Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers

The basic analysis of nuclear reactions in the deuteron-deuteron (dd) system at low energies is carried out. For the case of nuclear dd-fusion special attention is paid to the difference in the height of the Coulomb barriers, which arises from different values of the deuteron radius. It is declared...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2017
Main Authors: Tkachenko, I.V., Trubnikov, S.V., Tkachenko, V.I.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/136191
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers / I.V. Tkachenko, S.V. Trubnikov, V.I. Tkachenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 148-151. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-136191
record_format dspace
spelling Tkachenko, I.V.
Trubnikov, S.V.
Tkachenko, V.I.
2018-06-16T06:55:34Z
2018-06-16T06:55:34Z
2017
Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers / I.V. Tkachenko, S.V. Trubnikov, V.I. Tkachenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 148-151. — Бібліогр.: 10 назв. — англ.
1562-6016
PACS: 52.20.Hv
https://nasplib.isofts.kiev.ua/handle/123456789/136191
The basic analysis of nuclear reactions in the deuteron-deuteron (dd) system at low energies is carried out. For the case of nuclear dd-fusion special attention is paid to the difference in the height of the Coulomb barriers, which arises from different values of the deuteron radius. It is declared that a centrifugal barrier greatly hinders the nuclear reaction at low energies: in 19 out of 20 allowed transitions there is a strong suppression of nuclear fusion. Only in one single transition (S → S) is there no centrifugal suppression, but in the dd-system this transition is not dominant. Attention is drawn to the prospects (despite the smallness of the cross section) of considering radiation fusion in view of the significant energy release in a single act of reaction.
Проведено базовий аналіз ядерних реакцій в системі дейтрон-дейтрон (dd) при низьких енергіях. Для випадку ядерного dd-синтезу особлива увага приділяється різниці в висоті кулонівських бар'єрів, яка виникає з різних значень радіуса дейтрона. Стверджується, що відцентровий бар'єр значно ускладнює ядерну реакцію при низьких енергіях: у 19 з 20 дозволених переходів спостерігається сильне придушення ядерного синтезу. Тільки в одному єдиному переході (S → S) немає відцентрового придушення, але в dd-системі цей перехід не є домінуючим. Увага звертається на перспективи (незважаючи на малість перетину) обліку радіаційного синтезу за рахунок значного енерговиділення за один акт реакції.
Проведен базовый анализ ядерных реакций в системе дейтрон-дейтрон (dd) при низких энергиях. Для случая ядерного dd-синтеза особое внимание уделяется разности в высоте кулоновских барьеров, которая возникает из разных значений радиуса дейтрона. Указывается, что центробежный барьер значительно затрудняет ядерную реакцию при низких энергиях: в 19 из 20 разрешенных переходов наблюдается сильное подавление ядерного синтеза. Только в одном единственном переходе (S→S) нет центробежного подавления, но в dd-системе этот переход не является доминирующим. Обращается внимание на перспективы (несмотря на малость сечения) учета радиационного синтеза за счет значительного энерговыделения за один акт реакции.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Применение ядерных методов
Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers
Дейтрон-дейтроний нуклеосинтез із урахуванням кулонівського та відцентрового бар'єрів
Дейтрон-дейтронный нуклеосинтез с учетом кулоновского и центробежного барьеров
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers
spellingShingle Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers
Tkachenko, I.V.
Trubnikov, S.V.
Tkachenko, V.I.
Применение ядерных методов
title_short Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers
title_full Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers
title_fullStr Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers
title_full_unstemmed Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers
title_sort deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers
author Tkachenko, I.V.
Trubnikov, S.V.
Tkachenko, V.I.
author_facet Tkachenko, I.V.
Trubnikov, S.V.
Tkachenko, V.I.
topic Применение ядерных методов
topic_facet Применение ядерных методов
publishDate 2017
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Дейтрон-дейтроний нуклеосинтез із урахуванням кулонівського та відцентрового бар'єрів
Дейтрон-дейтронный нуклеосинтез с учетом кулоновского и центробежного барьеров
description The basic analysis of nuclear reactions in the deuteron-deuteron (dd) system at low energies is carried out. For the case of nuclear dd-fusion special attention is paid to the difference in the height of the Coulomb barriers, which arises from different values of the deuteron radius. It is declared that a centrifugal barrier greatly hinders the nuclear reaction at low energies: in 19 out of 20 allowed transitions there is a strong suppression of nuclear fusion. Only in one single transition (S → S) is there no centrifugal suppression, but in the dd-system this transition is not dominant. Attention is drawn to the prospects (despite the smallness of the cross section) of considering radiation fusion in view of the significant energy release in a single act of reaction. Проведено базовий аналіз ядерних реакцій в системі дейтрон-дейтрон (dd) при низьких енергіях. Для випадку ядерного dd-синтезу особлива увага приділяється різниці в висоті кулонівських бар'єрів, яка виникає з різних значень радіуса дейтрона. Стверджується, що відцентровий бар'єр значно ускладнює ядерну реакцію при низьких енергіях: у 19 з 20 дозволених переходів спостерігається сильне придушення ядерного синтезу. Тільки в одному єдиному переході (S → S) немає відцентрового придушення, але в dd-системі цей перехід не є домінуючим. Увага звертається на перспективи (незважаючи на малість перетину) обліку радіаційного синтезу за рахунок значного енерговиділення за один акт реакції. Проведен базовый анализ ядерных реакций в системе дейтрон-дейтрон (dd) при низких энергиях. Для случая ядерного dd-синтеза особое внимание уделяется разности в высоте кулоновских барьеров, которая возникает из разных значений радиуса дейтрона. Указывается, что центробежный барьер значительно затрудняет ядерную реакцию при низких энергиях: в 19 из 20 разрешенных переходов наблюдается сильное подавление ядерного синтеза. Только в одном единственном переходе (S→S) нет центробежного подавления, но в dd-системе этот переход не является доминирующим. Обращается внимание на перспективы (несмотря на малость сечения) учета радиационного синтеза за счет значительного энерговыделения за один акт реакции.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/136191
citation_txt Deuteron-deuteron nucleosynthesis considered with accounting of centrifugal and coulomb barriers / I.V. Tkachenko, S.V. Trubnikov, V.I. Tkachenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 148-151. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT tkachenkoiv deuterondeuteronnucleosynthesisconsideredwithaccountingofcentrifugalandcoulombbarriers
AT trubnikovsv deuterondeuteronnucleosynthesisconsideredwithaccountingofcentrifugalandcoulombbarriers
AT tkachenkovi deuterondeuteronnucleosynthesisconsideredwithaccountingofcentrifugalandcoulombbarriers
AT tkachenkoiv deitrondeitroniinukleosintezízurahuvannâmkulonívsʹkogotavídcentrovogobarêrív
AT trubnikovsv deitrondeitroniinukleosintezízurahuvannâmkulonívsʹkogotavídcentrovogobarêrív
AT tkachenkovi deitrondeitroniinukleosintezízurahuvannâmkulonívsʹkogotavídcentrovogobarêrív
AT tkachenkoiv deitrondeitronnyinukleosintezsučetomkulonovskogoicentrobežnogobarʹerov
AT trubnikovsv deitrondeitronnyinukleosintezsučetomkulonovskogoicentrobežnogobarʹerov
AT tkachenkovi deitrondeitronnyinukleosintezsučetomkulonovskogoicentrobežnogobarʹerov
first_indexed 2025-11-26T00:08:31Z
last_indexed 2025-11-26T00:08:31Z
_version_ 1850592852048871424
fulltext ISSN 1562-6016. ВАНТ. 2017. №6(112) 148 DEUTERON-DEUTERON NUCLEOSYNTHESIS CONSIDERED WITH ACCOUNTING OF CENTRIFUGAL AND COULOMB BARRIERS I.V. Tkachenko 1 , S.V. Trubnikov 2 , V.I. Tkachenko 1,3 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: tkachenko@kipt.kharkov.ua; 2 Kharkiv State Polytechnic College, Kharkov, Ukraine E-mail: sergiy.v.trubnikov@gmail.com; 3 V.N. Karazin Kharkov National University, Kharkov, Ukraine The basic analysis of nuclear reactions in the deuteron-deuteron (dd) system at low energies is carried out. For the case of nuclear dd-fusion special attention is paid to the difference in the height of the Coulomb barriers, which aris- es from different values of the deuteron radius. It is declared that a centrifugal barrier greatly hinders the nuclear reaction at low energies: in 19 out of 20 allowed transitions there is a strong suppression of nuclear fusion. Only in one single transition (S → S) is there no centrifugal suppression, but in the dd-system this transition is not dominant. Attention is drawn to the prospects (despite the smallness of the cross section) of considering radiation fusion in view of the significant energy release in a single act of reaction. PACS: 52.20.Hv INTRODUCTION Deuteron-deuteron (dd) scattering, like any nuclear- nuclear scattering, has in principle a multi-channel na- ture. A unique feature of the deuteron is the smallness of its binding energy. Therefore, even at sufficiently low energies, several different reaction channels (both exo- and endoenergetic) are opened in dd-scattering. Among them are the following processes, proceeding, naturally, with different probabilities: Coulomb scattering: d d d d   . Because of the absence of excited states in the deu- teron, there is no so-called reaction of Coulomb excita- tion in this process. Elastic nuclear scattering: d d d d   . Complete or partial fission: d d p p n n     , d d d n p    . Nuclear fusion: 3d d p H   , 3d d n He   . Radiation fusion: 4d d He    . Below the reactions of nuclear fusion with both un- polarized and polarized deuterons will be generally con- sidered. Particular attention will be paid to differences in the height of the Coulomb barrier arising when dif- ferent permissible values of the deuteron radius are cho- sen, as well as the role of the centrifugal barrier. Previ- ously, in our opinion, these issues were not adequately covered in the current literature. For the same reason questions connected with the possible role of the deuteron polarizability in the dd interaction and the prospects of radiative capture in the general complex of questions of "slow" controlled ther- monuclear synthesis were also added to the review pro- cedure. GENERAL REMARKS The present work arose as a reaction to the ongoing discussion of the pilot project PolFusion [1]. In this pro- ject it is proposed to study the interaction of two beams of polarized deuterons at low energies with all possible combinations of the mutual orientation of the spins of the colliding nuclei. Charged products of nuclear dd-fusion ( 3 3, , p He H ) will be detected by a system of detectors with a geometry close to the full solid angle. The de- pendence of the differential and total cross sections of the dd-fusion on the spin-spin correlations will be measured. It is assumed that the results obtained during the im- plementation of the project will be useful in developing of the realistic schemes of controlled thermonuclear fusion using polarized nuclei. The scheme of opposing polarized dd beams is good because the polarization and energy of deuterons can be varied and thereby isolate and study in an almost pure form individual effects in the dd interaction, which can not be done in a large vol- ume of a heated dd plasma confined by an external magnetic field, where all effects will be mixed. Below we discuss some of these effects. COULOMB BARRIER Nuclear dd-synthesis begins when deuterons ap- proach the distance of the action of nuclear forces 1,7 2nr r fm   . To reach this it is first of all neces- sary to overcome the Coulomb repulsion of two extend- ed positively charged particles with unit charges e . For the dd interaction, the Coulomb barrier is: 2 2 Coulomb d e B R  , where dR  deutron’s radius. Full (not spontaneous i.e. tunneling) nuclear fusion can begin only when the sum of the kinetic energies of two deuterons exceeds the height of the Coulomb barri- er: 1 2( ) ( )kin kin CoulombE d E d B  . However, what value of the deuteron radius should be substituted into this formula? One can specify multi- ple values of deuteron radii. 1. The first estimate of the dimensions of the deuteron appeared at the very beginning of the development of the mailto:tkachenko@kipt.kharkov.ua mailto:sergiy.v.trubnikov@gmail.com ISSN 1562-6016. ВАНТ. 2017. №6(112) 149 nucleus theory [2] and was based on the form of the wave function of the S-state of the deuteron at the boundary of the action of nuclear forces (see, for example, [http://rspa.royalsocietypublishing.org/content/148/863/ 146]): , r d e r    (1) where 2 2/M  , M is the nucleon mass,  is the binding energy of the deuteron. From the relation (1) we obtain the value of the parameter characterizing the spa- tial dimensions of the deuteron: 1 4.3dR fm M   . (2) This value can be conditionally called the nuclear (or hadron) radius of the deuteron. The value of (2) has long been widely accepted and widely used in the scien- tific literature, although such an estimate of the Cou- lomb barrier is not indisputable. 2. The quadrupole moment of a deuteron is com- pletely determined by the presence of the tensor compo- nent of nuclear forces. Therefore the radius of action of the tensor forces [2] can be regarded as the tensor radius of the deuteron: 3dTR fm . (3) 3. Analysis of electromagnetic processes involving the deuteron gives other methods for determining the radius of the deuteron. Elastic scattering of electrons by deuterons at very small values of the transferred momenta leads to the following value of the charge distribution radius in the deuteron: 1 2 2 (ch) 2.12 0.05d d chR r fm    . (4) More precise results can be obtained by studying the Lamb shift in deuterium (see, for example, the discus- sion in [2]). Even more accurate results were obtained as a result of laser spectroscopy of atoms of ordinary ( e d ) and muonic ( d ) deuterium [3]: 2.1256dR fm for ( e d )-atom, (5) 2.1424dR fm for ( d )-atom. (6) The values of the three charge radii (2 - 6) practical- ly coincide for the purposes of this paper, but in princi- ple a slight difference (5) and (6) makes us recall the "intrigue" regarding the proton radius that arose in 2013 about the ( e  )-universality? 4. In [4], while calculating the permeability coeffi- cients of the potential barrier, deuterons were assumed to be "hard spheres" with a radius: 7dR fm . It is unlikely that such assumptions can be called re- alistic: the origin and nature of such a large one dR is not explained in any way. The Coulomb barriers calculated for the "minimum" and "maximum" deuteron radii take the following val- ues. 1. 2.12dR fm . In this case 9360 3.6 10CoulombB keV K  . 2. 4.3dR fm it gives 9170 1.7 10CoulombB keV K  . A comparison of the two Coulomb barrier values leads to the following conclusions: 1. The height of the Coulomb barrier can vary more than twofold, depending on the deuteron radius used. 2. The value 2.12dR fm is preferable for the following reason: in the "organization" of the barrier, not all of the deuteron "as a whole" participates, but only its charged part. Therefore, the use of the charge radius of the deuteron in the calculation of the CoulombB is more justified. 3. In any case, the Coulomb barrier is quite high for modern experimental facilities on controlled fusion studies. At the temperature of the dd-plasma 7 810 ...10T K , nucleosynthesis is possible only as a sub-barrier [5] transition or due to reactions on the "tails" of the Maxwellian distribution. THE CENTRIFUGAL BARRIER Let’s suppose that we managed to increase the ener- gy of deuterons in a sufficiently large volume, and ex- ceed the height of the Coulomb barrier. Does this mean that all deuterons with energies 1 2 ColoumbE E B  will enter into the reactions of a full-fledged dd synthesis? No, it does not mean! The dd-fusion will undoubted- ly occur with central dd-collisions. But such clashes are not necessarily dominant. In noncentral collisions, when the orbital angular momentum l of the relative motion of two deuterons is different from zero 1l  , when two deuterons approach each other by the distance of action of nuclear forces r , the centrifugal cfB barrier appears: 2 ( 1) , 2 cf dd l l B r    (7) where Nm is the mass of the nucleon, d d dd d d m m m m    is the reduced mass. For the reduced mass in our problem, we can take an approximate value: dd Nm  . The centrifugal barrier as the suppressing factor of the synthesis reaction in most cases arises in the final state during the expansion of the ( pt ) and ( 3n He ) pairs, even if in the initial state the dd interaction was of a central character. In the final states, the reduced mass- es of reaction products take on values 3 3 4 pt Nn He m   . To estimate the height of the cen- trifugal barrier, we choose an allowable value of the impact parameter maxr r b  , which is most favorable for the onset of dd-fusion. As such, we can take the val- ue: 2 d nuclb R r  , where nuclr is the radius of action of nuclear forces. For the 1.6...2nuclr fm and 4.3dR fm produces 10b fm , which gives the cen- trifugal barrier estimate: ( 1) 200cfB (dd) l l keV   . ISSN 1562-6016. ВАНТ. 2017. №6(112) 150 In other words, even for lower partial waves and "minimizing" the cfB (7) parameters dR and nuclr the centrifugal barrier is very high: 9 1 2 400 4 10 , 1.2 . cf l cf l B (dd) keV K B (dd) MeV       (8) The centrifugal barrier is even higher when the reac- tion products, i. e. ( pt )  and ( 3n He ) -pairs emerge from the nuclear interaction area nuclr with nonzero or- bital angular momenta. A sufficient increase in the bar- rier (pt)cfB , for example, will occur due to small (in comparison with the radius of the deuteron dR ) proton and tritium radii ( 0.9pR fm , 2tR fm respectively). In this case we have a very high barrier: ( 1) 1.2cfB (pt) l l MeV   . (9) Obviously, in the case of a noncentral approach of two deuterons when the impact parameter approaches the radius of action of the nuclear forces, the emerging centrifugal barrier reaches a considerable height and greatly complicates the dd fusion. The allowed transitions are determined by the most general laws of physics of fundamental interactions. In our case, there are three such patterns that can not be subjected to any revision: 1. Bose statistics for the system of two identical bosons in the initial state. The requirement of symmetry of the wave function for permutation of all coordinates leads to the relation:  1 1 S l    , where S  is the total spin, and l is the orbital angular momentum of the dd system. Such correlation between the values of the spin and the orbital angular momentum will greatly re- duce the number of allowed transitions. 2. The law of conservation of spatial parity in nu- clear interactions means the equality of parities (or oddi- ties) of the orbital moments of the initial (DD)initial il l and final 3( )final fl l p H states that: ( 1) ( 1)i fl l   , or 2i fl l n  , where n is an integer number. 3. The law of conservation of the total angular momentum: J S l  . This law in the theory of nuclear reactions at low energies has a great "practical" sense. It follows from this that at low energies reactions are pos- sible only for a certain values of the orbital angular momentum, which does not exceed a certain small number. These three laws define allowed multipole transi- tions in nuclear two-particle dd synthesis like: 2 1 2 1S S J Jl l    . (10) Full multipole analysis is beyond the scope of this article, but it is necessary to point out that under (10) out of 20 possible transitions of the dd-system with ( ) 0,1,2S dd  and ( ) 0,1,2,3l dd  initial states there is only one "pure" transition S S not suppressed by a centrifugal barrier at any energies. But in the dd-system such "pure" transition is not dominant one. POLARIZABILITY The question of the effect of the deuteron polariza- bility on the dd-fusion is comparatively poorly studied. The polarizability of any extended microobject (ie, nuclei and hadrons) is, in principle, the same fundamen- tal characteristic as mass, charge, spin, etc. In the first approximation, for example, for a nucleon,   electric and   magnetic polarizabilities can be determined [6] as coefficients in the expression for the effective energy of the nucleon interaction with external electric and magnetic fields: 2 21 1 . 2 2 E E H    (11) In other words, a charged object with internal struc- ture placed in an electric field undergoes deformation i.e. in the system appears an additional (except for the Coulomb) long-range action, due to the electric polar- izability of the particle. The potential of the polarization interaction is attractive. At relatively large distances, the polarization potential decreases as 41 r , but on the boundary of the nuclear forces distance its role may turn out to be significant. A convincing theoretical analysis of the polarizabil- ity role in nuclear reactions is complicated by the fact that the experimental determination of polarizability is a rather difficult task. Nevertheless, it is clear that in such a loosely coupled system as the deuteron, the polariza- bility must be large and in principle can affect the mag- nitude of the Coulomb barrier and hence the rate of nu- clear fusion reactions. For comparison let’s give some estimates. The elec- tric polarizability of the deuteron 30.70 0.05(d) fm   [7], while for a proton this value is almost three orders of magnitude smaller 4 3(12.10 0.9) 10(p) fm    . In a few literature on this topic were expressed di- rectly opposite points of view. Thus, the estimates given in [7] show that the effects of polarizability in the reac- tions epp de  , 3pd He , 4td nHe are very small. The reaction of dd-fusion was not considered. And in [8] it is asserted that taking into account the po- larization interaction greatly increases (by several orders of magnitude) the cross section for nucleosynthesis re- actions. In the case of continuing work on nuclear dd synthe- sis, the question of the role of the polarizability of deu- terons requires additional study. RADIATION FUSION The cross sections of the electro- and photonuclear processes at the energies representing the interest to fusion (10 8 …10 9 K) are approximately two orders of magnitude smaller than the cross sections of purely nu- clear interactions. Nevertheless, these processes, in our opinion, deserve a separate discussion. Radiation dd-fusion: 4d d He    (12) is characterized by a very high energy release: the ener- gy of the γ-quantum produced in such an exothermic reaction is 24E MeV  . Therefore, in cases where ISSN 1562-6016. ВАНТ. 2017. №6(112) 151 nuclear sub-barrier synthesis is suppressed (for exam- ple, in a quintet state 2S(dd)  ), the contribution of radiation synthesis becomes significant. The reaction 2 4H(d, ) He is discussed in many works (see, for ex- ample, [9, 10]), but mainly from the point of view of studying the structure of the ground state of the nucleus. In conclusion, we note that another "remarkable property" of radiation synthesis, in addition to high en- ergy release, is the complete absence of neutrons and any radioactive reaction products. CONCLUSIONS The height of the Coulomb barrier in deuteron- deuteron nucleosynthesis reactions depends significant- ly on the assumed value of the deuteron radius. The commonly used value for the deuteron radius of 4.3 fm, from our point of view, is not entirely justified, since it represents the radius of the hadronic matter distribution in the deuteron, and only the radius of the electric charge distribution equal to 2.12 fm, takes part in the formation of the Coulomb barrier. The use of this radius increases the height of the Coulomb barrier in two times. For nonzero values of the orbital angular momenta of the dd-system the heights of the centrifugal barriers far exceed the height of the Coulomb barrier and signif- icantly hinder the above-barrier synthesis process. The estimated heights of the centrifugal barriers are very impressive and, undoubtedly, should be taken into ac- count in more detail in the scope of problems and pro- spects of dd-fusion. Of great interest also would be the experimental studies of the above estimates. The deuteron is a much more "loose" system than a proton or a neutron. Therefore, in the theoretical calcu- lations of deuteron-deuteron fusion, it is necessary to take into account the polarizability of the deuteron. Ex- isting estimates of this effect are in sharp contradiction. The contribution of polarizability to dd-synthesis re- quires additional studies. Radiation deuteron-deuteron fusion may be of great interest in view of the huge energy release and the ab- sence of radioactive components in reaction products. All the above consideration was based only on the fundamental principles of quantum theory. Therefore, the conclusions drawn by us are common to all con- trolled fusion installations and facilities, regardless of the plasma creation methods or confinement types. REFERENCES 1. G. Ciullo, R. Engels, M. Büscher, A. Vasilyev // Nuclear Fusion with Polarized Fuel, Springer Pro- ceedings in Physics. 2016, p. 154. 2. William Rarita and Julian Schwinger // Phys. Rev. 1941, v. 59, Iss. 7, p 556. 3. R. Pohl, F. Nez, L.M. Fernandes, et al. Laser spec- troscopy of muonic deuterium // Science. 2016, 353(6300):669-73. 4. B.P. Ad'yasevich, D.E. Fomenko. Analiz rezultatov issledovaniya reaktsii D(d,p)T s polyarizovannyimi deytronami // Yadernaya fizika. 1969, v. 9, № 2, p. 283-291 (in Russian). 5. L.D. Landau, E.M. Lifshitz. Quantum Mechanics (Volume 3 of A Course of Theoretical Physics). Pergamon Press, 1965. 6. A. Klein // Phys. Rev. 1955, v. 99, № 2, p. 998. 7. V.P. Levashev. On The Role Of Polarization Effects: Preprint. Academy of Sciences of Ukraine, Institute of theoretical physics, 1998, p. 34. 8. V.B. Belyaev. Lektsii po teorii malochastichnyih sistem. M.: “Energoatomizdat”, 1986, 128 p. 9. G. Blüge, H.J. Assenbaum, and K. Langanke. Poten- tial model analysis of low energy 2H(d,γ) 4He fu- sion data // Phys. Rev. 1987, v. 36, iss. 1, p. 21. 10. J. Piekarewicz and S.E. Koonin. Importance of the deuteron quadrupole moment in 2H(d,γ)4He // Phys. Rev. 1987, v. 36, iss. 3, p. 875. Article received 30.10.2017 ДЕЙТРОН-ДЕЙТРОННЫЙ НУКЛЕОСИНТЕЗ С УЧЕТОМ КУЛОНОВСКОГО И ЦЕНТРОБЕЖНОГО БАРЬЕРОВ И.В. Ткаченко, С.В. Трубников, В.И. Ткаченко Проведен базовый анализ ядерных реакций в системе дейтрон-дейтрон (dd) при низких энергиях. Для случая ядерного dd-синтеза особое внимание уделяется разности в высоте кулоновских барьеров, которая возникает из разных значений радиуса дейтрона. Указывается, что центробежный барьер значительно за- трудняет ядерную реакцию при низких энергиях: в 19 из 20 разрешенных переходов наблюдается сильное подавление ядерного синтеза. Только в одном единственном переходе (S→S) нет центробежного подавле- ния, но в dd-системе этот переход не является доминирующим. Обращается внимание на перспективы (не- смотря на малость сечения) учета радиационного синтеза за счет значительного энерговыделения за один акт реакции. ДЕЙТРОН-ДЕЙТРОНИЙ НУКЛЕОСИНТЕЗ ІЗ УРАХУВАННЯМ КУЛОНІВСЬКОГО ТА ВІДЦЕНТРОВОГО БАР'ЄРІВ І.В. Ткаченко, С.В. Трубников, В.І. Ткаченко Проведено базовий аналіз ядерних реакцій в системі дейтрон-дейтрон (dd) при низьких енергіях. Для ви- падку ядерного dd-синтезу особлива увага приділяється різниці в висоті кулонівських бар'єрів, яка виникає з різних значень радіуса дейтрона. Стверджується, що відцентровий бар'єр значно ускладнює ядерну реакцію при низьких енергіях: у 19 з 20 дозволених переходів спостерігається сильне придушення ядерного синтезу. Тільки в одному єдиному переході (S → S) немає відцентрового придушення, але в dd-системі цей перехід не є домінуючим. Увага звертається на перспективи (незважаючи на малість перетину) обліку радіаційного синтезу за рахунок значного енерговиділення за один акт реакції.