Dosimetry method based on a two-parametric model of electrons beam for radiation processing

The work is devoted to development of electron dosimetry methods for radiation technologies. In authors previous work it was shown that use of two parametric models of electron beam makes it possible to correctly approximate the measurements results of depth dose distributions. In this paper, we des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Lazurik, V.T., Lazurik, V.M., Popov, G.Ph., Zimek, Z.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/136181
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Dosimetry method based on a two-parametric model of electrons beam for radiation processing / V.T. Lazurik, V.M. Lazurik, G.Ph. Popov, Z. Zimek // Вопросы атомной науки и техники. — 2017. — № 6. — С. 137-141. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-136181
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1361812025-02-10T00:21:45Z Dosimetry method based on a two-parametric model of electrons beam for radiation processing Метод дозиметрії на основі двопараметричної моделі електронного пучка для радіаційних технологій Метод дозиметрии на основе двухпараметрической модели электронного пучка для радиационных технологий Lazurik, V.T. Lazurik, V.M. Popov, G.Ph. Zimek, Z. Применение ядерных методов The work is devoted to development of electron dosimetry methods for radiation technologies. In authors previous work it was shown that use of two parametric models of electron beam makes it possible to correctly approximate the measurements results of depth dose distributions. In this paper, we describe the method of electron radiation based on a two-parameter electron beam model and basic semiempirical relations of this method. Approbation of proposed methods of radiation dosimetry based on measurements was performed in the sterilization center of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland. Робота присвячена розробці методів дозиметрії електронів для радіаційних технологій. У попередній роботі авторів показано, що використання двопараметричних моделей електронного пучка дозволяє правильно аппроксимірувати результати вимірів розподілів глибинних доз. В даній роботі описується метод електронного випромінювання на основі двопараметричної моделі електронного пучка та основних напівемпіричних співвідношень цього методу. Проведена апробація запропонованих методів дозиметрії електронного випромінювання на основі вимірювань, проведених у центрі стерилізації Інституту ядерної хімії та технологій, Варшава, Польща. Работа посвящена разработке методов дозиметрии электронов для радиационных технологий. В предыдущей работе авторов показано, что использование двухпараметрических моделей электронного пучка позволяет правильно аппроксимировать результаты измерений распределений глубинных доз. В настоящей работе описывается метод электронного излучения на основе двухпараметрической модели электронного пучка и основных полуэмпирических соотношений этого метода. Проведена апробация предложенных методов дозиметрии электронного излучения на основании измерений, проведенных в центре стерилизации Института Ядерной Химии и Технологий, Варшава, Польша. 2017 Article Dosimetry method based on a two-parametric model of electrons beam for radiation processing / V.T. Lazurik, V.M. Lazurik, G.Ph. Popov, Z. Zimek // Вопросы атомной науки и техники. — 2017. — № 6. — С. 137-141. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 61.80.Сb https://nasplib.isofts.kiev.ua/handle/123456789/136181 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ядерных методов
Применение ядерных методов
spellingShingle Применение ядерных методов
Применение ядерных методов
Lazurik, V.T.
Lazurik, V.M.
Popov, G.Ph.
Zimek, Z.
Dosimetry method based on a two-parametric model of electrons beam for radiation processing
Вопросы атомной науки и техники
description The work is devoted to development of electron dosimetry methods for radiation technologies. In authors previous work it was shown that use of two parametric models of electron beam makes it possible to correctly approximate the measurements results of depth dose distributions. In this paper, we describe the method of electron radiation based on a two-parameter electron beam model and basic semiempirical relations of this method. Approbation of proposed methods of radiation dosimetry based on measurements was performed in the sterilization center of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland.
format Article
author Lazurik, V.T.
Lazurik, V.M.
Popov, G.Ph.
Zimek, Z.
author_facet Lazurik, V.T.
Lazurik, V.M.
Popov, G.Ph.
Zimek, Z.
author_sort Lazurik, V.T.
title Dosimetry method based on a two-parametric model of electrons beam for radiation processing
title_short Dosimetry method based on a two-parametric model of electrons beam for radiation processing
title_full Dosimetry method based on a two-parametric model of electrons beam for radiation processing
title_fullStr Dosimetry method based on a two-parametric model of electrons beam for radiation processing
title_full_unstemmed Dosimetry method based on a two-parametric model of electrons beam for radiation processing
title_sort dosimetry method based on a two-parametric model of electrons beam for radiation processing
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Применение ядерных методов
url https://nasplib.isofts.kiev.ua/handle/123456789/136181
citation_txt Dosimetry method based on a two-parametric model of electrons beam for radiation processing / V.T. Lazurik, V.M. Lazurik, G.Ph. Popov, Z. Zimek // Вопросы атомной науки и техники. — 2017. — № 6. — С. 137-141. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT lazurikvt dosimetrymethodbasedonatwoparametricmodelofelectronsbeamforradiationprocessing
AT lazurikvm dosimetrymethodbasedonatwoparametricmodelofelectronsbeamforradiationprocessing
AT popovgph dosimetrymethodbasedonatwoparametricmodelofelectronsbeamforradiationprocessing
AT zimekz dosimetrymethodbasedonatwoparametricmodelofelectronsbeamforradiationprocessing
AT lazurikvt metoddozimetríínaosnovídvoparametričnoímodelíelektronnogopučkadlâradíacíinihtehnologíi
AT lazurikvm metoddozimetríínaosnovídvoparametričnoímodelíelektronnogopučkadlâradíacíinihtehnologíi
AT popovgph metoddozimetríínaosnovídvoparametričnoímodelíelektronnogopučkadlâradíacíinihtehnologíi
AT zimekz metoddozimetríínaosnovídvoparametričnoímodelíelektronnogopučkadlâradíacíinihtehnologíi
AT lazurikvt metoddozimetriinaosnovedvuhparametričeskoimodeliélektronnogopučkadlâradiacionnyhtehnologii
AT lazurikvm metoddozimetriinaosnovedvuhparametričeskoimodeliélektronnogopučkadlâradiacionnyhtehnologii
AT popovgph metoddozimetriinaosnovedvuhparametričeskoimodeliélektronnogopučkadlâradiacionnyhtehnologii
AT zimekz metoddozimetriinaosnovedvuhparametričeskoimodeliélektronnogopučkadlâradiacionnyhtehnologii
first_indexed 2025-12-02T03:26:11Z
last_indexed 2025-12-02T03:26:11Z
_version_ 1850365414579634176
fulltext ISSN 1562-6016. ВАНТ. 2017. №6(112) 137 DOSIMETRY METHOD BASED ON A TWO-PARAMETRIC MODEL OF ELECTRONS BEAM FOR RADIATION PROCESSING V.T. Lazurik 1 , V.M. Lazurik 1 , G.Ph. Popov 1 , Z. Zimek 2 1 V.N. Karasin Kharkiv National University, Kharkov, Ukraine; 2 Institute of Nuclear Chemistry and Technology, Warsaw, Poland E-mail: popov_gen@yahoo.com The work is devoted to development of electron dosimetry methods for radiation technologies. In authors previ- ous work it was shown that use of two parametric models of electron beam makes it possible to correctly approxi- mate the measurements results of depth dose distributions. In this paper, we describe the method of electron radia- tion based on a two-parameter electron beam model and basic semiempirical relations of this method. Approbation of proposed methods of radiation dosimetry based on measurements was performed in the sterilization center of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland. PACS: 61.80.Сb INTRODUCTION One of the problems of electron radiation dosimetry in radiation technologies is determination of electrons energy in the process of radiation treatment. The prob- lem is that when implementing optimal irradiation re- gimes, it is necessary to control the electron energy with high accuracy. In international standards [1, 2], formal procedures for monitoring the electrons energy in pro- cess irradiation are determined on basis of use a dosi- metric wedge or stack. However, when performing the- se procedures, it is necessary to obtain solutions incor- rect mathematical problems. Quasi-solutions of these tasks are obtained by approximating results of meas- urements using various mathematical methods and types of functions [3, 4]. In the authors papers [5, 6] it was showen that two- parameters model of electron beam makes it possible correctly approximate the results of measurements of depth dose distributions obtained with use of dosimetric wedge or stack. Therefore, it is of interest of relations, connecting parameters (E0, X0) of the electron beam model with standard characteristics (EP, EAv) of electrons radiation energy. Since these relationships will allow us to realize the computer dosimetry method, that does not contain errors in traditionally used empirical formulas, which are given, for example, in the standard [2]. 1. METHODS OF PROCESSING MEASUREMENTS 1.1. RESULTS OF MEASUREMENTS The results of measurements of depth dose distribu- tion performed using an aluminum dosimetric wedge from RISO [4] are shown in Fig. 1. The results of meas- urements are a set of discrete data ),( ii Dl , where il is distance from a certain initial point of reference (marked by a marker) to first point i of dose measurement iD on the dosimetric film. In this dataset, you should select four areas, which are separated in the Fig. 1 by vertical dashed curves. The results of measurements of depth dose distribu- tion, performed using an aluminum dosimetric wedge from RISO [4], are shown in Fig. 1. The measurement results are a set of discrete data, where is the distance from a certain initial point of reference (marked by a marker) to the dots of the dose measurement point on the dosimetric film. In this data set, four areas should be selected, which are separated in the Fig. 1 by vertical dashed curves. The measurement results are a set of discrete data ),( ii Dl , where il  is the distance from a certain initial point of reference (marked by a marker) to i  dots of the dose measurement point iD on the dosimetric film. In this data set, four areas should be selected, which are separated in Fig. 1 by vertical dashed curves. 21 3 4 0 10 20 30 40 -2 0 2 4 6 Length, cm. Dose, KGy Fig. 1. Results of measurements performed by the method of dosimetric wedge Area 1  the dose value in dosimetric film located on entrance surface of dosimetric wedge. Area 2  the results of measurements in area where dosimetric film enters into dosimetric wedge. The area contains a marker  a point at which dose value is sub- stantially larger than in neighboring ones. Data in this area are distorted by design of device and application of a marker on film. Area 3  the results of measurements of electron ra- diation dose iD , depending on spatial position of measurement point in dosimetric wedge. Area 4  the dose values in dosimetric film, located on exit surface of dosimetric wedge. The data can sig- nificantly depend on design elements, on which the do- simetric wedge is located. mailto:popov_gen@yahoo.com ISSN 1562-6016. ВАНТ. 2017. №6(112) 138 1.2. STANDARD PROCESSING OF MEASUREMENT RESULTS In the first stage, characteristics of depth dose distri- bution of electron dose, such as practical range of elec- trons Rp and depth of half the maximum dose reduction R50, were determined. To do this, it was determine the maximum value of dose distribution Dmax based on the least-squares fit using a polynomial of third degree. The data, chosen for approximation, are marked in Fig. 2 by filled triangular markers. y = -16.726x + 99.331 R2 = 0.9965 y = 0.0762x3 - 3.9615x2 + 16.651x + 29.048 Rp 0 10 20 30 40 0 2 4 6Length, cm. Dose, kGy Fig. 2. Standard procedures for processing the depth dose distribution of electron radiation, measured with dosimetric wedge method To determine value of the practical range of elec- trons Rp, it was selected data on decline of depth dose distribution, where a dose-to-depth curve is observed that is close to linear. In practice, a range of dose values from 0.8 to 0.2 of maximum dose value Dmax is used. The data on decline in depth dose distribution are cho- sen to determine the practical range of electrons Rp, are marked in Fig. 2 by filled triangular markers. The value of practical range of electrons Rp is de- termined based on approximation of selected data using a linear function as shown in Fig. 2. The third-degree polynomial and linear function, which approximate the measurement results are shown in Fig. 2. The depth of half-reduction of maximum dose value R50, is calculated from value of the maximum dose dis- tribution Dmax based on linear function, that is used to determine value of Rp. In the second stage, empirical formulas connecting characteristics of depth dose distribution (Rp, R50,) with characteristics of electron energy are used to determine characteristics of the electron energy, such as most probable energy EP and average energy EAv of the elec- trons source [1]. According to standard [2], empirical formulas for values of EP, EAv (expressed in MeV) and Rp, R50 (expressed in centimeters in an aluminum target) are the following: Ep =0.423+ 4.69* Rp +0.0532* R 2 p, EAv =0.734+5.78* R50+0.0504* R 2 50. (1) 1.3. MEASUREMENT PROCESSING IN TWO- PARAMETER ELECTRON BEAM MODEL A parametric adjustment of the semiempirical elec- tron energy absorption model (PFSEM method [7]) to measurements of depth dose distribution of electron radiation performed by the dosimeter wedge method. Solid curve shown in Fig. 3  calculation according to the semiempirical model of electron energy absorption [8, 9]. X0 0 10 20 30 40 -1 0 1 2 3 4 5 6 Length Dose Fig. 3. Parametric adjustment of semi-empirical model to measurements the depth dose distribution of electron radiation Model parameters are as follows: electron energy E0 = 9.37 MeV, displacement of dose distribution in the film, X0 = 0.8 cm. The dose distribution characteristics (Rp, R50) are connected to parameters of electron beam model (E0, X0)) with the following relations [6]: R * p (E0) = Rp + X0, (2) R * 50 (E0) = R50 + X0, (3) where R * p (E0) means practical penetration range and R * 50 (E0) range for which the deposited dose is twice smaller than the max value for electron energy level marked as E0. Those parameters must be calculated on the base of semi-empirical model for depth dose distri- bution of mono-energetic electron beam. Linear approximation of calculated data leads to formulas for R * p (E) and R * 50 (E) as electron energy function: R * p (E) = 0.2092* E -0.0687, (4) R * 50 (E) = 0.1691* E -0.0965. (5) From the above relations (2) - (5) it follows that: Rp=0.2092* E0 -0.0687- X0 * Kw, (6) R50=0.1691* E0 -0.0965- X0 * Kw, (7) here X0  displacement of depth dose distribution rela- tive to position of marker on the film. Kw  ratio of film distance to depth in dosimeter wedge substance. For standard aluminum dosimetric wedge, this ratio is Kw =0.28 [4]. In this method, determination of the energy charac- teristics of source electrons, such as EP and EAv, can be performed in accordance with second stage of standard measurement processing. Empirical formulas, presented in the reports and standards, do not have descriptions of methods for pro- cessing depth dose distributions on basis of which these formulas were obtained. Therefore, an estimation of accuracy of the electron radiation dosimetry performed on basis of standard methods of processing measure- ments is not possible. In this connection, it is of interest, within the frame- work of a two-parameter electron beam model, to derive relationships for calculating characteristics of the elec- tron energy of a source directly from parameters of elec- tron beam model: E0 and X0. ISSN 1562-6016. ВАНТ. 2017. №6(112) 139 To obtain the relations, we take into account the fol- lowing: - empirical relations R * p (E) and R * 50 (E) (see (2) and (3)), are the dependences of practical range of electrons Rp and the depth of a half dose reduction R50 on energy E for a monoenergetic electron beam; - the empirical dependencies of most probable ener- gy EP(Rp) and average energy EAv(R50) of the source electrons on the values of Rp and R50 (see (1)) are ob- tained on basis of the depth dose distribution of mo- noenergetic electron beams; - in case of monoenergetic beams, values EP and EAv are equal to electron energy Е. It follows from above facts, that in case when two- parameter electron beam model satisfactorily describes the depth dose distribution, functions EP(Rp) and EAv(R50) can be assumed to be inverse functions to R * p (E) and R * 50 (E), respectively. On the basis of this assumption, from relations (6) - (7) we obtain: Ep(E0,X0) = E0 - Kw*X0 /0.2092, (8) EAv(E0,X0) = E0 - Kw*X0 /0.1691. (9) Table shows the calculation results, which were per- formed by the standard method (column M0), using two-parameter electron beam model, using the values of Rp,, and R50 (column M1) and by direct calculation using parameters E0 and X0 of the model electron beam (col- umn M2)). Calculations of values of Ep and EAv are per- formed on basis of measurement results shown in Fig. 1. The values of most probable energy Ep and average energy EAv of electrons, calculated using various computational methods Electrons energy M0 M1 M2 EP, MeV 8.37 8.40 8.30 EAv, MeV 8.15 8.10 8.05 As can be seen from comparison of presented data, results calculations of standard energy characteristics of the electron source have a small spread of values (less than 1%) and are in good agreement with each other. 2. MODIFIED METHOD OF ELECTRON RADIATION DOSIMETRY The methods of processing the measurement results considered in previous sections are essentially based on fact, that boundary of dosimetric device, as point of the depth dose distribution, is strictly defined on dosimetric film. However, when measuring by the dosimeter wedge method, this point is located in area 2 (see Fig. 1), where the data can be significantly distorted due to construction heterogeneity and the marker application on the film. In this connection, it is of interest to refine the point coordinate, which corresponds to the boundary of dosimetric device. The procedure for specifying coordinate of dosimet- ric device boundary was developed on the basis of a two-parameter model of electron beam. According to this model, the depth dose distribution D(E0, X0 + x) well approximates the measurement results in the data area 3, presented in Fig. 1. At the border of dosimetric device, dose value should be equal to dose value on surface of device DB,, i.e. coincide with average value of the dose in region 1 (see Fig. 1). This condition can be represented as an equation and allows you to determine the XB coordinate of the device boundary. DB = D(E0, X0 + XB). (10) The procedure for specifying coordinate of dosimet- ric device boundary is illustrated in Fig. 4. Triangular markers marked the measurement results, which are used to parametrically fit the semi-empirical model. The solid curve is the depth dose distribution D(E0, X0 + x) calculated in a semiempirical model. The horizontal dashed curve is the dose value on the surface of the DB device. As can be seen from Fig. 4, position XB, determined according to described procedure, can significantly dif- fer from marker point, whose position is shown by a vertical dashed curve. Calculation of the most probable energy Ep and the average energy EAv of the source elec- trons relative to boundary of dosimetric device XB can be performed using equations (8) and (9) according to the expressions: Ep = Ep(E0, X0 + XB), (11) EAv = EAv(E0, X0 + XB). (12) From the formulas (11) and (12) we obtain EP = 8.64 MeV and EAv = 8.46 MeV. Comparison of these values with given in the Table shows, that change in values of electron energy characteristics, due to refine- ment of the dosimeter device boundary, significantly exceeds differences in results of calculations, obtained using various methods of processing measurements (see Table). XB 0 10 20 30 40 -1 1 3 5 Length Dose Fig. 4. Modified method for processing the depth dose distribution of electron radiation, measured using a standard dosimeter wedge The described procedure for processing measure- ments and presented relations (8) - (12) allow us to cal- culate characteristics of the electron energy source, tak- ing into account refined coordinate of dosimeter wedge boundary. When determining the coordinate of boundary of a dosimetry device, using modified method of processing the measurements, the value of XB is significantly de- pendent on the dose value on surface of device DB. It is well known, that results of dose measurements at the interfaces of dissimilar media can contain signifi- cant errors due to the boundary effects that arise when ionizing radiation passes through heterogeneous struc- tures. ISSN 1562-6016. ВАНТ. 2017. №6(112) 140 In this regard, one of the significant sources of error a modified method for processing measurements is de- termination of the dose value at boundaries of a dosi- metric device. To eliminate this component of error in method of dosimetry of electron radiation, it is proposed a modifi- cation of a dosimeter device design in which an alumi- num plate is placed in front of a wedge. The plate should provide a balance of secondary electron radiation at boundary between plate and construction of the do- simeter wedge, which eliminates "boundary effects" when measuring dose values at this boundary. To test proposed method of dosimetry, measurements of depth dose distribution were performed using the mod- ified design of dosimetric device. A standard dosimetric wedge was used for measurements [4] on which a 2 mm aluminum plate was placed. A standard dosimetric PVC film was placed in the dosimetric wedge at interface be- tween plate and wedge. The measurement results are represented by triangular markers in Fig. 5. For processing with PFSEM method, it was selected measurement results marked with filled triangular mark- ers. The solid curves  depth dose distributions calculated in a semi-empirical model on the basis of parameters ob- tained by the PFSEM method. Horizontal dotted curves  the doses values on surface of dosimetric wedge. 21 0 10 20 30 40 50 -2 0 2 4 6Length, cm Dose, kGy Fig. 5. Processing of depth dose distributions of electron radiation, measured with a modified dosimetric device The vertical solid straight line 2  border of dosimet- ric wedge Xw, which is determined according to equa- tion (10) on basis of dose values on the dosimeter wedge surface. Vertical solid straight line 1  border of modified structure of dosimeter XB. Coordinates of this boundary are shifted on plate thickness h and calculated from relation XB = Xw + h. Calculation of most probable energy Ep and average energy EAv of the source electrons relative to boundary of modified structure of dosimetric device XB can be performed according to expressions (11) and (12). Comparison of calculation results of most probable energy Ep and average energy EAv of the source elec- trons relative to XB boundary of standard dosimetric wedge and modified dosimetric device allows us to con- clude, that dosimetry methods based on two-parameter electron beam model provide determination the standard energy characteristics of electron radiation with an un- certainty not exceeding 2%. CONCLUSIONS It was obtained relations, that binding model param- eters of the electron beam model directly to the standard electron energy characteristics. This makes it possible to use the dosimetry method on basis of two-parameter electron beam model without calculation stage using standard empirical formulas, that reduces errors of do- simetry method. It was performed procedure for processing meas- urements on the basis of a two-parameter electron beam model, and obtained relationships, which allow us to calculate the characteristics of electron energy of the source with allowance for the refined coordinate of do- simetric wedge boundary. It was proposed modification of the dosimetric wedge construction, in which the equilibrium of the secondary electron radiation at the boundary of the do- simeter wedge is ensured, which eliminates "boundary effects" at measuring the dose value. It was presented relations that make it possible to calculate characteristics the energy of electrons source on basis of processing the measurements results per- formed using modified construction of the dosimetric wedge. It was carried out approbation of the proposed meth- ods of electron radiation dosimetry on the basis of measurements, performed in the sterilization center of Institute of Nuclear Chemistry and Technology, War- saw, Poland. REFERENCES 1. ICRU, 1984. Radiation dosimetry: electron beams with energies between 1 and 50 MeV, Report № 35. 2. ISO/ASTM, 2005. Practice for dosimetry in an e- beam facility for radiation processing at energies be- tween 300 keV and 25 MeV, Annual Book ASTM of Standard, Standard 51649. 3. Technical Memorandum. 2007. Discrete dosimeter. Continuous strip. Aluminum wedge method. 4. T.F. Lisanti. Calculating electron range values ma- thematically // Rad. Phys. Chem. 2004, v. 71, p.581-584. 5. V.T. Lazurik, V.M. Lazurik, G. Popov, Z. Zimek. Determination of electron beam parameters on radia- tion-technological facility for simulation of radiation processing // East Eur. J. Phys. 2014, v. 1(3), p. 76-81. 6. V.M. Lazurik, G. Popov, Yu. Rogov, Z. Zimek. Two-parametric model of electron beam in computa- tional dosimetry in radiation processing // Radiat. Phys. Chem. 2016, v. 124, p. 230-234. 7. A.V. Pochynok, V.T. Lazurik, G.E. Sarukhanyan. The parametric method of the determination of elec- tron energy on the data obtained by the method of a dosimetric wedge. Bulletin of KhNTU. 2012, v. 2(45), p. 298-302. 8. V.M. Lazurik, T. Tabata, V.T. Lazurik. A database for electron-material interactions // Radiat. Phys. Chem. 2001, v. 60, p. 161-162. 9. V.T. Lazurik, V.M. Lazurik, G. Popov, Yu. Rogov, Z. Zimek. Information system and software for quali- ty control of radiation processing // Book. 232 p. IAEA: Collaborating Center for Radiation Processing and Industrial Dosimetry, Warsaw, Poland. 2011. Article received 11.10.2017 ISSN 1562-6016. ВАНТ. 2017. №6(112) 141 МЕТОД ДОЗИМЕТРИИ НА ОСНОВЕ ДВУХПАРАМЕТРИЧЕСКОЙ МОДЕЛИ ЭЛЕКТРОННОГО ПУЧКА ДЛЯ РАДИАЦИОННЫХ ТЕХНОЛОГИЙ В.Т. Лазурик, В.М. Лазурик, Г.Ф. Попов, З. Зимек Работа посвящена разработке методов дозиметрии электронов для радиационных технологий. В преды- дущей работе авторов показано, что использование двухпараметрических моделей электронного пучка поз- воляет правильно аппроксимировать результаты измерений распределений глубинных доз. В настоящей работе описывается метод электронного излучения на основе двухпараметрической модели электронного пучка и основных полуэмпирических соотношений этого метода. Проведена апробация предложенных ме- тодов дозиметрии электронного излучения на основании измерений, проведенных в центре стерилизации Института Ядерной Химии и Технологий, Варшава, Польша. МЕТОД ДОЗИМЕТРІЇ НА ОСНОВІ ДВОПАРАМЕТРИЧНОЇ МОДЕЛІ ЕЛЕКТРОННОГО ПУЧКА ДЛЯ РАДІАЦІЙНИХ ТЕХНОЛОГІЙ В.Т. Лазурик, В.М. Лазурик, Г.Ф. Попов, З. Зімек Робота присвячена розробці методів дозиметрії електронів для радіаційних технологій. У попередній ро- боті авторів показано, що використання двопараметричних моделей електронного пучка дозволяє правильно аппроксимірувати результати вимірів розподілів глибинних доз. В даній роботі описується метод електрон- ного випромінювання на основі двопараметричної моделі електронного пучка та основних напівемпіричних співвідношень цього методу. Проведена апробація запропонованих методів дозиметрії електронного випро- мінювання на основі вимірювань, проведених у центрі стерилізації Інституту ядерної хімії та технологій, Варшава, Польща.