Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys

The microstructure and mechanical properties of Mg–12Gd–xY–Sm–0.5Zr (x = 0, 1, 3, 5; mass%) alloys were investigated. Results showed β’-Mg5Gd phase composition evolution of Mg5(Gd,Y). The tensile strength of the alloys are better the WE54 alloy at high temperatures (200–300 °C). The optimal mechanic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Fu sanling, Li quanan, Chen Jun, Zhang Qing
Format: Artikel
Sprache:English
Veröffentlicht: НТК «Інститут монокристалів» НАН України 2017
Schriftenreihe:Functional Materials
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/136731
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys / Fu sanling, Li quanan, Chen Jun, Zhang Qing // Functional Materials. — 2017. — Т. 24, № 2. — С. 264-269. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-136731
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1367312025-02-09T13:28:38Z Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys Вплив додавання Y на мікроструктуру і механічні властивості сплавів Mg-Gd-YSm-Zr Fu sanling Li quanan Chen Jun Zhang Qing Characterization and properties The microstructure and mechanical properties of Mg–12Gd–xY–Sm–0.5Zr (x = 0, 1, 3, 5; mass%) alloys were investigated. Results showed β’-Mg5Gd phase composition evolution of Mg5(Gd,Y). The tensile strength of the alloys are better the WE54 alloy at high temperatures (200–300 °C). The optimal mechanical properties of the Mg-12Gd-3Y-1Sm-0.5Zr alloy are achieved at high temperatures, and the maximum tensile strength of this alloy is 323 MPa at 250 °C. The short heat-resisting performance of Mg–Gd–Y–Sm–Zr alloys under the high temperature will provide new scientific basis for the development of heat resistant magnesium alloys. Исследованы микроструктура и механические свойства сплавов Mg-12Gd-xY-Sm- 0.5Zr (x  = 0, 1, 5,%). Результаты показали, что фазовый состав β'-Mg5 Gd эволюционирует в Mg5 (Gd, Y). Прочность на растяжение этих сплавов лучше сплава WE54 при высоких температурах (200-300 °C). Оптимальные механические свойства сплава Mg-12Gd-3Y-1Sm- 0.5Zr дости­гаются при высоких температурах, а максимальная прочность на растяжение этого сплава составляет 323 МПа при 250 °C. Жаростойкие сплавы Mg-Gd-Y-Sm-Zr при высокой температуре станут новой научной основой для разработки термостойких магниевых сплавов. Досліджено мікроструктура і механічні властивості сплавів Mg-12Gd-xY-Sm-0.5Zr (x  = 0, 1, 5,%). Результати показали, що фазовий склад β’-Mg5 Gd еволюціонує в Mg5 (Gd, Y). Міцність на розтяг сплавів краще сплаву WE54 при високих температурах (200-300 °C). Оптимальні механічні властивості сплаву Mg-12Gd-3Y-1Sm-0.5Zr досягаються при високих температурах, а максимальна міцність на розтягнення цього сплаву становить 323 МПа при 250 °C. Жаростойкие сплави Mg-Gd-Y-Sm-Zr при високій температурі стануть новою науковою основою для розробки термостійких магнієвих сплавів. 2017 Article Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys / Fu sanling, Li quanan, Chen Jun, Zhang Qing // Functional Materials. — 2017. — Т. 24, № 2. — С. 264-269. — Бібліогр.: 14 назв. — англ. 1027-5495 DOI: https://doi.org/10.15407/fm24.02.264 https://nasplib.isofts.kiev.ua/handle/123456789/136731 en Functional Materials application/pdf НТК «Інститут монокристалів» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Characterization and properties
Characterization and properties
spellingShingle Characterization and properties
Characterization and properties
Fu sanling
Li quanan
Chen Jun
Zhang Qing
Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys
Functional Materials
description The microstructure and mechanical properties of Mg–12Gd–xY–Sm–0.5Zr (x = 0, 1, 3, 5; mass%) alloys were investigated. Results showed β’-Mg5Gd phase composition evolution of Mg5(Gd,Y). The tensile strength of the alloys are better the WE54 alloy at high temperatures (200–300 °C). The optimal mechanical properties of the Mg-12Gd-3Y-1Sm-0.5Zr alloy are achieved at high temperatures, and the maximum tensile strength of this alloy is 323 MPa at 250 °C. The short heat-resisting performance of Mg–Gd–Y–Sm–Zr alloys under the high temperature will provide new scientific basis for the development of heat resistant magnesium alloys.
format Article
author Fu sanling
Li quanan
Chen Jun
Zhang Qing
author_facet Fu sanling
Li quanan
Chen Jun
Zhang Qing
author_sort Fu sanling
title Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys
title_short Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys
title_full Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys
title_fullStr Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys
title_full_unstemmed Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys
title_sort effect of y addition on the microstructures and mechanical properties of mg-gd-y-sm-zr alloys
publisher НТК «Інститут монокристалів» НАН України
publishDate 2017
topic_facet Characterization and properties
url https://nasplib.isofts.kiev.ua/handle/123456789/136731
citation_txt Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys / Fu sanling, Li quanan, Chen Jun, Zhang Qing // Functional Materials. — 2017. — Т. 24, № 2. — С. 264-269. — Бібліогр.: 14 назв. — англ.
series Functional Materials
work_keys_str_mv AT fusanling effectofyadditiononthemicrostructuresandmechanicalpropertiesofmggdysmzralloys
AT liquanan effectofyadditiononthemicrostructuresandmechanicalpropertiesofmggdysmzralloys
AT chenjun effectofyadditiononthemicrostructuresandmechanicalpropertiesofmggdysmzralloys
AT zhangqing effectofyadditiononthemicrostructuresandmechanicalpropertiesofmggdysmzralloys
AT fusanling vplivdodavannâynamíkrostrukturuímehaníčnívlastivostísplavívmggdysmzr
AT liquanan vplivdodavannâynamíkrostrukturuímehaníčnívlastivostísplavívmggdysmzr
AT chenjun vplivdodavannâynamíkrostrukturuímehaníčnívlastivostísplavívmggdysmzr
AT zhangqing vplivdodavannâynamíkrostrukturuímehaníčnívlastivostísplavívmggdysmzr
first_indexed 2025-11-26T05:01:07Z
last_indexed 2025-11-26T05:01:07Z
_version_ 1849827816083816448
fulltext 264 Functional materials, 24, 2, 2017 ISSN 1027-5495. Functional Materials, 24, No.2 (2017), p. 264-269 doi:https://doi.org/10.15407/fm24.02.264 © 2017 — STC “Institute for Single Crystals” Effect of Y addition on the microstructures and mechanical properties of Mg–Gd–Y–Sm–Zr alloys Fu sanling1, Li quanan2, Chen Jun2, Zhang Qing2 1College of Physics and Engineering; Henan University of Science and Technology, Luoyang, 471023, China 2 School of Materials Science and Engineering; Henan University of Science and Technology, Luoyang 471023, China Recieved December 22, 2016 The microstructure and mechanical properties of Mg–12Gd–xY–Sm–0.5Zr (x = 0, 1, 3, 5; mass%) alloys were investigated. Results showed β’-Mg5Gd phase composition evolution of Mg5(Gd,Y). The tensile strength of the alloys are better the WE54 alloy at high temperatures (200–300 °C). The optimal mechanical properties of the Mg-12Gd-3Y-1Sm-0.5Zr alloy are achieved at high temperatures, and the maximum tensile strength of this alloy is 323 MPa at 250 °C. The short heat-resisting performance of Mg–Gd–Y–Sm–Zr alloys under the high temperature will provide new scientific basis for the development of heat resistant magnesium alloys. Keywords: Y, Mg–Gd–Sm–Zr alloy, microstructure, tensile property. Исследованы микроструктура и механические свойства сплавов Mg-12Gd-xY-Sm- 0.5Zr (x  = 0, 1, 5,%). Результаты показали, что фазовый состав β'-Mg5Gd эволюционирует в Mg5 (Gd, Y). Прочность на растяжение этих сплавов лучше сплава WE54 при высоких температурах (200-300 °C). Оптимальные механические свойства сплава Mg-12Gd-3Y-1Sm- 0.5Zr достигаются при высоких температурах, а максимальная прочность на растяжение этого сплава составляет 323 МПа при 250 °C. Жаростойкие сплавы Mg-Gd-Y-Sm-Zr при высокой температуре станут новой научной основой для разработки термостойких магниевых сплавов. Вплив додавання Y на мікроструктуру і механічні властивості сплавів Mg-Gd-Y- Sm-Zr. Фу Санлин, Ли Цюанан, Чэнь Цзюнь, Чжан Цин Досліджено мікроструктура і механічні властивості сплавів Mg-12Gd-xY-Sm-0.5Zr (x  = 0, 1, 5,%). Результати показали, що фазовий склад β’-Mg5Gd еволюціонує в Mg5 (Gd, Y). Міцність на розтяг сплавів краще сплаву WE54 при високих температурах (200-300 °C). Оптимальні механічні властивості сплаву Mg-12Gd-3Y-1Sm-0.5Zr досягаються при високих температурах, а максимальна міцність на розтягнення цього сплаву становить 323 МПа при 250 °C. Жаростойкие сплави Mg-Gd-Y-Sm-Zr при високій температурі стануть новою науковою основою для розробки термостійких магнієвих сплавів. 1. ������������������������ Energy saving and environment protection have become important concerns worldwide. Consequently, increasing efforts have been ex- erted to develop lightweight Mg-based structur- al materials that feature low density and high specific stiffness. However, the low mechanical properties and poor corrosive resistance of Mg alloys limit their applications. Hence, other al- loying elements are added to improve the me- chanical and anticorrosive properties of Mg alloys. Rare earth (RE) elements are effective alloying elements for Mg alloys [1,2]. Mg alloys Functional materials, 24, 2, 2017 265 Fu sanling et al. / Effect of Y addition on the microstructures ... containing RE elements offer favorable me- chanical properties, such as high anticorrosive properties and good cast ability, particularly at temperatures exceeding 200 °C. These al- loys exhibit considerable potential applications in the automotive industry. Therefore, recent studies have focused on the development of nov- el Mg–RE (Gd, Nd, Er, and Y) alloys[3–7]. The solubility of Gd in Mg can reach 23.5% (mass fraction) at a eutectic temperature of 548 °C, but this value decreases to 3.82% (mass frac- tion) as the temperature decreases to 200 °C. Changes in solubility significantly affect the mechanical properties of alloys through solu- tion strengthening and precipitation hardening [8,9]. Y and Sm are partly replaced by Gd be- cause of their higher cost performance than Gd, and Y can promote the precipitation of Mg5Gd phase and combined with Mg-Gd phase to form a better performance of Mg5(Gd,Y) phase. How- ever, contributions concerning the microstruc- ture evolution and mechanical properties of Mg–Gd–Sm–Zr alloys are rarely reported. Sm is a fairly effective and relatively economic RE alloying element. The strength of Mg–Gd–Y al- loys increases with the addition of 1% Sm [10]. Despite the efficient alloying strengthening ef- fect of Sm, few studies reported on the addition of Sm. In the present study, the microstructure and tensile properties of Mg–Gd–Sm–Zr-based alloys with Y addition were studied. 2. Ma�e��als a�� me�h��s Alloys with a nominal composition of Mg– 12Gd–xY–1Sm–0.5Zr (x=0, 1, 3, 5; mass%) were prepared from Mg (99.98% pure), Mg– 30Gd (mass%), Mg–25Y (mass%), Mg–30Sm (mass%), and Mg–25Zr (mass%) master alloys in a corundum crucible under a mixed atmo- sphere of CO2 and SF6 Subsequently, these alloys were poured into an electric resistance furnace. The melted mixture was poured into a steel mold and cooled down at room temper- ature. The samples were machined from the casting, covered with MgO powder before being heated for solution treatment at 525 °C for 6 h, and then quenched in water. Artificial aging treatments were performed at 225 °C for 10 h. Tensile test with a tensile speed of 1 mm/min was tested by Shimadzu AUTOGRAPH (AG-I 250kN, Japan) at room temperature, 200 °C, 250 °C, and 300 °C. High-temperature tensile was heat preserved for 5 min under the corre- sponding temperature. The microstructures, fracture morphology, and alloy composition were observed and analyzed via optical micros- copy, scanning electron microscopy (SEM), en- ergy dispersive spectrometry (EDS), and trans- mission electron microscopy (TEM). Specimens for TEM were prepared via electrolytic double- jet thinning in a solution of 30% (volume frac- tion) HNO3 in methanol. Alloy phase analysis Fig. 1. Optical micrographs of as-cast Mg-12Gd-xY-1Sm-0.5Zr alloys: (a) x=0, (b) x=1, (c) x=3, and (d) x=5 266 Functional materials, 24, 2, 2017 Fu sanling et al. / Effect of Y addition on the microstructures ... was also carried out through X-ray diffraction (XRD). Grain size was determined from a large number of non-overlapping measurements by using a linear intercept method. 3. Res�l�s a�� ��s��ss��� The microstructures of the as-cast alloys are shown in Fig. (1). As shown in the micrograph,(1). As shown in the micrograph,1). As shown in the micrograph,). As shown in the micrograph,. As shown in the micrograph, the microstructures of all the as-cast alloys are composed of α-Mg matrix and coarse dendrite. When the alloy is without Y, the dendrite shape is connected together and coarse, and the middle is surrounded by a white α-Mg matrix area. Thus, the cast alloy grain without Y can be relatively large compared with other sam- ples. Figs. (1b–1d) show the microstructures of(1b–1d) show the microstructures of1b–1d) show the microstructures of1d) show the microstructures ofd) show the microstructures of the as-cast alloys added with Y. The secondary phases, which are intensive dendrites, have in- termittent shape distribution, and the middle region surrounded by a white α-Mg matrix area is relatively small. Moreover, the grain size of all the as-cast alloys decreases with the addi- tion of Y. The alloy sizes are 32, 20, 29, and 30 μm, which are shown in Fig. (1a), (1b), (1c), and(1a), (1b), (1c), and1a), (1b), (1c), and1b), (1c), andb), (1c), and (1d), respectively. The alloys display the lowest grain size when the Y content is 1%. The XRD patterns of the alloys homogenized at 225 °C for 10 h analysis shown in Fig. (2). As(2). As2). As). As. As shown in the diagram, the XRD patterns of all experimental alloys are mainly composed of α- Mg, Mg5Gd, and Mg24Y5 characteristic absorp- tion peaks. The alloys added with Y contain the Mg24Y5 phase, and the Mg24Y5 characteris- tic absorption peak becomes apparent with in- creasing Y. The Gd and Y atoms in the β’ phase can replace each other because of their similar atomic radii (0.178 and 0.182 nm, respectively) and electronegativities (1.20 and 1.22, respec- tively) [10]. Such replacement can be formed using the bottom heart orthogonal structure of Mg5(Gd, Y), thus the β’ phase composition evo- lution of Mg5(Gd, Y) and β’ in Ref. [12] The char- acteristic diffraction peaks of Mg24Y5, Mg5Gd, and Mg5(Gd, Y) are overlapping and almost unable to separate. Not marked in the picture with the characteristics of Sm diffraction peak due to less Sm elements are added. The SEM and corresponding EDS results on the morphology of the Mg–12Gd–xY–1Sm–0.5Zr alloys are shown in Fig. (3), the precipitation(3), the precipitation3), the precipitation), the precipitation, the precipitation phase of the experimental alloy comprises dis- continuous dendrites that are distributed along the grain boundaries. In order to determine the distribution of elements, EDS was carried out in boundary intermittent dendrites, the results indicate which is enriched in Mg, Gd, Y, and Sm. The atomic ratios of Y and Gd in the two types of compounds are 5.35 and 3.78, respec- tively. The EDS results further verify that the addition of Y to the Mg–Gd–Sm–Zr alloy causes the formation of the Mg24Y5 phase. Previous in- vestigations on the effects of RE on Mg alloys reported that adding Y to Mg–Gd–Sm–Zr alloys causes the formation of a new Mg24Y5 phase. The possibility of compound formation between Mg and Y atoms can be estimated using the elec- tronegativity differences. XRD analysis shows that secondary phases can be identified as an intermittent dendrite compound composed of the Mg5Gd and Mg24Y5 phases. Fig. 2. X-ray diffraction patterns of solid solu- tion-treated Mg–12Gd–xY–1Sm–0.5Zr alloys. Fig. 3. Scanning electron micrograph and energy dispersive spectral analysis of the microstruc- ture of the Mg–12Gd–3Y–1Sm–0.5Zr alloy. Functional materials, 24, 2, 2017 267 Fu sanling et al. / Effect of Y addition on the microstructures ... The TEM images of aged Mg–12Gd–3Y– 1Sm–0.5Zr alloy are shown in Fig. (4), bright-(4), bright-4), bright-), bright-, bright- field (BF) image electron beam and correspond- ing selected area electron diffraction (SAED) pattern. It is known that the alloy composed of white α-Mg matrix and black granular pre- cipitated phase in the Fig. (4a). There are three(4a). There are three4a). There are three β’ phase small diffraction spots evenly spaced distribution in between the α-Mg(010) from the analysis of rectangular box corresponding SAED, and the β’ phase located in 1/4 (010) α, 1/2 (010) α, 3/4 (010) α successively . The β’ phase is the main secondary phase. Fig. (4a) shows the direction of the arrow using(4a) shows the direction of the arrow using4a) shows the direction of the arrow using the black strip precipitates, and the size is be- low 20-40 nm. Fig. (4b) shows the correspond- ing SAED and precipitation of high-resolution TEM and corresponding Fourier transforma- tion diagram. The precipitated phase can be determined for the nanoscale precipitated β’ phase with mole stripe, the results with the corresponding Fig. (4b) is consistent with FFT,(4b) is consistent with FFT,4b) is consistent with FFT, and the experiment indicates that the phase can effectively strengthen the alloy. The mechanical properties of the Mg–12Gd– xY–1Sm–0.5Zr alloys are shown in Fig. (5). The(5). The5). The). The. The best tensile strength and yield strength are obtained upon the addition of 3% Y at room temperature, but the elongation decreases with increasing Y content. Alloy tensile strength is reduced after the first rise with the increase in stretching temperature. The alloy added with 3% Y displays optimal mechanical properties at a high temperature. This result indicates that a moderate amount of Y addition is crucial to improve the heat-resistant properties of alloys. The tensile strength of the Mg–Gd–Y–Sm–Zr alloys initially increases, decreases, and then peaks at 250 °C with increasing test tempera- ture. The yield strength decreases with increas- ing stretching temperature, but the elongation increases with increasing test temperature. In the commercial department of Mg–RE heat-resistant Mg alloys, the WE54 alloy ex- hibits the most suitable high-temperature me- chanical properties; its T6 state at room-tem- perature mechanical properties is as follows: σb=280 MPa, σ0.2=205 MPa, and δ=4%[13]. The mechanical properties of the Mg–Gd–Y–Sm–Zr alloys are close to those of the WE54 alloy at room temperature but are better at high tem- peratures (200–300°C). The optimal mechani- cal properties of the Mg-12Gd-3Y-1Sm-0.5Zr alloy are obtained at high temperatures, and the maximum tensile strength is 323 MPa at 250 °C. The Mg-12Gd-3Y-1Sm-0.5Zr alloy also exhibits favorable mechanical properties at a high temperature of 300 °C, and the tensile strength, yield strength, and elongation of this alloy are 293 MPa, 203 MPa, and 6.45%, re- spectively. As is known to all, the design features of mechanical property in metal materials is that the bonding force between the metal atoms re- duced with the increase of temperature, and the tensile strength decreased and the elonga- tion increased with the increase of stretching temperature. Tensile strength of Mg–12Gd– xY–1Sm–0.5Zr series magnesium alloys ap- peared abnormal phenomenon, and the tensile strength did not reduce with increasing stretch- ing temperature, but increased significantly, at room temperature to 250 °С in this experi- ment. The short heat-resisting performance of Mg–12Gd–xY–1Sm–0.5Zr series magnesium alloys under the high temperature will provide Fig. 4. Transmission electron micrographs re- corded from the Mg–12Gd–3Y–1Sm–0.5Zr alloy after T6 treatment. (a) bright-field image and the illustrations for the corresponding SAED; (b) Corresponding HRTEM image and FFT patterns obtained from areas A and B in (b), respectively. 268 Functional materials, 24, 2, 2017 Fu sanling et al. / Effect of Y addition on the microstructures ... experimental basis in the application of missile hull, and which will provide new scientific basis for the development of heat resistant magne- sium alloys. In this study, Y improves the mechanical properties of the Mg–Gd–Y–Sm–Zr alloys in addition to achieve strengthening of grain re- finement, and due to Gd in the Mg balance has a high solubility. With the decrease in temper- ature, the solubility of exponential decreases quickly, and precipitation forms an ideal rein- forcement system. Mg5Gd is a product of alloy Fig. 5. The mechanical properties of the Mg–12Gd–xY–1Sm–0.5Zr alloys. (a) – tensile strength; (b) – yield strength; (c) – elongation during solidification, with a punctate or den- dritic distribution on the grain boundaries or intermediate dendrite spacing. In addition, the Mg5(Gd,Y) phase has high-temperature stabil- ity in high phase. These phases are distributed in the α-Mg matrix, and the equivalent of hard particles embedded in the matrix of some irreg- ular punctate or branched during tensile tests can hinder the movement of dislocations and grain deformation. Consequently, the strength of the Mg–Gd–Y–Sm–Zr alloys is improved. The metal-mold casting conditions are as follows: the cooling rate is higher than the balance of cooling required for speed, which belongs to the non-equilibrium solidification. Furthermore, at a high-temperature solid solu- tion on the base of the α-Mg part of the Gd, Y is preserved at room temperature, and a super- saturated solid solution is formed because the difference in the atomic radius of Mg is large. The solution on the base of α-Mg results in seri- ous distortion of the lattice and solid solution strengthening effect, thereby improving the mechanical properties of the alloy. 4. C���l�s���s Y has properties similar to those of other RE elements. These elements function in the puri- fication of Mg solution, hydrogen removal, and grain refinement. Moreover, the atomic radius of Y is similar to that of Mg, and the Y in the solid solubility of Mg is large. Solid solubility also decreases with rapidly decreasing temper- ature. Therefore, the addition of Y in Mg can result in the strengthening of fine grains, solid solution, and precipitation. Thus, the addition of Y in Mg can effectively improve the micro- structure and mechanical properties of the al- loy. In this study, the specific roles of Y in the Mg–Gd–Y–Sm–Zr alloy are discussed and sum- marized as follows: (1) Y plays an important role in refining the grain of the Mg–12Gd–xY–1Sm–0.5Zr alloy. When the Y content is 1%, the cast alloy exhib- its the most obvious grain refinement; (2) The mechanical properties of the Mg– Gd–Y–Sm–Zr alloys are similar to those of the WE54 alloy at room temperature but better at high temperatures (200–300 °C). The optimal mechanical properties of the Mg-12Gd-3Y-1Sm- 0.5Zr alloy are obtained at high temperatures, and the maximum tensile strength of this al- loy is 323 MPa at 250 °C. The Mg-12Gd-3Y- 1Sm-0.5Zr alloy also demonstrates favorable mechanical properties at a high temperature of 300 °C, and the tensile strength, yield strength, Functional materials, 24, 2, 2017 269 Fu sanling et al. / Effect of Y addition on the microstructures ... elongation of this alloy are 293 MPa, 203 MPa, and 6.45% respectively; (3) Mg–Gd–Y–Sm–Zr alloys mainly via strengthening of grain refinement, solid solu- tion and secondary phase. A�k��wle�geme��s This work was supported by National Nat- ural Science Foundation of China (51571084, 51171059), Scientific and Technological Project of Henan Province (Grant No. 152102210072), the Basic and Frontier Technologies Research Plan of Henan Province (102300410018), and the Program for Innovative Research Team (in Science and Technology) in the University of Henan Province (2012IRTSTHN008). Refe�e��es 1. B.�.Mordike and T. Ebert,.�.Mordike and T. Ebert,�.Mordike and T. Ebert,.Mordike and T. Ebert,Mordike and T. Ebert, and T. Ebert,T. Ebert,. Ebert, Ebert,, Mat.  Sci.  Eng  A, . 302,. 37, 2001., 2001. 2. X.Y. Xia, A.A. �uo, D.S. Stone,.Y. Xia, A.A. �uo, D.S. Stone, Xia, A.A. �uo, D.S. Stone,.A. �uo, D.S. Stone,A. �uo, D.S. Stone,. �uo, D.S. Stone, �uo, D.S. Stone,, D.S. Stone, D.S. Stone,.S. Stone,S. Stone,. Stone, Stone,, J. Alloy.Comp., 649, 649, 2015.2015. 3. S. Zhang, W.C. �iu, X.Y. Gu, C. �u, et al, J. Al- loy.Comp..557, 91, 2013.2013.. 4. K.Y. Zheng, J. Dong, X.Q. Zeng W.J. Ding, Mat.  Charact., 59, 857, 2008. 5. X. Xia, K. Zhang, X. �i, M. Ma, Y. �i. Mat.De- sign, 44, 521, 2013. 6. Z.H. Wang, W.B. Du, X.D. Wang, et al.H. Wang, W.B. Du, X.D. Wang, et alH. Wang, W.B. Du, X.D. Wang, et al. Wang, W.B. Du, X.D. Wang, et al Wang, W.B. Du, X.D. Wang, et al, W.B. Du, X.D. Wang, et al W.B. Du, X.D. Wang, et al.B. Du, X.D. Wang, et alB. Du, X.D. Wang, et al. Du, X.D. Wang, et al Du, X.D. Wang, et alu, X.D. Wang, et alX.D. Wang, et al.D. Wang, et alD. Wang, et al. Wang, et al Wang, et al, et alet al Trans. Nonferr. Metals Soc. China, 23, 593, 2013. 7. Y.B. Hu, �. Deng, C. Zhao, et al,Y.B. Hu, �. Deng, C. Zhao, et al, Trans.Nonferr.  Metals Soc. China, 21, 732, 2011. 8. �.M. Peng, N. Ma, H. �i,�.M. Peng, N. Ma, H. �i, J. Rare Earths, 30, 1064, 2012. 9. Y. Gao, H. �iu, R. Shi, et al,Y. Gao, H. �iu, R. Shi, et al, Acta Mat., 61, 453, 2013. 10. �.�. Wang, �.D. Wang, Y.M. Wu,,�.�. Wang, �.D. Wang, Y.M. Wu,,Wang, �.D. Wang, Y.M. Wu,,�.D. Wang, Y.M. Wu,,Wang, Y.M. Wu,,, Y.M. Wu,, Y.M. Wu,,Y.M. Wu,,Wu,,,, Mat. Sci.Eng.  A, 528, 4115, 2011. 4115, 2011.4115, 2011., 2011.2011. 11. T. Honma, T. Ohkubo, K. Hono, S. Kamado,. Honma, T. Ohkubo, K. Hono, S. Kamado, Honma, T. Ohkubo, K. Hono, S. Kamado,, T. Ohkubo, K. Hono, S. Kamado,T. Ohkubo, K. Hono, S. Kamado,. Ohkubo, K. Hono, S. Kamado, Ohkubo, K. Hono, S. Kamado,, K. Hono, S. Kamado,K. Hono, S. Kamado,. Hono, S. Kamado, Hono, S. Kamado,, S. Kamado,S. Kamado,. Kamado, Kamado,, Mat.  Sci. Eng.: A, 395, 301, 2005. 301, 2005., 2005.2005.. 12. Z. Yang, �.P. �i, Y.X. Wu, Z.�. Yang, Foundry, 62, 545, 2013. 13. Z.Y. Zhang, �.M. Peng, X.�. Zeng, et al Mat.  Charact., 60, 555, 2009.