Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient
The stationary problem of the heat radiative conductance is solved at the so-called grey approximation in semitransparent media. Using the geometric optics approximation, the case of small coeficient 0 of the ray reflection from the sample boundary is investigated. The problem is solved in framework...
Збережено в:
| Опубліковано в: : | Functional Materials |
|---|---|
| Дата: | 2007 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
НТК «Інститут монокристалів» НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/136483 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient / A.V. Kolisnikov // Functional Materials. — 2007. — Т. 14, № 2. — С. 164-170. — Бібліогр.: 2 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-136483 |
|---|---|
| record_format |
dspace |
| spelling |
Kolisnikov, A.V. 2018-06-16T13:00:56Z 2018-06-16T13:00:56Z 2007 Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient / A.V. Kolisnikov // Functional Materials. — 2007. — Т. 14, № 2. — С. 164-170. — Бібліогр.: 2 назв. — англ. 1027-5495 https://nasplib.isofts.kiev.ua/handle/123456789/136483 The stationary problem of the heat radiative conductance is solved at the so-called grey approximation in semitransparent media. Using the geometric optics approximation, the case of small coeficient 0 of the ray reflection from the sample boundary is investigated. The problem is solved in frameworks of perturbation theory on the reflection coefficient powers. At firs approximation, formulas of temperature stationary distribution are obtainded with asymptotic accuracy in the limit of large value of the material absorption coefficient. en НТК «Інститут монокристалів» НАН України Functional Materials Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient Проблема радіаційно-кондуктивного теплообміну у напівпрозорих середовищах. Наближення малого коефіцієнта відбиття Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
| spellingShingle |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient Kolisnikov, A.V. |
| title_short |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
| title_full |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
| title_fullStr |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
| title_full_unstemmed |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient |
| title_sort |
problem of the heat radiative conductance in semitransparent media. the approximation of small reflection coefficient |
| author |
Kolisnikov, A.V. |
| author_facet |
Kolisnikov, A.V. |
| publishDate |
2007 |
| language |
English |
| container_title |
Functional Materials |
| publisher |
НТК «Інститут монокристалів» НАН України |
| format |
Article |
| title_alt |
Проблема радіаційно-кондуктивного теплообміну у напівпрозорих середовищах. Наближення малого коефіцієнта відбиття |
| description |
The stationary problem of the heat radiative conductance is solved at the so-called grey approximation in semitransparent media. Using the geometric optics approximation, the case of small coeficient 0 of the ray reflection from the sample boundary is investigated. The problem is solved in frameworks of perturbation theory on the reflection coefficient powers. At firs approximation, formulas of temperature stationary distribution are obtainded with asymptotic accuracy in the limit of large value of the material absorption coefficient.
|
| issn |
1027-5495 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/136483 |
| citation_txt |
Problem of the heat radiative conductance in semitransparent media. The approximation of small reflection coefficient / A.V. Kolisnikov // Functional Materials. — 2007. — Т. 14, № 2. — С. 164-170. — Бібліогр.: 2 назв. — англ. |
| work_keys_str_mv |
AT kolisnikovav problemoftheheatradiativeconductanceinsemitransparentmediatheapproximationofsmallreflectioncoefficient AT kolisnikovav problemaradíacíinokonduktivnogoteploobmínuunapívprozorihseredoviŝahnabližennâmalogokoefícíêntavídbittâ |
| first_indexed |
2025-12-07T13:39:04Z |
| last_indexed |
2025-12-07T13:39:04Z |
| _version_ |
1850856958162108416 |