Simulation analysis of prestressed tensioning whole processon direct constraint method

The accuracy simulation of the prestressed tensioning effect is the foundation of prestressed bridge design, construction and reinforcement. Direct constraint method was used in the application of prestressed tensioning whole process simulation analysis on the background of prestressed testing exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional Materials
Datum:2017
1. Verfasser: Kaimin Liu
Format: Artikel
Sprache:English
Veröffentlicht: НТК «Інститут монокристалів» НАН України 2017
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/136655
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Simulation analysis of prestressed tensioning whole processon direct constraint method / Kaimin Liu // Functional Materials. — 2017. — Т. 24, № 1. — С. 122-126. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-136655
record_format dspace
spelling Kaimin Liu
2018-06-16T14:55:35Z
2018-06-16T14:55:35Z
2017
Simulation analysis of prestressed tensioning whole processon direct constraint method / Kaimin Liu // Functional Materials. — 2017. — Т. 24, № 1. — С. 122-126. — Бібліогр.: 10 назв. — англ.
1027-5495
DOI: https://doi.org/10.15407/fm24.01.122
https://nasplib.isofts.kiev.ua/handle/123456789/136655
The accuracy simulation of the prestressed tensioning effect is the foundation of prestressed bridge design, construction and reinforcement. Direct constraint method was used in the application of prestressed tensioning whole process simulation analysis on the background of prestressed testing experiment. Its aim was to achieve the real simulation of interaction between prestressed tendon and concrete in the tensioning whole process. Three-dimensional solid elements were adopted to simulate pre-stressed reinforcement unit and concrete unit. Bilinear Coulomb friction was adopted as the friction form between prestressed tendon and concrete. Direct constraint method that has the characteristics of good stability and fast convergence speed was used to calculate the effective stress of prestressed tendon at each tension stage. The loss of one-way stress was also calculated. The effective prestressed values by simulation on direct constraints method can be well with the measured values and the theoretical values on Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts. The method has theoretical basis on accurately simulating the actual stress in different stages of the prestressed tendon. It can be helpful for bridge design and reinforcement.
Методом прямого ограничения проведено моделирование процесса предварительного натяжения на основании экспериментов по тестированию предварительного напряженных систем. В качестве модельного объекта рассмотрено взаимодействие между предварительно напряженой арматурой и бетоном. Для имитации армирующих блоков и блоков бетона был адаптирован трехмерный метод упругого твердого тела. В качестве модели, описывающей силы трения, возникающие между предварительно напряженной арматурой и бетоном, рассматривается модель кулоновского трения. Для вычисления эффективных напряжений армирующей матрицы на разных этапах натяжения был использован метод прямого ограничения, обладающий хорошей стабильностью и высокой скоростью сходимости. Показано, что значения эффективных преднапряжений, полученные путем моделирования методом прямого ограничения, находятся в качественном согласии с экспериментальными и теоретическими значениями.
Методом прямого обмеження проведено моделювання процесу попереднього натягнення на підставі експериментів по тестуванню попередньо напружених систем. В якості модельного об’єкту розглянуто взаємодію між переднапруженою арматурою і бетоном. Для імітації блоків, що армують та блоків бетону був адаптований тривимірний метод пружного твердого тіла. В якості моделі, яка описує сили тертя, що виникають між попередньо напруженою арматурою і бетоном, розглядається модель кулоновського тертя. Для обчислення ефективних напружень матриці, що армує, на різних етапах натягу був використаний метод прямого обмеження, що володіє гарною стабільністю та високою швидкістю збіжності. Показано, що значення ефективних переднапружень отриманих шляхом моделювання методом прямого обмеження, знаходяться в якісній згоді з експериментальними та теоретичними значеннями.
en
НТК «Інститут монокристалів» НАН України
Functional Materials
Modeling and simulation
Simulation analysis of prestressed tensioning whole processon direct constraint method
Моделювання натягу в попередньо напружених системах
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Simulation analysis of prestressed tensioning whole processon direct constraint method
spellingShingle Simulation analysis of prestressed tensioning whole processon direct constraint method
Kaimin Liu
Modeling and simulation
title_short Simulation analysis of prestressed tensioning whole processon direct constraint method
title_full Simulation analysis of prestressed tensioning whole processon direct constraint method
title_fullStr Simulation analysis of prestressed tensioning whole processon direct constraint method
title_full_unstemmed Simulation analysis of prestressed tensioning whole processon direct constraint method
title_sort simulation analysis of prestressed tensioning whole processon direct constraint method
author Kaimin Liu
author_facet Kaimin Liu
topic Modeling and simulation
topic_facet Modeling and simulation
publishDate 2017
language English
container_title Functional Materials
publisher НТК «Інститут монокристалів» НАН України
format Article
title_alt Моделювання натягу в попередньо напружених системах
description The accuracy simulation of the prestressed tensioning effect is the foundation of prestressed bridge design, construction and reinforcement. Direct constraint method was used in the application of prestressed tensioning whole process simulation analysis on the background of prestressed testing experiment. Its aim was to achieve the real simulation of interaction between prestressed tendon and concrete in the tensioning whole process. Three-dimensional solid elements were adopted to simulate pre-stressed reinforcement unit and concrete unit. Bilinear Coulomb friction was adopted as the friction form between prestressed tendon and concrete. Direct constraint method that has the characteristics of good stability and fast convergence speed was used to calculate the effective stress of prestressed tendon at each tension stage. The loss of one-way stress was also calculated. The effective prestressed values by simulation on direct constraints method can be well with the measured values and the theoretical values on Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts. The method has theoretical basis on accurately simulating the actual stress in different stages of the prestressed tendon. It can be helpful for bridge design and reinforcement. Методом прямого ограничения проведено моделирование процесса предварительного натяжения на основании экспериментов по тестированию предварительного напряженных систем. В качестве модельного объекта рассмотрено взаимодействие между предварительно напряженой арматурой и бетоном. Для имитации армирующих блоков и блоков бетона был адаптирован трехмерный метод упругого твердого тела. В качестве модели, описывающей силы трения, возникающие между предварительно напряженной арматурой и бетоном, рассматривается модель кулоновского трения. Для вычисления эффективных напряжений армирующей матрицы на разных этапах натяжения был использован метод прямого ограничения, обладающий хорошей стабильностью и высокой скоростью сходимости. Показано, что значения эффективных преднапряжений, полученные путем моделирования методом прямого ограничения, находятся в качественном согласии с экспериментальными и теоретическими значениями. Методом прямого обмеження проведено моделювання процесу попереднього натягнення на підставі експериментів по тестуванню попередньо напружених систем. В якості модельного об’єкту розглянуто взаємодію між переднапруженою арматурою і бетоном. Для імітації блоків, що армують та блоків бетону був адаптований тривимірний метод пружного твердого тіла. В якості моделі, яка описує сили тертя, що виникають між попередньо напруженою арматурою і бетоном, розглядається модель кулоновського тертя. Для обчислення ефективних напружень матриці, що армує, на різних етапах натягу був використаний метод прямого обмеження, що володіє гарною стабільністю та високою швидкістю збіжності. Показано, що значення ефективних переднапружень отриманих шляхом моделювання методом прямого обмеження, знаходяться в якісній згоді з експериментальними та теоретичними значеннями.
issn 1027-5495
url https://nasplib.isofts.kiev.ua/handle/123456789/136655
citation_txt Simulation analysis of prestressed tensioning whole processon direct constraint method / Kaimin Liu // Functional Materials. — 2017. — Т. 24, № 1. — С. 122-126. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT kaiminliu simulationanalysisofprestressedtensioningwholeprocessondirectconstraintmethod
AT kaiminliu modelûvannânatâguvpoperednʹonapruženihsistemah
first_indexed 2025-11-26T17:43:56Z
last_indexed 2025-11-26T17:43:56Z
_version_ 1850766144039813120
fulltext 122 Functional materials, 24, 1, 2017 ISSN 1027-5495. Functional Materials, 24, No.1 (2017), p.122-126 doi:https://doi.org/10.15407/fm24.01.122 © 2017 — STC “Institute for Single Crystals” Simulation analysis of prestressed tensioning whole process on direct constraint method Kaimin Liu School of Civil, Environmental Engineering & Architecture, Hubei University of Technology, Wuhan, Hubei 430068, China Received December 7, 2016 The accuracy simulation of the prestressed tensioning effect is the foundation of prestressed bridge design, construction and reinforcement. Direct constraint method was used in the ap- plication of prestressed tensioning whole process simulation analysis on the background of pre- stressed testing experiment. Its aim was to achieve the real simulation of interaction between prestressed tendon and concrete in the tensioning whole process. Three-dimensional solid ele- ments were adopted to simulate pre-stressed reinforcement unit and concrete unit. Bilinear Coulomb friction was adopted as the friction form between prestressed tendon and concrete. Di- rect constraint method that has the characteristics of good stability and fast convergence speed was used to calculate the effective stress of prestressed tendon at each tension stage. The loss of one-way stress was also calculated. The effective prestressed values by simulation on direct constraints method can be well with the measured values and the theoretical values on Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts. The method has theoretical basis on accurately simulating the actual stress in different stages of the prestressed tendon. It can be helpful for bridge design and reinforcement. Keywords-Direct constraint method; Finite element simulation; Tensioning whole process; Effective prestress; Prestressed tendon Методом прямого ограничения проведено моделирование процесса предварительного натяжения на основании экспериментов по тестированию предварительного напряженных систем. В качестве модельного объекта рассмотрено взаимодействие между предварительно напряженой арматурой и бетоном. Для имитации армирующих блоков и блоков бетона был адаптирован трехмерный метод упругого твердого тела. В качестве модели, описывающей силы трения, возникающие между предварительно напряженной арматурой и бетоном, рассматривается модель кулоновского трения. Для вычисления эффективных напряжений армирующей матрицы на разных этапах натяжения был использован метод прямого ограничения, обладающий хорошей стабильностью и высокой скоростью сходимости. Показано, что значения эффективных преднапряжений, полученные путем моделирования методом прямого ограничения, находятся в качественном согласии с экспериментальными и теоретическими значениями. Моделювання натягу в попередньо напружених системах. Каймінь Лю. Методом прямого обмеження проведено моделювання процесу попереднього натягнення на підставі експериментів по тестуванню попередньо напружених систем. В якості модельного об’єкту розглянуто взаємодію між переднапруженою арматурою і бетоном. Для імітації блоків, що армують та блоків бетону був адаптований тривимірний метод пружного твердого тіла. В якості моделі, яка описує сили тертя, що виникають між попередньо напруженою арматурою і бетоном, розглядається модель кулоновського тертя. Для обчислення ефективних напружень матриці, що армує, на різних етапах натягу був використаний метод прямого обмеження, що володіє гарною стабільністю та високою швидкістю збіжності. Показано, що значення ефективних переднапружень отриманих шляхом моделювання методом прямого обмеження, знаходяться в якісній згоді з експериментальними та теоретичними значеннями. Functional materials, 24, 1, 2017 123 Kaimin Liu / Simulation analysis of prestressed tensioning ... 1. Introduction Accurate simulation of prestressed tension effects is the basis for the rational design of prestressed concrete bridge. Old bridge rein- forcement, fill-tensioned of prestress or supple- ment of external prestress and other special circumstances require more detailed and effec- tive structural tension simulation. But the ac- curate numerical analysis is very difficult. It is often used as a boundary or an initial condition applied to the calculation model, such as the common methods of the equivalent load meth- od, the cooling method and the initial strain method [1-4]. Because of the common node or coupling between prestressed tendon unit and concrete unit, the above methods cannot simu- late the interaction between prestressed tendon and concrete. It also cannot accurately analyze the stress development of tendon in tension and loading stages. The application of contact friction analy- sis is the basis for the more accurate analysis. However, the problems of convergence and nu- merical stability on the friction model need to be solved. The finite element analysis software MSC.MARC is one of the common analysis programs in nonlinear problems. It provides a variety of contact friction models. But it has not been applied for engineering analysis on tensioning prestressed tendon with high stress and large displacement. In this paper, based on the application of MSC.MARC analysis soft- ware and the 3-D solid element simulation of prestressed reinforcement unit and concrete unit, the friction model was established. The simulation analysis of slip contact in the whole tension stage was carried out by two engineer- ing projects. 2. Coulomb bilinear models on contact analysis Prestressed tendon unit and concrete unit adopted the solid unit. They were defined as the deformable contact by CONTACT and specified for TOUCHING contact form by CONTACT TABLE in MSC.MARC software. The friction form between concrete and prestressed ten- don was defined as Coulomb bilinear friction. Coulomb bilinear friction model assumes that viscous friction and sliding friction are respec- tively corresponding to the reversible (elastic) and irreversible (plastic) relative displacement. It uses a sliding surface representation φ, as shown in Figure. 1 [5-6]. φ µ= f ft n- (1) Where: ft means shear stress. fn means nor- mal reaction force. µ means the friction coeffi- cient of prestressed tendon and pipeline wall. The viscous limit distance δ adopts the default value in the model, which is 0.0025 times of the average unit scale of deformable contact bod- ies. ∆ut < <δ φ, 0,Viscous friction ∆ut > >δ φ, 0,Sliding friction Contact analysis function in MSC.MARC provides a contact algorithm on direct control, as shown in Fig. 2. Node P of contact unit E is in contact with the surface of the target unit T. When the both are in contact, the degree of freedom of point P in the A-B-C-D surface direction can be elimi- nated. It only has tangential motion along the A-B-C-D surface. By the method of eliminating point P freedom, two units are made together, as shown in Formula 2 [7-8]. t t T E T E T K K u u f f E'é ëê ù ûú é ë ê ê ê é ëê ù ûú ù û ú ú ú ì í ïï îïï ü ý ïï þïï = ì í ïï 0 0 îîïï ü ý ïï þïï (2) Where: u is the displacement increment and f is the residual force vector. Fig. 2. Contact constraint Fig. 1. Bilinear friction model 124 Functional materials, 24, 1, 2017 Kaimin Liu / Simulation analysis of prestressed tensioning ... 3. �inite element model �inite element model A. Prestressed simply supported beam with rectangular section Geometric parameters of prestressed sim- ply supported beam with rectangular section are shown in Fig. 3. Concrete strength is C50, and the elastic modulus is 34.5GPa. Prestressed tendon chooses the low relaxation steel strand with the elastic modulus of 196.0GPa. The cross section size is 30mm × 30mm, and consistent with the dimen- sion of the cross section of the original model. Friction coefficient μ between prestressed ten- don and pipeline wall is 0.25. Friction influence coefficient κ of local deviation of per meter pipe is 0.0015. Prestressed tendon adopts the para- bolic curve style. The parabolic equation can be expressed as Equation 3. y f x l e= × æ è ççç ö ø ÷÷÷÷ - 2 2 1 (3) Where: f is strand vector high. e1 is the verti- cal distance from the axis to the end of strand. Unit models of prestressed tendon and con- crete was respectively established. Prestressed elements were embedded into the concrete ele- ment and made the nodes on the fixed end of prestressed tendon and the near concrete nodes coupling, as the anchor end. A rigid surface on tension side at the tendon end was created and bonded with prestressed tendon. It was controlled by one node that will transfer the tension force to prestressed tendon. Force was exerted on the concrete of tension end and the value was the same with that of control node, but the direction was opposite. While concrete nodes subjected the reaction was coupled to pre- vent stress concentration. Prestressed tendon and concrete was defined as two groups with different deformation body. The friction coeffi- cient between them was defined as 0.25 in Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridge and Culverts (JTG D62-2004) [9]. Friction type was Coulomb bilin- ear friction. The finite element model is shown in Fig. 4. B. Prestressed simply supported beam with T shaped section Material properties of prestressed simply supported beam with T shaped section are same as that of beam with rectangular section. Equiv- alent cross section size of prestressed tendon is 40mm × 42mm. It consists of three straight line segments and two arc segments. The ac- tual measuring point arrangement is shown in Fig. 5. Each prestressed beams arranged five measurement points. The effective one-way stress of shaded part in two prestressed beam were tested. Two prestressed beam are respec- tively embedded corrugated metal pipe and cor- rugated plastic pipe. Mold resistance coefficient of corrugated metal pipe and corrugated plastic pipe is measured. Corrugated metal pipe: μ=0.24 κ=0.0020 Corrugated plastic pipe: μ=0.16 κ=0.0014 [10] The finite element model is shown in Fig.6. 4. Analysis o�� the resultsAnalysis o�� the results A. Prestressed simply supported beam with rectangular section Tensile force of prestressed tendon in the model was 1200kN. Tension simulation process was divided into 100 load steps. Tensile force of each load step was 12kN and the total time was 1s. Fig. 3. Prestressed tendon layout of rectangular section beam (mm) Figure 4. Finite element model of prestressed beam with rectangular section Fig. 5. Prestressed tendon layout of beam with T-shaped section (mm) Fig. 6. Finite element model of prestressed eam with T-shaped section Functional materials, 24, 1, 2017 125 Kaimin Liu / Simulation analysis of prestressed tensioning ... When the tensile force reached 1200kN, the effective frictional stress by MSC.MARC simu- lation and JTG D62-2004 is shown in Fig. 7. When prestressed tendon was stretched by one-end, it can be seen from Fig. 7 that the ef- fective tensile stress by MSC.MARC simulation and JTG D62-2004 was similar. But the simu- lation tension value is smaller than that of JTG D62-2004. Prestress loss value of mid-span unit changed with the load in Fig. 8. It can be seen from Fig. 8 that effective stress of mid-span unit by MSC.MARC simulation and JTG D62-2004 was similar. When the load reached 960kN, the simulated values and theo- retical values are 995.23MPa and 1018.05MPa respectively. At this point, the both maximum deviation was 2.24%. When the tension stage was completed, the largest elongation of pre- stressed tendon was 13.02mm. B. Prestressed simply supported beam with T shaped section Tensile force of prestressed tendon in the model was 2287 kN. Prestressed tendon was stretched by two-end. Tension simulation pro- cess was divided into 100 load steps. Tensile force of each load step was 22.87kN and the to- tal time was 1s. 1) Metal bellow Effective stress of Prestressed tendon of metal bellow by MSC.MARC simulation, JTG D62-2004 and field measurement are shown in Figure 9. It can be seen from Figure 9. that the effec- tive stress of metal bellows decreases gradu- ally. Three curves of MSC.MARC simulation, JTG D62-2004 and field measurement are sim- ilar basically. The deviation of measured prestressed val- ues and JTG D62-2004 calculated prestressed values on No. 3 measuring point were the max- imum, 4.26%. The deviation of No. 2 measuring point was the minimum, 2.62%. The deviation of measured prestressed val- ues and MSC.MARC simulated values on No. 1 measuring point were the maximum, 3.71%. The deviation of No. 4 measuring point was the minimum, 0.12%. When the tension stage was completed, the largest elongation of prestressed tendon was 127mm. 2) Plastic corrugated pipe Effective stress of tendon of plastic corrugated pipe by MSC.MARC simulation, JTG D62-2004 and field measurement are shown in Fig. 10. It can be seen from Figure 10 that the ef- fective frictional stress of plastic corrugated pipe decreases gradually. Three curves of MSC. MARC simulation, JTG D62-2004 and field measurement are similar basically. The deviation of measured prestressed val- ues and JTG D62-2004 calculated values on No. 3 measuring point was the maximum, Fig. 7. Effective stress of prestressed tendon Fig. 8. Effective stress of mid-span unit Fig. 9. Effective stress of tendon of metal bellow Figure 10. Effective stress of tendon of plastic corrugated pipe 126 Functional materials, 24, 1, 2017 Kaimin Liu / Simulation analysis of prestressed tensioning ... 3.85%. The deviation of No. 4 measuring point was the minimum, 1.86%. The deviation of measured prestressed val- ues and MSC.MARC simulated values on No. 1 measuring point was the maximum, 2.72%. The deviation of No. 5 measuring point was the minimum, 0.98%. When the tension stage was completed, the largest elongation of prestressed tendon was 151mm. According to the above analysis, it can be seen that the effective stress deviation of MSC. MARC simulation, JTG D62-2004 and field measurement is in 5%, which meets the engi- neering accuracy requirement. However, the drawback of this approach only considers the effective stress from friction. It does not con- sider the impact of per meter local variations of channel on friction. In addition, using solid ele- ment to simulate the prestressed tendon may enlarge bending stiffness. But the both impacts on the results are tiny, and need further study in future. 5. Conclusions In this paper, bilinear friction model of pre- stressed tendon and concrete is established by using the MSC.MARC software. It can analyze the true stress of prestressed tendon in tension and loading stage. Tension simulation results show that the values of MSC.MARC simula- tion, JTG D62-2004 and field measurement are similar basically. The method is reasonable with analysis of convergence speed and good stability algorithm. It provides an effective method of analysis for the bridge structural de- sign, reinforcement and other engineering. For prestressed concrete bridge, combined analy- sis of prestressed tendon and concrete is still in the exploratory stage. Simplified methods widely used become slightly rough in old bridge reinforcement analysis and other conditions, because they need more precise conclusion. Re��erences 1. Meng S.P., Wu C., Xiong J., Zhou Z.. Discussion on the Nonlinear Finite Element Analysis of Prestressed Concrete Complex Structures. In- dustrial Construction. Vol.39, No.12, 2009: 1-4 2. Zhao Y., Zhao P., Li S.Y. Three-Dimensional Fi- nite Element Analysis of Large Prestressed Con- crete Box Flume Structure. Journal of Yangtze River Scientific Research Institute. Vol.16 No.2, 1999: 17-20 3. Su J.W., Yao C.Q., Li G.Q., Zhou H.J. Equiva- lent Load Method for Finite Element Analysis of Prestressed Concrete Structures. J. of HUST. (Urban Science Edition). Vol.20 No.2, 2003: 56- 60. 4. Zhou Z., Meng S.P., Wu J., Jiang J.F. Analysis methods for the whole prestressing process of hybridized space structure. Industrial Construc- tion. Vol.38, No.9, 2008: 91-95. 5. MSC. Marc user’s Manual Volume A: Theory and User Information. MSC Software Corpora- tion, Version 2008: 480-482. 6. Wen X.H., Huang M.H., Zhan L.H. Finite Ele- ment Study of the Giant Structure Modeling. Modern Manufacturing Engineering. No.1, 2010:10-14. 7. Farahani K., Mofid M., Vafai A. A solution meth- od for general contact-impact problems[J]. Com- put. Methods Appl. Mech. Engrg. Vol.187, 2000: 69-77. 8. Du L.H., Deng L.J., Chen H.G., Ye J.Q. Direct Constraint Procedure to Solve Contact Prob- lems in Hydrostructures. J Tsinghua Univ (Sci &Tech). Vol.43, No.11, 2003:1534-1537. 9. Industry standards of the People’s Republic of China. Code for design of highway reinforced concrete and prestressed concrete bridge and culverts (JTG D62-2004), 115-116; 2004, Bei- jing, China Communications Press. 10. Ye Z.H., Zhang G.C., Lu W. Test Study of Along-Path Stress of Prestressing Strands of Long Span PC Continuous Rigid-Frame Bridge. Bridge Construction. N0.5, 2009:21-23+27.