The diffusion effects in relativistic electron beam in an undulator
We consider diffusion processes in momentum space of a relativistic electron beam moving in a spatially periodic magnetic field of an undulator. Basing on the dynamics of individual particles motion under the action of the pair interaction forces the longitudinal diffusion coefficient has been deriv...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2017 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/136200 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | The diffusion effects in relativistic electron beam in an undulator / V.V. Ognivenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 85-87. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-136200 |
|---|---|
| record_format |
dspace |
| spelling |
Ognivenko, V.V. 2018-06-16T07:10:00Z 2018-06-16T07:10:00Z 2017 The diffusion effects in relativistic electron beam in an undulator / V.V. Ognivenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 85-87. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 41.60.-m, 41.60.Cr, 52.25.Gj https://nasplib.isofts.kiev.ua/handle/123456789/136200 We consider diffusion processes in momentum space of a relativistic electron beam moving in a spatially periodic magnetic field of an undulator. Basing on the dynamics of individual particles motion under the action of the pair interaction forces the longitudinal diffusion coefficient has been derived. The conditions for the high-gain self-amplification of spontaneous radiation in ultrashort-wavelength FELs have been discussed. Розглянуто процеси дифузії в просторі імпульсів релятивістського електронного пучка, що рухається в просторово періодичному магнітному полі ондулятора. Ґрунтуючись на динаміці руху окремих частинок під дією сил парної взаємодії, отримано поздовжній коефіцієнт дифузії. Обговорюються умови реалізації інтенсивного самочинного посилення спонтанного випромінювання в ультракороткохвильових ЛВЕ. Рассмотрены процессы диффузии в пространстве импульсов релятивистского электронного пучка, движущегося в пространственно периодическом магнитном поле ондулятора. Основываясь на динамике движения отдельных частиц под действием сил парного взаимодействия, получен продольный коэффициент диффузии. Обсуждаются условия реализации интенсивного самопроизвольного усиления спонтанного излучения в ультракоротковолновых ЛСЭ. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Динамика пучков The diffusion effects in relativistic electron beam in an undulator Ефекти дифузії в релятивістському електронному пучку в ондуляторі Эффекты диффузии в релятивистском электронном пучке в ондуляторе Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The diffusion effects in relativistic electron beam in an undulator |
| spellingShingle |
The diffusion effects in relativistic electron beam in an undulator Ognivenko, V.V. Динамика пучков |
| title_short |
The diffusion effects in relativistic electron beam in an undulator |
| title_full |
The diffusion effects in relativistic electron beam in an undulator |
| title_fullStr |
The diffusion effects in relativistic electron beam in an undulator |
| title_full_unstemmed |
The diffusion effects in relativistic electron beam in an undulator |
| title_sort |
diffusion effects in relativistic electron beam in an undulator |
| author |
Ognivenko, V.V. |
| author_facet |
Ognivenko, V.V. |
| topic |
Динамика пучков |
| topic_facet |
Динамика пучков |
| publishDate |
2017 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Ефекти дифузії в релятивістському електронному пучку в ондуляторі Эффекты диффузии в релятивистском электронном пучке в ондуляторе |
| description |
We consider diffusion processes in momentum space of a relativistic electron beam moving in a spatially periodic magnetic field of an undulator. Basing on the dynamics of individual particles motion under the action of the pair interaction forces the longitudinal diffusion coefficient has been derived. The conditions for the high-gain self-amplification of spontaneous radiation in ultrashort-wavelength FELs have been discussed.
Розглянуто процеси дифузії в просторі імпульсів релятивістського електронного пучка, що рухається в просторово періодичному магнітному полі ондулятора. Ґрунтуючись на динаміці руху окремих частинок під дією сил парної взаємодії, отримано поздовжній коефіцієнт дифузії. Обговорюються умови реалізації інтенсивного самочинного посилення спонтанного випромінювання в ультракороткохвильових ЛВЕ.
Рассмотрены процессы диффузии в пространстве импульсов релятивистского электронного пучка, движущегося в пространственно периодическом магнитном поле ондулятора. Основываясь на динамике движения отдельных частиц под действием сил парного взаимодействия, получен продольный коэффициент диффузии. Обсуждаются условия реализации интенсивного самопроизвольного усиления спонтанного излучения в ультракоротковолновых ЛСЭ.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/136200 |
| citation_txt |
The diffusion effects in relativistic electron beam in an undulator / V.V. Ognivenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 85-87. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT ognivenkovv thediffusioneffectsinrelativisticelectronbeaminanundulator AT ognivenkovv efektidifuzíívrelâtivístsʹkomuelektronnomupučkuvondulâtorí AT ognivenkovv éffektydiffuziivrelâtivistskomélektronnompučkevondulâtore AT ognivenkovv diffusioneffectsinrelativisticelectronbeaminanundulator |
| first_indexed |
2025-11-24T04:31:51Z |
| last_indexed |
2025-11-24T04:31:51Z |
| _version_ |
1850842156143476736 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2017. №6(112) 85
THE DIFFUSION EFFECTS IN RELATIVISTIC ELECTRON BEAM
IN AN UNDULATOR
V.V. Ognivenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: ognivenko@kipt.kharkov.ua
We consider diffusion processes in momentum space of a relativistic electron beam moving in a spatially period-
ic magnetic field of an undulator. Basing on the dynamics of individual particles motion under the action of the pair
interaction forces the longitudinal diffusion coefficient has been derived. The conditions for the high-gain self-
amplification of spontaneous radiation in ultrashort-wavelength FELs have been discussed.
PACS: 41.60.-m, 41.60.Cr, 52.25.Gj
INTRODUCTION
As it is known, relativistic electron beams, moving in
a spatially periodic static magnet field (undulator) are the
sources of intense narrowband electromagnetic radiation.
The wavelength of this radiation is proportional to the
period of an external magnetic field and inversely propor-
tional to the square of energy of electron. Such mecha-
nism of interaction between ultra-relativistic electrons and
external periodic magnetic field has been used to obtain
the electromagnetic radiation in nanometer range of
wavelengths by now [1 - 3].
At a spontaneous incoherent radiation of electromag-
netic waves by relativistic electrons, moving in an undula-
tor, there is a change of the average momentum of elec-
trons, as a result of braking by the force of radiation fric-
tion. Moreover, influence of incoherent electromagnetic
field of spontaneous radiation of individual electrons
leads to the increase in root-mean-square spread in mo-
menta in a relativistic electronic beam, moving in an un-
dulator [4, 5]. The study of motion dynamics of electrons
at the stage of spontaneous incoherent radiation is of in-
terest regarding the researches directed on creation of
sources of coherent electromagnetic radiation in X-ray
range of wavelengths by means of relativistic electron
beam passing through an undulator.
The interaction of initially monoenergetic electron
beam with an undulator field has been considered in [5]
and the expression describing the change of a root-mean-
square longitudinal momentum of electrons, in the case
when the spread in energy of electrons at the entrance of
the undulator can be neglected, has been found. The mo-
tion of the beam of electrons, having at the entrance of the
undulator some initial spread in longitudinal momentum,
is considered in the given work. In the limit case of small
value of the undulator parameter the expression for the
diffusion coefficient in momentum space is obtained,
which can describe both the initial stage of prebrownian
motion of electrons in the electromagnetic field of undula-
tor radiation, when approach of a monoenergetic electron
beam is valid, and in the case of kinetic stage of particles
diffusion.
1. PROBLEM STATEMENT
Let's consider a beam of relativistic electrons, moving
in the spatially periodic static magnet field of helical un-
dulator
zkzkH uyuxu sincos0 eeH , (1)
uuk 2 , Н0 and u are the amplitude and period of
magnetic field, yx ee , are the unit vectors along axes x
and y the Cartesian system of coordinates.
Moving in an undulator, electrons radiate. The electric
field produced by individual electron (s-th) in undulator
can be found from formulas for the field of a charge,
moving with acceleration [6].
32322 11 sss
sssss
sss
sss
s
Rc
e
R
e
βn
vβnn
βn
βn
E
, (2)
ssss xt EnrH ;, , (3)
where sss R Rn , tt sss rrRR , cvβ ,
dtdvv , 2121
, c is the speed of light in vacu-
um, е is the electron charge, the prime denotes the values
taken in retarding time t, defined by the equation:
ctRtt s .
Considering the motion of a test particle in an undula-
tor the equation describing its motion is possible to be
written down in the form
s
si
s
z
zi xttxF
dt
d
;,
p
,
tm
t
dt
d
i
ii
pr
, (4)
zssszss
s
z xtx
c
xtxextxF ;,
1
;,E;, Hv , (5)
where Fz
(s)
(xi,t;xs) is the longitudinal component of pair
interaction force of two electrons, m is the mass of elec-
tron, xs(t){rs(t), ps(t)} set of the Cartesian coordinates
and momentum of s-th electron.
2. DIFFUSION COEFFICIENT
Distribution of the electrons in the beam at the en-
trance of the undulator is random, therefore the total elec-
tromagnetic field of radiation by individual electrons at
the initial stage is incoherent. Assuming that at initial
instant of time the motion of the electrons is uncorrelated,
and there are many electrons in the beam, the diffusion
coefficient in a longitudinal momentum can be taken from
the equations of test electron motion [5, 7]
,v,;,
,;,
2
00010
001
0
0
0012
sszsssiz
q
ssizziz
dqtqfqtxtxF
qtxttxFdp
dt
d
D
(6)
where q0s=(p0s, x0s, y0s, t0s), dq0s=dp0sdx0sdy0sdt0s, =t-t0i,
f1 is the single-particle distribution function,
000 , iiix pr . As we consider time intervals small in
ISSN 1562-6016. ВАНТ. 2017. №6(112) 86
comparison with the time of the significant change of the
electrons trajectory, in the right-hand side of Eq. (6), in
the pair interaction force, we have replaced coordinates
and the momenta with unperturbed trajectory t0
r and
momenta t0
p of electron in the undulator.
Let's assume that the electron beam is cylindrical with
radius br and constant average density of electrons bn for
brr , and at the initial time (at z=0) distribution function
in momenta takes the form:
2
2
0
2
exp
2 th
zz
th
b
p
pp
p
n
f pp .
The equilibrium velocity and trajectory of electron in
the field (1) are:
tzkrtzkrttt suusysuusxossss cossin00
0
eevrr ,
tzktzkt susysusxss sinvcosv0
0
eevv ,
where
00v
zu
u
k
cK
r ,
0
v
cK
,
ukmc
He
K
2
0
,
szs tttz 00v .
In the case of small undulator parameter К<<1, con-
sidering only the second term of force (5), from Eqs. (2),
(3) and (4) we get the expression for pair interaction force
between electrons:
ssisiissusizs zGkeqttF ,K;,
22
0
0
r , (7)
*0*
2
*
2
0**0
cos
sin
1
,
RkR
x
RkR
x
Rk
yxG
s
s
s
s
s
s
,
where *
2, Rxkyx ssu , 2122
* , yxyxR ,
szsisi ttzz 0v , sisi 0rr , usss kk 2
000 .
Let's substitute expression for force (7) in the equation
(6). Assuming that change in momentum occurs at a dis-
tance greater than a period of the undulator, in expression
(7) we retain the terms inversely proportional to the first
degrees *R . We will also consider that the basic contribu-
tion to the integral (6) will give terms containing a differ-
ence of phases at time t and t-. Then Eq. (6) can be re-
duced to the form:
,
0
tKdD zz , (8)
wr
pp
r
dVfdkKetK sssu
cos
, 000
2
0
22 , (9)
where sissi zz 0rrr , si vvw ,
tt , sssss dtdydxdV 00000 v .
The limits of integration in the Eq. (9) are defined by
the time of radiation propagation from electron-radiator
(s-th) to considered test electron and the transverse di-
mensions of the beam:
2
*0 iiis zRz , bsoss ryxr
212
0
2 . (10)
In the right-hand side of Eq. (9) at the integration over
initial coordinates it is expedient to transform to the new
variables ,,r :
cossinrxx soios , sinsinryy soios ,
cosrzsi .
Let's find the diffusion coefficient for electrons mov-
ing near to the beam axis. Thus the range of the integra-
tion on r and according to the Eq. (10) is:
2cos ii zr , bs rr sin . (11)
In Eq. (9) we will consider the forces exerted on the
test electron by the electrons, moving behind it zs<zi
(0<</2). Integrating in Eq.(9) on r and at z>z*, and
substituting the obtained expression in Eq.(8), we find:
*
22
0
0
222 cosv
zz
xa
zibbuz dxbxenrkKeD , (12)
where
02 z
uth
p
kp
a ,
0
0
z
zzi
u
p
pp
kb
, brz 0* .
Using this formula, it is possible to find the diffusion
coefficient in momentum space for the various times at
the certain initial energy spread of electrons.
3. DISCUSSION
From the expression (12), connecting the correlation
function and diffusion coefficient, it follows that the cor-
relation function can be written in the form:
zbbu benrkKettK c
00
222 vcos,
2
, (13)
where 002 zuthzc vkpp .
From (13) we see that correlation function oscillates
on with decreasing amplitude for large values of t. For
in formula (13) the correlation function tends to
zero. Such dependence of correlation function on time
describes chaotization of particles motion. Characteristic
time of particles motion chaotization is c, which is equal
to the displacement time in the longitudinal direction, as a
result of thermal motion, at the distance equal to the half
of the wavelength of undulator radiations
thc v5.0 ,
2
02 u . For >>c the motion of particles becomes
chaotic.
The expression (12) describes the change of root-
mean-square value of the momentum of electrons also at
times <<c. The expression for diffusion coefficient in
this case becomes:
z
nr
kKepD
zi
bb
uziz
v
0
222
.
In this limiting case the change in time of root-mean-
square value of the longitudinal momentum is described
by the formula
u
bz
Rzz
r
NFp
2
9 0
21
2
, (14)
which coincides with the corresponding formula of [5],
where 3
0
2
0
2
0
2
032 zRz HrF ,
4
0
3 8 zubnN .
For <<c the motion of particles occurs under the influ-
ence of pair interaction forces of particles, the change in
time of which is negligible. Therefore, the r.m.s. value of
momentum is proportional to the time.
For >> c the motion of electrons is random. The ex-
pression for diffusion coefficient becomes:
2
2
00
23
044
2
exp
2v
th
zzi
th
z
zi
bb
uz
p
pp
p
pnr
kKeD
. (15)
ISSN 1562-6016. ВАНТ. 2017. №6(112) 87
The r.m.s. value of the momentum increases propor-
tionally to the square root of time. Such dependence of
momenta spread in time describes the completely chaotic
motion of particles.
The distance in the undulator at which the particles
motion chaotization occurs can be written as
czcz 0v .
Then, for the electron beam with some initial energy
spread, we find:
uthzc kppz 02 .
Thus, for the momentum spread at the entrance of the
undulator thp so that 10 zuth pzkp the r.m.s. deviation
of the longitudinal momentum from equilibrium value
increases proportionally to the distance traversed by elec-
trons in the undulator (14). In this case the monoenergetic
beam approximation [5] is applicable. In the opposite
limit of large energies spread 10 zuth pzkp the kinetic
stage of the radiative relaxation of an electron beam in the
undulator occurs. At this stage the r.m.s. spread increases
proportionally to the square root of time (15).
As we see from (14), at the initial energy spread for
which the mode of self amplification of spontaneous un-
dulator radiations occurs [8, 9], the energy spread in the
beam can increase as a result of the radiative relaxation
[5]. At small momentum spread 10 zuth pzkp
the anal-
ysis of radiation formation in the mode of self amplifica-
tion of spontaneous emission needs to be carried out
while taking into account the effect of the radiative relax-
ation of the beam.
REFERENCES
1. V. Ayvazyan et al. First operation of a free-electron
laser generating GW power radiation at 32 nm wave-
length // Eur. Phys. J. D. 2006, v. 37, p. 297-303.
2. P. Emma et al. First Lasing and Operation of an Ång-
strom-Wavelength Free-Electron Laser // Nature Pho-
tonics. 2010, v. 4, p. 641-647.
3. S.T. Ishikawa et al. A compact X-ray free-electron
laser emitting in the sub-ångström region // Nature
Photonics. 2012, v. 6, p. 540-544.
4. V.V. Ognivenko. Radiative relaxation of relativistic
electron beam in helical undulator // Problems of
Atomic Science and Technology. Series “Plasma Elec-
tronics”. 2006, № 5, p. 7-9.
5. V.V. Ognivenko. Momentum spread in a relativistic
electron beam in an undulator // J. Exp. Theor. Phys.
2012, v. 115, № 5, p. 938-946.
6. L.D. Landau, E.M. Lifshic. Theorya polya. M: “Nau-
ka”. 1967, 460 p. (in Russian).
7. V.V. Ognivenko. Dynamical derivation of momentum
diffusion coefficients at collisions of relativistic
charged particles // J. Exp. Theor. Phys. 2016, v. 122,
№ 1, p. 203-208.
8. K.-J. Kim. An analysis of self-amplified spontaneous
emission // Nucl. Instr. and Meth. 1986, v. A 250,
№ 1-2, p. 396-403.
9. С. Pellegrini. Free electron lasers: development and
applications // Particle Accelerators. 1990, v. 33,
p. 159-170.
Article received 09.10.2017
ЭФФЕКТЫ ДИФФУЗИИ В РЕЛЯТИВИСТСКОМ ЭЛЕКТРОННОМ ПУЧКЕ В ОНДУЛЯТОРЕ
В.В. Огнивенко
Рассмотрены процессы диффузии в пространстве импульсов релятивистского электронного пучка, дви-
жущегося в пространственно периодическом магнитном поле ондулятора. Основываясь на динамике движе-
ния отдельных частиц под действием сил парного взаимодействия, получен продольный коэффициент диф-
фузии. Обсуждаются условия реализации интенсивного самопроизвольного усиления спонтанного излуче-
ния в ультракоротковолновых ЛСЭ.
ЕФЕКТИ ДИФУЗІЇ В РЕЛЯТИВІСТСЬКОМУ ЕЛЕКТРОННОМУ ПУЧКУ В ОНДУЛЯТОРІ
В.В. Огнівенко
Розглянуто процеси дифузії в просторі імпульсів релятивістського електронного пучка, що рухається в
просторово періодичному магнітному полі ондулятора. Ґрунтуючись на динаміці руху окремих частинок під
дією сил парної взаємодії, отримано поздовжній коефіцієнт дифузії. Обговорюються умови реалізації інтен-
сивного самочинного посилення спонтанного випромінювання в ультракороткохвильових ЛВЕ.
|