Impact of microwave pulses of ultrashort duration on a personal computer
Procedure of the tests for electromagnetic compatibility and strength (EMSS) of a personal computer (PC) to microwave ultrashort duration pulse (USP) and analysis of the results are described. 3D simulation of the MW USP interaction with the test objects considering the configuration of the test are...
Gespeichert in:
| Datum: | 2017 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/136215 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Impact of microwave pulses of ultrashort duration on a personal computer / N.P. Gadetski, S.Yu. Karelin, I.I. Magda, I.M. Shapoval, V.A. Soshenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 52-57. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-136215 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1362152025-02-09T11:11:55Z Impact of microwave pulses of ultrashort duration on a personal computer Вплив НВЧ-імпульсів надкороткої тривалості на персональний комп’ютер Действие СВЧ-импульсов сверхкороткой длительности на персональный компьютер Gadetski, N.P. Karelin, S.Yu. Magda, I.I. Shapoval, I.M. Soshenko, V.A. Новые и нестандартные ускорительные технологии Procedure of the tests for electromagnetic compatibility and strength (EMSS) of a personal computer (PC) to microwave ultrashort duration pulse (USP) and analysis of the results are described. 3D simulation of the MW USP interaction with the test objects considering the configuration of the test area and screening effect of metal components estimates the level of electromagnetic field inside the PC case. Numerically and experimentally is shown that the MW field penetrating into the metal PC case through technological holes can induce the USP potentials in the PC circuitry sufficient to create functional upsets and degradations. Описуються підготовка та аналіз результатів тестів на електромагнітну сумісність та стійкість персонального комп’ютера до дії імпульсних НВЧ-електромагнітних полів надкороткої тривалості. Застосовано чисельне моделювання опромінення тестованих об’єктів з урахуванням конфігурації тестового простору, що дозволяє визначити рівень електромагнітних полів усередині корпусу ПК. За допомогою розрахунків та експериментально показано, що імпульсні НВЧ-поля досить легко проникають у металеві корпуси ПК через технологічні отвори. При цьому, поблизу чутливих ланцюгів ПК вони можуть збуджувати потенціали надкороткої тривалості з амплітудами, що достатні для створення функціональних збоїв та деградаційних ефектів. Описываются подготовка и анализ результатов тестов на электромагнитную совместимость и стойкость персонального компьютера к воздействию импульсных СВЧ-электромагнитных полей сверхкороткой длительности. Применено численное моделирование облучения тестируемых объектов с учетом конфигурации тестового пространства, позволяющее определить уровень воздействующих электромагнитных полей внутри корпуса ПК. С помощью расчетов и экспериментально показано, что импульсные СВЧ-поля достаточно легко проникают в металлические корпуса ПК через технологические отверстия. При этом, в областях чувствительных цепей ПК они могут возбуждать уровни воздействующих потенциалов сверхкороткой длительности, достаточные для создания функциональных сбоев и деградационных эффектов. 2017 Article Impact of microwave pulses of ultrashort duration on a personal computer / N.P. Gadetski, S.Yu. Karelin, I.I. Magda, I.M. Shapoval, V.A. Soshenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 52-57. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 84.70.+p, 81.70.Ex https://nasplib.isofts.kiev.ua/handle/123456789/136215 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Новые и нестандартные ускорительные технологии Новые и нестандартные ускорительные технологии |
| spellingShingle |
Новые и нестандартные ускорительные технологии Новые и нестандартные ускорительные технологии Gadetski, N.P. Karelin, S.Yu. Magda, I.I. Shapoval, I.M. Soshenko, V.A. Impact of microwave pulses of ultrashort duration on a personal computer Вопросы атомной науки и техники |
| description |
Procedure of the tests for electromagnetic compatibility and strength (EMSS) of a personal computer (PC) to microwave ultrashort duration pulse (USP) and analysis of the results are described. 3D simulation of the MW USP interaction with the test objects considering the configuration of the test area and screening effect of metal components estimates the level of electromagnetic field inside the PC case. Numerically and experimentally is shown that the MW field penetrating into the metal PC case through technological holes can induce the USP potentials in the PC circuitry sufficient to create functional upsets and degradations. |
| format |
Article |
| author |
Gadetski, N.P. Karelin, S.Yu. Magda, I.I. Shapoval, I.M. Soshenko, V.A. |
| author_facet |
Gadetski, N.P. Karelin, S.Yu. Magda, I.I. Shapoval, I.M. Soshenko, V.A. |
| author_sort |
Gadetski, N.P. |
| title |
Impact of microwave pulses of ultrashort duration on a personal computer |
| title_short |
Impact of microwave pulses of ultrashort duration on a personal computer |
| title_full |
Impact of microwave pulses of ultrashort duration on a personal computer |
| title_fullStr |
Impact of microwave pulses of ultrashort duration on a personal computer |
| title_full_unstemmed |
Impact of microwave pulses of ultrashort duration on a personal computer |
| title_sort |
impact of microwave pulses of ultrashort duration on a personal computer |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2017 |
| topic_facet |
Новые и нестандартные ускорительные технологии |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/136215 |
| citation_txt |
Impact of microwave pulses of ultrashort duration on a personal computer / N.P. Gadetski, S.Yu. Karelin, I.I. Magda, I.M. Shapoval, V.A. Soshenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 52-57. — Бібліогр.: 5 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT gadetskinp impactofmicrowavepulsesofultrashortdurationonapersonalcomputer AT karelinsyu impactofmicrowavepulsesofultrashortdurationonapersonalcomputer AT magdaii impactofmicrowavepulsesofultrashortdurationonapersonalcomputer AT shapovalim impactofmicrowavepulsesofultrashortdurationonapersonalcomputer AT soshenkova impactofmicrowavepulsesofultrashortdurationonapersonalcomputer AT gadetskinp vplivnvčímpulʹsívnadkorotkoítrivalostínapersonalʹnijkompûter AT karelinsyu vplivnvčímpulʹsívnadkorotkoítrivalostínapersonalʹnijkompûter AT magdaii vplivnvčímpulʹsívnadkorotkoítrivalostínapersonalʹnijkompûter AT shapovalim vplivnvčímpulʹsívnadkorotkoítrivalostínapersonalʹnijkompûter AT soshenkova vplivnvčímpulʹsívnadkorotkoítrivalostínapersonalʹnijkompûter AT gadetskinp dejstviesvčimpulʹsovsverhkorotkojdlitelʹnostinapersonalʹnyjkompʹûter AT karelinsyu dejstviesvčimpulʹsovsverhkorotkojdlitelʹnostinapersonalʹnyjkompʹûter AT magdaii dejstviesvčimpulʹsovsverhkorotkojdlitelʹnostinapersonalʹnyjkompʹûter AT shapovalim dejstviesvčimpulʹsovsverhkorotkojdlitelʹnostinapersonalʹnyjkompʹûter AT soshenkova dejstviesvčimpulʹsovsverhkorotkojdlitelʹnostinapersonalʹnyjkompʹûter |
| first_indexed |
2025-11-25T21:03:54Z |
| last_indexed |
2025-11-25T21:03:54Z |
| _version_ |
1849797782647341056 |
| fulltext |
52
IMPACT OF MICROWAVE PULSES OF ULTRASHORT DURATION
ON A PERSONAL COMPUTER
N.P. Gadetski, S.Yu. Karelin, I.I. Magda, I.M. Shapoval, V.A. Soshenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: magda@kipt.kharkov.ua
Procedure of the tests for electromagnetic compatibility and strength (EMSS) of a personal computer (PC) to mi-
crowave ultrashort duration pulse (USP) and analysis of the results are described. 3D simulation of the MW USP
interaction with the test objects considering the configuration of the test area and screening effect of metal compo-
nents estimates the level of electromagnetic field inside the PC case. Numerically and experimentally is shown that
the MW field penetrating into the metal PC case through technological holes can induce the USP potentials in the
PC circuitry sufficient to create functional upsets and degradations.
PACS: 84.70.+p, 81.70.Ex
INTRODUCTION
Modern electromagnetic environment presents a va-
riety of impulse electromagnetics, where the mw USP
stand out as an efficient external impact factor (EIF) for
electronic devices, in particular for the objects of digit
and computing technology (DCT) [1]. Well-known
sources of short-pulse electromagnetic fields (EMF)
such as pulse processing facilities, electrostatic effects,
switches, est., which are characterized by a wide-range
frequency spectrum and therefore relatively small spec-
tral power density, in the case of proximity to the object
can affect the functioning of electronic devices [2]. To
the contrary, the USP sources of narrowband radiation
(especially RF and MW ranges), are characterized by
greater directivity and power density of radiation, and
able to produce dangerous levels of impulse voltages in
the circuits of electronic devices at distances of tens to
hundreds of meters. They are a potential threat to the
objects of DCT: control means of technological pro-
cesses, information and telecommunication networks,
systems of data processing and computing. Thus, large
spectral power density typical for the MW USPs, as
well as high penetrating quality compared to other USP
signals label them to be the most dangerous EIF.
In recent years, the EMSS tests of electronic equip-
ment using the MW USP are entering into practice due to
IEC recommendations [3]. At the same time, the com-
plexity of the testing and measuring equipment signifi-
cantly limits the ability to conduct and compare results of
these tests, making a number of unique features in the
results. This work describes the tests of standard PC af-
fected by MW USP, and the analysis of functional upsets
and failures occurring in the tested objects.
1. EXPERIMENTAL EQUIPMENT
AND CONDITIONS OF THE TESTS
1.1. DESCRIPTION OF THE TEST STAND
The tests were curried on in the laboratory of relativ-
istic microwave electronics of NSC KIPT NAS of
Ukraine using the TS-1 test facility based on a high-
current nanosecond electron accelerator "Astra" [4]. A
relativistic magnetron created the MW USP radiation
with the following characteristics:
• radiation frequency 3 GHz;
• pulse duration 10...30 ns;
• output power 100...500 MW.
The area for the location of the object under test
(OUT) included several operation zones (Fig. 1) allow-
ing to study the OUT at different levels of USP MW
fields:
• zone A – the area between the MW source and the
screen-absorber (SA) (E = 50...1500 kV/m);
• zone B – the area behind the SA (E =
15...100 kV/m);
• zone C – open space inside a shielded box (SB) lo-
cated behind the SA (E = 0.01...2 kV/m).
Fig. 1. Layout of the test facility TS-1 operation area: 1
– MW antenna; 2 – test object; 3 – channels for data
transmission and power supply; 4 – dielectric seat;
5 – screened box; 6 – MW absorber
Closed EB was also used to placing the auxiliary
equipment and components that were not subject to ir-
radiation. The distribution of E-field intensity along the
axis of the zone A is shown in Fig. 2.
Fig. 2. Distribution of the E-field strength
in the operating area of the TS-1
1.2. MICROWAVE FIELDS IN TEST AREA
OF THE STAND TS-1
Checking the parameters of MW USP and the OUT
response to this EIF was produced in all test zones. The
distribution of the E-components of the affecting MW
impulse in the test area was measured by means of cali-
brated sensors integrating vacuum and crystal MW de-
tectors. The signals of the MW monitors and OUT re-
sponse were transmitted by several noise-immune opti-
cal and electrical information channels and were record-
0.4 0.8 1.2 1.6 2.0 l, m
According to SOW, an object under
test (OUT) should be irradiated at three
different radiation levels, ~100, ~30,
and ~1 kV/m in the test zone and EMF
should be measured at several positions
around the OUT.
, m
1.6
1.2
0.8
0.4
0
Е(l), МV/m
*
*
*
*
*
* *
3
2
1
4 5
6
С
В
А
53
ed by analog and digital oscilloscopes in the frequency
range of 200 MHz and 2.25 GHz, respectively.
1.3. TEST OBJECTS
Several typical PCs (2000...2002) were investigated
on functional upsets and failures under different E-field
levels of MW USP. In particular, the tested PC had sev-
eral configurations:
Configuration A. Basic complete of PC: the system
unit with the processor Pentium Intel/AMD
(100...200 MHz), SVGA monitor, 101-key keyboard
and mouse. The PC was fed off-line by a shielded pow-
er source.
Configuration B. PC in Configuration A with cables
connected to the parallel input/output bus (COM port)
simulating external circuits.
Configuration C. Several units of the PC (monitor,
system unit, keyboard, mouse, power supply) exposed
individually during the PC operation.
2. SIMULATION OF THE PC IRRADIATION
BY MW IMPULSE
Irradiation of the PC by MW USP was investigated
numerically using the package CST Microwave Studio
[4]. Simulation gives the opportunity to determine the
effectiveness of the MW USP penetration inside the TO,
which was located in the screened metal case and esti-
mate the level of electromagnetic field coupling to sen-
sitive elements inside the PC case. The numerical exper-
iment was carried out in two stages. At the beginning, it
was calculated the MW field distribution in the test area,
which contained a screen-absorber and metal box, and
then the field penetration inside a shielded box, simulat-
ing the PC system unit through the slot in the front wall
(Table 1).
Table 1
The characteristics of the MW USP source and object
TA dimensions 2.52.52.5 m
SA dimensions 1.51.50.05 m
SB dimensions 0.50.40.6 m
SA electrical parameters =1.5, tg =0.7, =1
MW frequency 3 GHz
MW E-field amplitude 5.10
6
V/m
MW pulse width 15 ns
the coordinates (X,Y,Z) of
points presented in Fig. 3 in
meters
1 (0, 0, 0.5),
2 (0, 0, -0.35),
3 (0, 0.3, -0.35)
2.1. MW FIELD DISTRIBUTION
IN THE TEST AREA
A plane vertically polarized electromagnetic wave in
the form of radiosignal with a 3 GHz carrier and 15 ns
Gaussian envelope traveled down the test area (TA).
The TA was limited by flat walls of concrete (bot-
tom, top and rear) and lead (left and right), Fig. 3,a. The
screen-absorber and screened box behind the screen
were located in the middle of the TA orthogonally to the
wave propagation (Fig. 3,b). The SB presenting a tech-
nological volume was opened to the side opposite the
direction of the wave.
a b
Fig. 3. The structure of test area with the locations
of SA (a-1) and SB (a-2), and the points of the E-field
measurement (b). The origin of coordinates corresponds
to the SA center
The E-field distribution in the TA depended on the
irradiation stage. A characteristic time separating these
stages was about two propagation times of the wave in
the TA (~16 ns).
This is clearly visible in the plots of Fig. 4, (points 2
and 3). At early times, when the reflections from the
walls of the operation area were not significant, there
was slight (~2 times) E-field decrease for the wave that
passed on the SA due to diffraction, and strong (up to 17
times) E-field decrease inside the open SB.
No Ex Ey
1
2
3
Fig. 4. Components of the electromagnetic field
in fixed points of TA
At later times, when the TA walls repeatedly scat-
tered the incoming wave, the field distribution was set-
tled, and the resonances appeared, which could be seen
in the horizontal and vertical cross-sections of the TA,
Fig. 5. For the time ≥20 ns, the E-field strength around
and inside the open SB was almost equal the field of the
source.
Fig. 5. Distribution of the ЕХ-component
of the electromagnetic field in different cross-sections
of TA
1
2
1
2
3
ТЕМ
wave
54
2.2. IRRADIATION OF THE PC
3D model of the PC consisted only of the system
unit (SU) (1) placed on a 1 m height dielectric stand (2),
Fig. 6,a. Two panels of absorbing material imitating the
motherboard (located parallel to the wall) and video
card (located on the motherboard orthogonal to the wall)
were located inside the SU at the right wall (Table 2).
The E-field components of electromagnetic wave were
measured in the points 1-3 outside of the SU and points
4-7 inside its housing, Fig. 6,b.
a
b
Fig. 6. (a) The TA with SU (1) and insulating stand (2),
and (b) the points of the E field measurement
Table 2
The MW source and object characteristics
PC case dimensions (X,Y,Z) 0.20.60.6 m
slot dimensions (X,Y) 0.10.01 m
motherbord dimensions (X,Y,Z) 0.0010.30.3 m
motherbord material electrical
characteristics
=5, tg=0.03, =1
dielectric stand dimensions
(X,Y,Z)
110.4 m
MW signal frequency 3 GHz
MW E-field amplitude 1 V/m
MW pulse width 10 nsс
the coordinates (X,Y,Z) of
points shown in Fig. 7 in me-
ters; the origin is in the middle
of the base of the PC case
1(0, 0.3, 0.4)
2(0, 0.64, 0)
3(0, 0.3, -0.4)
4(0, 0.3, 0)
5(0.09, 0.3, 0)
6(0.045, 0.3, -0.07)
7(0.09, 0.3, -0.07)
The dynamics of the E-field components was calcu-
lated for the case when the SU was not grounded, and
system and video cards were connected inside the unit
with the case. Simulation of electromagnetic field near
and inside the PC model showed the following:
(i) In the outer areas relative to the PC (Fig. 7, points
1-3) a single pulse was visible, whose structure had
small variation compared to the original. The decrease
of amplitude of the incident electromagnetic field was
most significant near the PC housing only. This de-
crease of the E-field at a distance less than one half of
the wavelength over the PC housing (point 2) was as
high as 3. At point 3, located outside the housing, the
field strength decreased and greater reached 4.
(ii) Inside the PC (Fig. 7, points 4-7) it was seen the
following:
• The E-field amplitude decrease compared to the
original level because of the shielding effect was 7
times in the area of the slot of the housing, and from 30
to 80 times in the center.
• Strong changes in the structure of the MW USP
compared to the original. There were changes associated
with resonances at the characteristic frequencies of the
SU housing and formation of the interference structure.
The duration of the signal was substantially increased
up to 8...10 times the length of the original signal.
• There was small increase of the E-field near the
center of the system board of the PC in comparison with
points far from it surface. For example, the ratio of the
E-field maximums on the surface of the system board
(points 5 and 7) and in the SU housing (point 4),
reached 3.2 and 2.0, respectively. Obviously, it was also
associated with the dimensional resonance, and natural
amplitude decrease near the side walls of the housing.
No Ex Ey
1
2
3
4
5
6
7
Fig. 7. The EX and EY field components at fixed
points (1-7)
Numerical experiments demonstrated high penetra-
tion ability of MW impulse inside the SU metal body
via the technological window imitated the floppy-disk
entrance. Thus, considering real electromagnetic field
outside the SU reaching in the test zone A ЕOUT =
100...500 kV/m, and also the E-field decrease due to the
screening effect of the housing, the expected field value
inside the SU can be ЕIN = 1...6 kV/m. And also taking
into account partial screening by the SB and remote
positions of the OUT (zone C) one can count on the
impact field in the SU ЕIN = 20...50 V/m. As can be
1
2
TEM
wave
1
6
3
4
2
5
7
55
seen, the magnitude of the field impacting sensitive cir-
cuits within the PC is sufficient to cause not only func-
tional upsets but degradations of the circuitry.
3. TESTS OF THE PC AND COMPONENTS
3.1. TEST RESULTS
Tests of the PC and components to impact of MW
USP was carried out in single-pulse mode (tP =
10...30 ns) and the E-field amplitude in the test area of
0.01...300 kV/m. The test procedure included: the com-
parison of initial and final characteristics of the TO,
classification of failures, determination of the sensitivity
levels. While carrying on the tests, the following PC
response signals, which gave good enough evidence of
the PC functioning, were recorded:
• clock bus signal;
• power supply voltage output;
• serial data input/output (COM port) signal.
General response features to MW USP impact.
Under all conditions of EMCS tests of the PC and
components, starting with the E-field of 1...3 kV/m, it
was observed formation of an intense SU response. The
most sensitive components of the PC were: the key-
board, mouse, and system unit. The MW USP impact on
any of the PC component or the PC complete resulted in
appearance of disturbances on the PCI and COM buses,
and at the +5 V and +/-12 V output of the power supply
(Fig. 8). The result of each functional upset was self-
rebooting of the PC. In some cases, there were "hangs"
of the PC, which demanded forced rebooting. Perturba-
tions in the busses strongly depended on the PC type,
PC configuration, position and shielding of cables in the
TA. The OUT response amplitudes corresponded to the
intensity of the impact.
Fig. 8. The response signals of various buses at
exposure of PC and components: (a) PC is in SB,
zone A (E=1 kV/m); 1 RTS bus, pin 7, 200 ns/div;
2 Clock bus, 200 ns/div; (b) mouse is outside SB,
zone B (E=50 kV/m); 1 RTS bus, pin 7,
200 ns/div; 2 TX bus, pin 3, 500 ns/div;
(c) monitor is outside SB, zone B (E=80 kV/m),
Сlock bus, 100 ns/div. The MW USP marker is seen
before each response impulse of the TO
For example, the tests of the PC system unit indicat-
ed its extremely high sensitivity to the affect of the MW
impulse compared to other PC components. The SU
response study was only possible when the unit was
disposed in the screened box with closed lid (E ≈
1 kV/m). It was noted earlier that the 3D model gave a
30-60-fold attenuation of the external MW impulse,
corresponding to the E-field amplitude in the system
unit, ЕIN = 15...30 V/m.
Each test with opened lid produced malfunctioning
of one of the SU components registered as strong quali-
tative change of the PCI bus and COM signals. The
check of the SU operation after the exposure revealed
disorders in the implementation of the PC booting pro-
cess. The proceeding of the test was possible only when
the motherboard was replaced. Thus, the minimum MW
USP E-field level affecting the SU can be considered as
of ~1 kV/m.
Table 3 shows the critical values of the E-field,
which led to functional upset of the PC (ЕCF) or to com-
plete failure (degradation) of the PC components (ЕCD).
Disturbances on the PC buses.
(i) The response of different PC buses to the EIF
was much different, especially at low-level external
signal. It was already evident at E ≈ 1 kV/m. The width
of the response signal tRESP = 0.2...1 µs, and reached
5...25 tP.
(ii) The response of the PC circuits at low levels of
MW USP had a tendency to show regular or chaotic
oscillations.
Functional upsets.
(i) The most sensitive PC components to failure
were: system unit, keyboard and mouse. The threshold
level of functional upset in the mode of single MW USP
was ЕCF > 1...7 kV/m (Table 3).
(ii) A waveform analysis of PC response witnessed
that each of the MW pulses (even of small amplitude)
caused an upset or breaking a software execution, loss
of illumination or image on the monitor screen. In al-
most all cases, opening of the actuator port and CD car-
riage occurred. The result of each of the failure was the
"hang-up" of the PC, which demanded rebooting.
(iii) Functional upsets were usually accompanied by
response of different PC buses, which lasted much
longer than tP. As a rule, at E ≈ 5 kV/m the response
width was of 1.5...4 µs (up to 200 tP). For example, this
ratio for the Clock buss always greatly exceeded 10.
(iv) More often, the character of the response was a
kind of chaotic (or regular, turning into a chaotic) oscil-
lations at relatively low frequencies (~5...15 MHz). The
amplitude of the PC response to impact of the MW USP
was at maximum after 75...150 ns after the signal-
response beginning.
(v) The increase of the EIF strength (E >7 kV/m)
additionally initiated a low frequency (less than
3...5 MHz) relaxations. Because they cover several cy-
cles of a clock signal, the result was "hung-up" of the
PC.
Failures
(i) Further increase in the EIF level as a rule led to
the failure of the most sensitive OUT (system unit, key-
board, and mouse).
(ii) The highest probability of failures occurred in
excess of E-field amplitude ЕCD = 100...160 kV/m for
the system block, and of 80...200 kV/m regarding an-
other PC component (Table 3).
1
2
2
1
c
a b
56
(iii) Degradation of the PC components had no di-
rect correlation with exceeding the critical values of E-
field. This was evidenced by random failures of the
OUT after 10...25 tests even when the E-field amplitude
was much below the observed critical level.
Table 3
The threshold levels of functional upsets and failures
of PC and components (h is the height
of the cables above the metal table)
TO TO
component
Upset
level,
ЕCF, kV/m
Failure
level,
ЕCD, kV/m
PC compo-
nents (PC*)
Keyboard 2...7 100...160
Mouse 2...7 180...200
System unit ≥ 1...3 100...160
Monitor ≥ 15 140...160
PC* with net
mock-up
Net mock-up 5...6 -
PC* Full complete 1...3, h=0.1 m
10, h=0 m
100...160
h=0 m
PC power
supply
Power supply 30 120...160
*standard configuration.
3.2. ANALYSIS OF THE TEST RESULTS
The test results demonsrated high sensitivity of DCT
objects to MW USP. The EIF impact was accompanied
by a wide range of phenomena: functional upsets, par-
tial degradation or complete failure of the most sensitive
components of the PC.
The MW radiation (the wavelength λ = 0.1 m was
about the characteristic lengths of the PC components)
produced dimensional resonances for most of the com-
ponents (keyboard, monitor, cables, etc.), which, be-
cause of this, were natural antennas. At the same time,
high spectral power density of the MW USP up to
300 W/m
2
Hz and the pulse energy of 0.2...0.4 J were
the reason of multiple high-level electric voltages excit-
ed in the irradiated structures, sufficient for producing
the upsets or degradations in digital devices.
The experiments with the screened PC components
demonstrated the possibility of effective electromagnet-
ic protection and reducing the PC response tenfold.
However, the objects of complex design that lacked a
solid metal screen or contained long slots in the housing
were a potentially poorly protected against microwave
fields of USP. In this regard, it is important to specify
another characteristic of the MW USP significant at
coupling to complex objects the polarization of the
radiation. For the polarized electromagnetic wave the
best conditions for penetration into the shielded housing
with technological gaps (as in the system unit of a PC)
can be realized. Therefore, high orientation sensitivity
of an object appears.
In conclusion, it may also be noted that the PC com-
ponent degradation was not necessarily geared to ex-
ceeding the critical value of the absorbed energy, but to
the accumulation of irreversible changes in the compo-
nent microstructures possible for a large number of ex-
posures. This was evidenced by the random failures of
OUT as a result of the 10...25 exposures, even if the
amplitude of the electromagnetic field was much below
the degradation critical level. Thus, it can be concluded
that the impacts with a large repetition rate of MW USP
are highly dangerous for the objects under test.
RESULTS
The response of the PC and its components was reg-
istered in almost all conditions of the tests on the MW
USP impact. The response features (appeared at func-
tional upsets and failures that caused full interruption of
the PC operation) depended on hardness of the EIF,
polarization of the MW radiation, degree of the shield-
ing, and type of an object.
The results of the PC and components tests are in
good agreement with the known characteristics of the
electromagnetic strength of modern semiconductor ele-
ments to MW USP:
• threshold feature of the EIF affect;
• significantly greater width of the OUT response at
it functional upset in comparison with the affecting MW
USP;
• excitation of low-frequency relaxations in the re-
sponse at high amplitudes of the EIF;
• for the case when the EIF amplitude excides the
level of functional upsets, distributed thermal degrada-
tions in microstructures appear, that leads to their deg-
radation and damage of the OUT overall.
The fundamental difference between responses of
the PC and analogue instrumentation to an USP impact
appears in the specifics of the PC functional upset. Even
at small levels of the EIF a nonlinear response of the
circuits with the width of several clock cycles "hold-
ups" the PC. Obviously, the upset of the control pro-
gram is received by the system as physical disorder.
This needs resetting the PC, and results in losses of
time, what in some cases can disrupt the task.
REFERENCES
1. Radiation effects in microelectronics // Plasma Elec-
tronics, Encyclopedia of Low-Temperature Plasma /
Ed. by V.E. Fortov, Moscow: “Nauka”. 2000, Ch.10,
p. 106.
2. В.И. Кравченко, Е.А. Болотов, Н.И. Легунова.
Радиоэлектронные средства и мощные элек-
тромагнитные помехи. М.: “Радио и связь”.
1987, 256 с.
3. IEC 61000–4–35 electromagnetic compatibility
(EMC) – Part 4–35: Testing and measurement tech-
niques – High power electromagnetic (HPEM) simu-
lator compendium. 2009, 92 p.
4. И.И. Магда. Стендовая база для испытаний ра-
диоэлектронной аппаратуры на электромагнит-
ную совместимость и стойкость к излучениям
сверхкороткой длительности // Материалы 17
Междунар. Крымской конф. «СВЧ-техника и
телекоммуникационные технологии». Севасто-
поль, 2007 г. Севастополь: “Вебер”, 2007, с. 626-
629.
5. http://cst-microwave-studio.software.com
Article received 05.10.2017
http://cst-microwave-studio.software.com/
57
ДЕЙСТВИЕ СВЧ-ИМПУЛЬСОВ СВЕРХКОРОТКОЙ ДЛИТЕЛЬНОСТИ
НА ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР
Н.П. Гадецкий, С.Ю. Карелин, И.И. Магда, И.М. Шаповал, В.А. Сошенко
Описываются подготовка и анализ результатов тестов на электромагнитную совместимость и стойкость
персонального компьютера к воздействию импульсных СВЧ-электромагнитных полей сверхкороткой дли-
тельности. Применено численное моделирование облучения тестируемых объектов с учетом конфигурации
тестового пространства, позволяющее определить уровень воздействующих электромагнитных полей внут-
ри корпуса ПК. С помощью расчетов и экспериментально показано, что импульсные СВЧ-поля достаточно
легко проникают в металлические корпуса ПК через технологические отверстия. При этом, в областях чув-
ствительных цепей ПК они могут возбуждать уровни воздействующих потенциалов сверхкороткой длитель-
ности, достаточные для создания функциональных сбоев и деградационных эффектов.
ВПЛИВ НВЧ-ІМПУЛЬСІВ НАДКОРОТКОЇ ТРИВАЛОСТІ
НА ПЕРСОНАЛЬНИЙ КОМП’ЮТЕР
М.П. Гадецький, С.Ю. Карелін, І.І. Магда, І.М. Шаповал, В.О. Сошенко
Описуються підготовка та аналіз результатів тестів на електромагнітну сумісність та стійкість персона-
льного комп’ютера до дії імпульсних НВЧ-електромагнітних полів надкороткої тривалості. Застосовано чи-
сельне моделювання опромінення тестованих об’єктів з урахуванням конфігурації тестового простору, що
дозволяє визначити рівень електромагнітних полів усередині корпусу ПК. За допомогою розрахунків та екс-
периментально показано, що імпульсні НВЧ-поля досить легко проникають у металеві корпуси ПК через
технологічні отвори. При цьому, поблизу чутливих ланцюгів ПК вони можуть збуджувати потенціали над-
короткої тривалості з амплітудами, що достатні для створення функціональних збоїв та деградаційних ефек-
тів.
|