійних випробувань паливних таблеток.
Представлены конструкции и схемы изготовления стержневых твэлов и сборок ТВС-ХД с дисперсионной композицией UO₂+Al. Приведены результаты теплового расчета твэлов применительно к харьковской подкритической установке и киевскому исследовательскому реактору ВВР-М, их сравнительные характеристики, результаты металлографических исследований и коррозионных испытаний топливных таблеток.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/136036 |
| citation_txt |
Dispersion fuel for nuclear research facilities / А.V. Kushtym, M.M. Belash, V.V. Zigunov, O.O. Slabospitska, V.A. Zuyok // Вопросы атомной науки и техники. — 2017. — № 2. — С. 124-130. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT kushtymav dispersionfuelfornuclearresearchfacilities AT belashmm dispersionfuelfornuclearresearchfacilities AT zigunovvv dispersionfuelfornuclearresearchfacilities AT slabospitskaoo dispersionfuelfornuclearresearchfacilities AT zuyokva dispersionfuelfornuclearresearchfacilities AT kushtymav palivodispersíinogotipudlâdoslídnicʹkihâdernihustanovok AT belashmm palivodispersíinogotipudlâdoslídnicʹkihâdernihustanovok AT zigunovvv palivodispersíinogotipudlâdoslídnicʹkihâdernihustanovok AT slabospitskaoo palivodispersíinogotipudlâdoslídnicʹkihâdernihustanovok AT zuyokva palivodispersíinogotipudlâdoslídnicʹkihâdernihustanovok AT kushtymav toplivodispersionnogotipadlâissledovatelʹskihâdernyhustanovok AT belashmm toplivodispersionnogotipadlâissledovatelʹskihâdernyhustanovok AT zigunovvv toplivodispersionnogotipadlâissledovatelʹskihâdernyhustanovok AT slabospitskaoo toplivodispersionnogotipadlâissledovatelʹskihâdernyhustanovok AT zuyokva toplivodispersionnogotipadlâissledovatelʹskihâdernyhustanovok |
| first_indexed |
2025-11-24T15:49:07Z |
| last_indexed |
2025-11-24T15:49:07Z |
| _version_ |
1850848831076302848 |
| fulltext |
ISSN 1562-6016. PASТ. 2017. №2(108), p. 124-130.
UDC 621.039.54
DISPERSION FUEL FOR NUCLEAR RESEARCH FACILITIES
А.V. Кushtym, M.M. Belash, V.V. Zigunov, O.O. Slabospitska, V.A. Zuyok
“Nuclear Fuel Cycle” Science and Technology Establishment
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: kushtym@kipt.kharkov.ua
Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-ХD with disper-
sion composition UO2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical
assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metal-
lographic analyses and corrosion tests of fuel pellets are given in this paper.
INTRODUCTION
Developed fuel assemblies TVS-XD with fuel rod
elements and UO2+Al fuel element kernel can be uti-
lised within a nuclear facilites «Neutron source based on
subcritical assembly (SCA) controlled by an electron
accelerator» and research swimming pool reactor
VVR-M [13]. Fuel assemblies have been designed as
compatible and replaceable ones with currently utilised
FA VVR-M2 for possibility of their complete or partial
replacement in the active core of nuclear facilites.
While developing fuel element and fuel assembly
designs evaluation of their temperatures with the aid of
thermomechanical code TRANSURANUS has been
performed [4].
The purpose of this paper is to develop fuel assem-
bly designs, fuel element model and fuel pellet produc-
tion operations, execution of their metallographic anal-
yses and corrosion testing, calculation of temperature
fields in fuel elements.
1. DESIGNS OF FUEL ROD ASSEMBLIES
Fuel rod assemblies (FRA) TVS-XD are similar in
their dimensions and isotope U
235
content to FRA VVR-
M2 [57]. Their design features are presence of a rigid
welded framework and providing possibilities for con-
venient assembly and bonding fuel elements within it.
TVS-XD1 and TVS-XD2 comprised of 6 and 18 fuel
elements, respectively, with claddings of E110 or E-635
alloys and pellets of dispersion compositions of uranium
dioxide in the form of kernels or spheres dispersed in the
matrix of aluminium alloy.
The process of fuel element model production in-
cludes the following process stages: encapsulation of the
lower blind joint with cladding by electric-arc welding,
filling the cladding with pellets, setting-up the holder,
filling the cladding with helium and its encapsulation
with the upper blind joint.
The design of fuel element of linked type, in which
dispersion core piece metallurgic ally coupled with its
cladding offers promise for the industry. As materials for
cladding both zirconium-base alloys (E110, E-635) and
aluminium alloys like CAB-1, CAB-6, AMCH-2, AМg2,
6061 etc. can be applied [8].
The structure of TVS-XD1 (Fig. 1) is comprised of
the following: upper and lower spacer grids, central tube,
connection unit, upper end piece, muft, bottom nozzle
and fuel elements.
Fig. 1. Design of TVS-ХD1 [1]: 1 head; 2 upper
grid; 3 connector adapter; 4 central tube;
5 dispersion nuclear fuel element; 6 lower grid;
7 muft; 8 bottom nozzle
In the structure of TVS-XD2 (Fig. 2) the outer diame-
ter of fuel elements was decreased and their number was
increased from 6 up to 18 [2]. Their cladding was made
of E110 alloy, and dispersion fuel composition is in the
form of pellets containing UO2+Al.
Fig. 2. Design of TVS-XD2 [2]: 1 head; 2 upper
grid; 3 connector adapter; 4 central tube;
5 dispersion nuclear fuel element; 6 lower grid;
7 muft; 8 connection unit; 9 bottom nozzle
The appearance of manufactured models of TVS-
XD1, fuel elements and fuel pellets are given on Fig. 3,
and specific design features of spacer grids are given on
Fig. 4.
Fig. 3. Fuel element and TVS-XD1 models
Operating conditions of FRA VVR-M2 and TVS-
XD in the active cores of SCA and VVR-M are given in
Tabl. 1, and their design, estimated and comparative
characteristics are given in Tables 2, 3, and 4, respec-
tively.
a b c d
Fig. 4. Designs of spacer grids of TVS-XD1 (a the upper one, b the lower one)
and TVS-XD2 (c the upper one, d the lower one)
Table 1
Operating conditions of FRA VVR-M2 and TVS-XD in the active cores of SCA and VVR-M
Characteristics SCA VVR-M
Thermal power, MW 0.26 10
Number of fuel assemblies/fuel elements in the active core
(XD1/XD2)
36/(216/648)
262/(1572/471
6)
Coolant temperature at the outlet of active core,
о
C ≤40 50...65
Upper design temperature of fuel element cladding,
о
C ≤99 ≤99
Coolant saturation temperature,
о
C 103 102…103
Onset temperature of surface boiling on the cladding,
о
C 115 115
Table 2
Design characteristics of TVS-XD
Characteristics TVS-XD1 TVS-XD2
“Turn key” fuel assembly dimension, mm 35 35
Number of fuel elements in fuel assembly 6 18
Outer diameter of fuel-element cladding, mm 9.1 5.85
Inner diameter of fuel-element cladding, mm 7.72 4.75
Fuel pellet diameter, mm 7.57 4.6
Thermal column height, mm 500 500
Fuel element grid spacing in fuel assembly, mm 12.75 7.90
Isotope
235
U enrichment, % 19.75 19.75
Weight of
235
U, g 50 50
Weight of uranium (
235
U +
238
U), g 250 250
Volumetric fraction of UO2 particles in the matrix, % 20.5 20.5
Table 3
Some of calculated characteristics of TVS-XD of various designs with UO2+Al composition
Characteristics TVS-XD1 TVS-XD2
Heat-transfer surface area, cm
2
857.66 1654.05
Fuel assembly clear area, cm
2
6.68 5.75
Hydraulic diameter, mm 15.58 6.95
Specific surface area per unit volume of the active core,
cm
2
/cm
3
1.62 3.12
UO2+Al fuel composition volume, cm
3
135.02 149.57
UO2+Al fuel composition weight, g 283.7 283.7
Fuel composition density, g/cm
3
4.26 4.10
Table 4
Comparative characteristics of basic FRA VVR-M2 and engineered TVS-XD
Characteristics FA VVR-M2 TVS-XD1 TVS-XD2
Fuel composition volume, cm
3
95.08 135.02 149.57
Energy conduction surface, m
2
0.190 0.086 0.165
Specific surface area per unit volume of the ac-
tive core, cm
2
/cm
3
3.585 1.617 3.120
Clear area, cm
2
5.85 6.68 5.75
Hydraulic diameter, mm 5.00 15.60 6.92
Fuel-water ratio 0.325 0.404 0.797
2. TEMPERATURE EVALUATION
IN FUEL ELEMENTS
In order to determine operability of fuel elements an
evaluation of their temperatures and thermal stresses is
required. The group of thermophysical criteria limits
maximum temperatures of fuel composition, the clad-
ding of fuel element and its maximum linear heat gener-
ation rate [7].
In the first option, temperature in the fuel elements
were evaluated using the known numerical dependen-
cies, and in the second option, the calculation was per-
formed using a modified TRANSURANUS code model
for dispersion fuel. After the calculations their results
were compared and determined calculation errors.
To determine the operating temperature of the fuel
core piece with conservative approach thermal gradients
within the cladding, the gap and along the pellet radius
were calculated, and made allowance for thermal con-
ductivity coefficients of the dispersion composition and
the matrix (Fig. 5).
Variation in thermal conductivity of helium filling
the internal volume of fuel element depending on fuel
burn-up has been taken into consideration since due to
generation of gaseous fission products within the gap
helium thermal conductivity decreases that increases
temperature gradient between the cladding and fuel core
piece.
The thermal conductivity coefficient of dispersion
fuel compositions is determined with some level of ap-
proximation according to Odelevskiy’s formula [8]:
М M Т Т
M M Т Т M T
compλ [(3V 1) λ (3V 1) λ ]/4
2[(3V 1) λ (3V 1) λ ] /16 (λ λ )/2 ,
(1)
where λм is the thermal conductivity coefficient of ma-
trix material; λт is the thermal conductivity coefficient
of fuel material; Vт is the volumetric fraction of fuel
material; Vм is the volumetric volume of matrix materi-
al.
The calculation results show that presence of gas
gap significantly increases the temperature of dispersion
fuel composition while the coupled version of the fuel
element is operable at higher thermal loads.
a b
Fig. 5. Fuel element radial temperature distribution at a designed capacity of SCA (260 kW)
and VVR-M (10000 kW): a TVS-XD1 (fuel elements Ø 9.1 mm); b TVS-XD2 (fuel elements Ø 5.85 mm)
In the first option, the maximum temperatures of the
kernels of fuel elements TVS-XD1 and TVS-XD2 con-
stituted for SCA ~ 95 and ~ 70 °С, and for VVR-M
~ 315 and ~ 155 °С, respectively.
The calculation of fuel element temperatures for dif-
ferent heat flow with the aid of TRANSURANUS code
showed that temperatures in the centre of the fuel kernel
in the fuel element of container type TVS-XD1 amount-
ed for SCA ~ 85 °C, and for VVR-M reactor ~ 250 °C.
For fuel element of coupled type temperature for SCA
amounted to ~ 50 °C, and for VVR-M reactor ~ 65 °C.
Also, in temperature calculations the volume of fuel
reacted with a matrix, which degrade the thermal con-
ductivity of the fuel composition and increase tempera-
ture in the particles of uranium dioxide, should be taken
into account [8]. Thus, the temperature of dispersion
composition of uranium dioxide in aluminium matrix is
within acceptable limits (taking into account the error of
calculation of ±(5...7)%).
3. DISPERSION COMPOSITIONS OF UO2+Al
3.1. A MATRIX OF ALUMINIUM ALLOY
Applied aluminum alloy powders (Tabl. 5) had
shapes close to plate-like one. Determination of their
physico-technological properties were performed in
compliance with the following methods: particle size
distribution according to GOST 18318-94, particle
shape according to GOST 25849-83, bulk density ac-
cording to GOST 19440-94 and compactibility accord-
ing to GOST 25280-90.
The study of compactibility of aluminium alloy
powders were carried out on fractions of: 50...112;
112...315; 500...700, and 800...1000 µm. Mechanical
classification was conducted by dry powder sieve analy-
sis. The powder molding (Fig. 6) in the work-pieces
were executed in a steel cylindrical mold with two
punches changing compression compacting pressure in
the range of 300...800 MPa. Polyethylene glycol was
used as a binder.
°C
°C
а b c d
Fig. 6. Appearances of aluminium alloy powder fractions: a 50…112; b 112…315;
c 500…700; d 800…1000 µm
Table 5
Chemical composition (% weight) of aluminium powders employed
Alloying addition → Мg Si Cu Cr Fe The basis
AP (GOST 6058-73) 0.4 0.02 0.5…0.8 Al
Aluminium alloy 0.8…1.2 0.4…0.8 0.35…0.65 0.03…0.1 Al
Production of pellets of aluminum alloy powders
was carried out according to a two-stage cold compres-
sion, which included basic operations: dosing of pow-
ders, mixing with the binder, cold compression of
workpieces, vacuum annealing, cold deformation in the
mold of larger diameter, sintering in vacuum at the
temperature range of 450...640 °C.
As can be seen from Fig. 7, in the pressure range of
300...600 MPa the relative density of work pieces in-
creased linearly, and with further increase in pressure
the values of relative density varied slightly.
Fig. 7. Relative density of work pieces depending on
specific moulding pressure and particle grain size of
aluminium alloy powder
Relative density of pellets was determined at differ-
ent stages of production by the methods of hydrostatic
weighing and measuring in the air.
With increase in size of the powders a tendency to
an increase in the values of relative density of work-
pieces was traced. On the straight-line portion work-
piece compacting was pretty exactly governed by
M.Yu. Balshin’s equation 9:
maxlglglg PmP , (2)
where is the relative density of work-piece, %; P is
the specific strength moulding, MPa; Рmax is the specif-
ic strength moulding, which required for obtaining a
work-piece of 100% solidness; m is a moulding factor.
Graph plotting in logarithmic coordinates allows
determining the values of factor m and specific
strength, Рmax, which is equal to the tangent of the an-
gle of inclination of straight line to axis lg and an in-
terval intercepted by this line on lgP axis, respectively.
The values of factor m is constant and independent
of the particle size distribution of the starting powders
and their bulk density equal to the value of 4.10.1 for
all cases. The values of Рmax depend on mentioned pa-
rameters and decrease with increasing particle size of
the powder from 1047 to 816...860 MPa.
After pressing the work-pieces of aluminium alloy
powders, in order to relieve stress and to strip the bind-
er annealing in a vacuum furnace at 620 С was con-
ducted, which resulted in some increase in the specific
gravity of work-pieces (up to 2%).
Fig. 8. Relative density of work pieces of aluminium
alloy powder depending on moulding pressure and
their grain particle size after vacuum annealing at
620 С, repeated cold deformation at 800 MPa
and sintering at 620С in vacuum
After repeated cold deformation and sintering in vac-
uum the pellets produced of aluminium alloy powders of
fine fraction 50…112 µm have porosity between 5 and
7%. Repeated deformation of work pieces in the cylin-
drical press mould of higher diameter (0.6 mm more)
under the specific pressure of 800 MPa and the following
annealing at 620 С in vacuum for 2 hours ensures rela-
tive density of pellets produced of three higher fractions
of aluminium powder (except fraction 50…112 µm)
about 99% of the theoretical value (Fig. 8). Powders of
fraction 112…315 µm had good compactibility, the
effect of pre-annealing temperature on final porosity of
pellets from this fraction was insignificant, minimum
porosity of samples was ~ 1%.
The results of metallographic analyses of pellets
formed from different fractions of aluminium alloy
powder are shown in Fig. 9.
In thin sections of pellets produced of the fine frac-
tion of 50...112 µm a layered structure of the matrix
with the grain size of 5...7 µm and a shape preferably
pulled in one direction were observed. Their pore size
was 10…12 µm, pores of irregular shape were ob-
served, the nature of their distribution was uneven.
These pores could form chains with size up to
45...50 µm and were observed in the intergranular zone
and on powder particle contact boundaries. Matrix mi-
crohardness was 432…525 MPa.
a b c d
Fig. 9. Microstructure of matrix moulded of aluminium alloy powder: a 50…112; b 112…315;
c 500…700; d 800…1000 µm
3.2. PRODUCING FUEL PARTICLES OF UO2
As the fuel component of dispersion composition
UO2+Al uranium dioxide powder (TU 95.213-73) was
used. It was utilized for production of sintered particles
in the form of kernels and the microspheres of specified
fractional composition (Tabl. 6) by the methods of
powder metallurgy.
Kernels was obtained by crushing pressed and sin-
tered pellets of UO2 powder. Kernels was irregular in its
shape (comminuted). When obtaining microspheres the
spheroidizing of semifinished cylindrical work-pieces
was carried out with a spheronizer. The appearance of
particles of uranium dioxide is shown in Fig. 10.
a b
Fig. 10. Appearance of UO2 fuel particles:
a kernels; b spheres
Table 6
Characteristics of uranium dioxide particles
Particle
shape
Size, µm
Density,
g/cm
3
Method for
obtaining
Spheres
200…400
9.0…9.8
spheroidizing
semi-finished
work-pieces
Kernels 10.4 pellet crushing
3.3. PELLETIZING UO2+Al
Process stages of producing pellets containing
UO2+Al were brought into effect according to the flow
diagram exhibited in Fig. 11 in the following sequence:
preparing a mixture of aluminium alloy powder and
granulated particles of UO2, adding a binder, mixing
press charge, drying, press forming cylindrical work
pieces, vacuum annealing, repeated cold deformation of
work-pieces, pellet sintering in vacuum furnace.
Fig. 11. Process flow sheet of UO2+Al fuel pellet
production [3]
3.4. METALLOGRAPHIC EXAMINATION
As a result of analyses of dispersion of various com-
positions it was found the following. Density of
UO2+Al composition with UO2 particles in the form of
spheres was 3.83 g/cm
3
, and with particles in the form
kernels was 3.94 g/cm
3
. The matrix had fine-grain struc-
ture with the grain size of ~ 25 µm, uneven pores were
observed in the matrix (Fig. 12).
a b
Fig. 12. Microstructure of UO2+Al:
а UO2 as kernels; b UO2 as spheres
Pellet density made 96…98% of maximum calculat-
ed value.
3.5. CORROSION TESTING
Corrosion tests were performed using comparative
rapid test method. The samples with composition
UO2+Al (ρpel = 98.7% of FP) were tested in the form of
pellets (7.6 mm, length of 8…10 mm) in autoclaves
at the temperature of 50 С in high purity water (deaer-
ated water) under static condition. Test results are given
in Fig. 13.
Fig. 13. Weight gain – corrosion test duration relation-
ship of pellets containing UO2+Al at t =50 °С in high
purity water under static conditions (SD ±5%)
Also, testing of aluminium samples of different
powder fractions and dispersion compositions with fuel
particle simulators, which have demonstrated good cor-
rosion resistance of the aluminium matrix, was executed
[10]. Following on from the results of autoclave testing
depicted in Fig. 13 and results obtained before [10], cor-
rosion of samples occurs with weight gain. During the
initial period of oxidation dramatic weight gain oc-
curred almost linearly, which illustrated the intensive
process of aluminium matrix oxidation and free
penetration of corrosive medium into the sample.
With increasing time of exposure to static autoclaves
corrosion rate decreased, meanwhile response of the
curve of corrosion weight gain came close to the quad-
ratic dependence, which was intrinsic to the process of
the oxide film formation on the matrix surface. When
examining the samples after corrosion tests it was ob-
served that all samples retained integrity and initial ge-
ometry.
CONCLUSIONS
1. Designs of fuel assemblies TVS-XD with disper-
sion compositions based on uranium dioxide dispersed
in aluminium matrix were developed.
2. The process flow sheet of producing dispersion
composition pellets, as well as fuel element and fuel rod
assembly models are presented.
3. The dependence of temperature distribution over
the cross section of fuel elements and maximum tem-
perature values in pellet centres were determined. For
TVS-XD1 и TVS-XD2 they are equal to ~ 95 and
~ 70 °C for the SCA, and ~ 315 and ~ 155 °C for the
VVR-M, respectively.
4. In relation to reactor VVR-M, TVS-XD2 structure
is more preferable since it has lower thermal load on
fuel elements in comparison with TVS-XD1.
5. The design of dispersion fuel elements TVS-XD
ensures non-exceedance of the established criteria of
safe operation in the SCA and VVR-M according to the
temperature of fuel composition and the chosen design.
REFERENCES
1. Utility model patent No. 103259. A fuel assembly
for research reactors / N.N. Belash, A.V. Kushtym,
V.S. Krasnorutskiy, N.A. Lavrentiev. Publ. on
10.12.2015.
2. V.S. Krasnorutskiy, N.N. Belash, A.V. Kushtym,
V.V. Zigunov. A fuel assembly for nuclear research
installation. Application for an invention, Reg.
No. a201608222 as of 25.07.2016.
3. Patent for invention No. 112268. A method for ob-
taining dispersion fissible fuel / N.N. Belash,
A.V. Kushtym, V.V. Zigunov, V.S. Krasnorutskiy.
Publ. on 10.08.2016.
4. A.V. Ostapov, A.V. Kushtym, I.A. Chernov. A
modification of models by TRANSURANUS code for
temperature evaluation in fuel elements containing dis-
persion fuel // Proceedings of the School for young re-
searchers in nuclear physics and energy, Alushta, 2013.
5. Fissible fuel for research installations. NCCP
Catalogue of Products.
6. Fuel assemblies VVER-M2. Catalogue descrip-
tion. NCCP, 2007.
7. V.A. Tsykanov. Fuel elements for research reac-
tors. Dimitrovgrad: SSC RF RIAR, 2001, 249 p.
8. A.G. Samoilov, A.I. Kashtanov, V.S. Volkov.
Dispersion fuel rod assemblies. M.: “Energoizdat”,
1982, v. 1, 2.
9. V.N. Antsyferov, G.V. Bobrov, L.K. Druzhinin,
S.S. Kiparisov, V.I. Kostikov, A.V. Krupin, V.V. Kudi-
nov, G.A. Libenson, B.S. Mitin, O.V. Roman. Powder
metallurgy and sprayed-on coatings. M.: «Metal-
lurgiya», 1987, 792 p.
10. A.V. Kushtym, N.N. Belash, I.A. Chernov,
V.M. Evseev, V.V. Zigunov, R.A. Rud, E.A. Slabospit-
skaya, V.A. Zuyok. The development of dispersion fuel
with aluminium matrix for research reactors: Book of
reports of the 4th International Conference «Improving
safety and efficiency in nuclear power generation indus-
try». Odessa, SPC “Energoatom”, 2016, N 2, p. 71-82.
Article received 23.11.2016
ТОПЛИВО ДИСПЕРСИОННОГО ТИПА ДЛЯ ИССЛЕДОВАТЕЛЬСКИХ
ЯДЕРНЫХ УСТАНОВОК
А.В. Куштым, Н.Н. Белаш, В.В. Зигунов, Е.А. Слабоспицкая, В.А. Зуек
Представлены конструкции и схемы изготовления стержневых твэлов и сборок ТВС-ХД с дисперсион-
ной композицией UO2+Al. Приведены результаты теплового расчета твэлов применительно к харьковской
подкритической установке и киевскому исследовательскому реактору ВВР-М, их сравнительные характери-
стики, результаты металлографических исследований и коррозионных испытаний топливных таблеток.
ПАЛИВО ДИСПЕРСІЙНОГО ТИПУ ДЛЯ ДОСЛІДНИЦЬКИХ
ЯДЕРНИХ УСТАНОВОК
А.В. Куштим, М.М. Бєлаш, В.В. Зігунов, О.О. Слабоспицька, В.А. Зуйок
Представлені конструкції і схеми виготовлення стрижневих твелів і складання ТВЗ-ХД з дисперсійною
композицією UO2+Al. Наведено результати теплового розрахунку твелів стосовно харківської підкритичної
установки та київського реактора ВВР-M, їхні порівняльні характеристики, результати металографічних до-
сліджень та корозійних випробувань паливних таблеток.
|