Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys
The microstructure and mechanical properties of Mg–12Gd–xY–Sm–0.5Zr (x = 0, 1, 3, 5; mass%) alloys were investigated. Results showed β’-Mg5Gd phase composition evolution of Mg5(Gd,Y). The tensile strength of the alloys are better the WE54 alloy at high temperatures (200–300 °C). The optimal mechanic...
Gespeichert in:
| Datum: | 2017 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
НТК «Інститут монокристалів» НАН України
2017
|
| Schriftenreihe: | Functional Materials |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/136731 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys / Fu sanling, Li quanan, Chen Jun, Zhang Qing // Functional Materials. — 2017. — Т. 24, № 2. — С. 264-269. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-136731 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1367312025-02-09T13:28:38Z Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys Вплив додавання Y на мікроструктуру і механічні властивості сплавів Mg-Gd-YSm-Zr Fu sanling Li quanan Chen Jun Zhang Qing Characterization and properties The microstructure and mechanical properties of Mg–12Gd–xY–Sm–0.5Zr (x = 0, 1, 3, 5; mass%) alloys were investigated. Results showed β’-Mg5Gd phase composition evolution of Mg5(Gd,Y). The tensile strength of the alloys are better the WE54 alloy at high temperatures (200–300 °C). The optimal mechanical properties of the Mg-12Gd-3Y-1Sm-0.5Zr alloy are achieved at high temperatures, and the maximum tensile strength of this alloy is 323 MPa at 250 °C. The short heat-resisting performance of Mg–Gd–Y–Sm–Zr alloys under the high temperature will provide new scientific basis for the development of heat resistant magnesium alloys. Исследованы микроструктура и механические свойства сплавов Mg-12Gd-xY-Sm- 0.5Zr (x = 0, 1, 5,%). Результаты показали, что фазовый состав β'-Mg5 Gd эволюционирует в Mg5 (Gd, Y). Прочность на растяжение этих сплавов лучше сплава WE54 при высоких температурах (200-300 °C). Оптимальные механические свойства сплава Mg-12Gd-3Y-1Sm- 0.5Zr достигаются при высоких температурах, а максимальная прочность на растяжение этого сплава составляет 323 МПа при 250 °C. Жаростойкие сплавы Mg-Gd-Y-Sm-Zr при высокой температуре станут новой научной основой для разработки термостойких магниевых сплавов. Досліджено мікроструктура і механічні властивості сплавів Mg-12Gd-xY-Sm-0.5Zr (x = 0, 1, 5,%). Результати показали, що фазовий склад β’-Mg5 Gd еволюціонує в Mg5 (Gd, Y). Міцність на розтяг сплавів краще сплаву WE54 при високих температурах (200-300 °C). Оптимальні механічні властивості сплаву Mg-12Gd-3Y-1Sm-0.5Zr досягаються при високих температурах, а максимальна міцність на розтягнення цього сплаву становить 323 МПа при 250 °C. Жаростойкие сплави Mg-Gd-Y-Sm-Zr при високій температурі стануть новою науковою основою для розробки термостійких магнієвих сплавів. 2017 Article Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys / Fu sanling, Li quanan, Chen Jun, Zhang Qing // Functional Materials. — 2017. — Т. 24, № 2. — С. 264-269. — Бібліогр.: 14 назв. — англ. 1027-5495 DOI: https://doi.org/10.15407/fm24.02.264 https://nasplib.isofts.kiev.ua/handle/123456789/136731 en Functional Materials application/pdf НТК «Інститут монокристалів» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Characterization and properties Characterization and properties |
| spellingShingle |
Characterization and properties Characterization and properties Fu sanling Li quanan Chen Jun Zhang Qing Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys Functional Materials |
| description |
The microstructure and mechanical properties of Mg–12Gd–xY–Sm–0.5Zr (x = 0, 1, 3, 5; mass%) alloys were investigated. Results showed β’-Mg5Gd phase composition evolution of Mg5(Gd,Y). The tensile strength of the alloys are better the WE54 alloy at high temperatures (200–300 °C). The optimal mechanical properties of the Mg-12Gd-3Y-1Sm-0.5Zr alloy are achieved at high temperatures, and the maximum tensile strength of this alloy is 323 MPa at 250 °C. The short heat-resisting performance of Mg–Gd–Y–Sm–Zr alloys under the high temperature will provide new scientific basis for the development of heat resistant magnesium alloys. |
| format |
Article |
| author |
Fu sanling Li quanan Chen Jun Zhang Qing |
| author_facet |
Fu sanling Li quanan Chen Jun Zhang Qing |
| author_sort |
Fu sanling |
| title |
Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys |
| title_short |
Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys |
| title_full |
Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys |
| title_fullStr |
Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys |
| title_full_unstemmed |
Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys |
| title_sort |
effect of y addition on the microstructures and mechanical properties of mg-gd-y-sm-zr alloys |
| publisher |
НТК «Інститут монокристалів» НАН України |
| publishDate |
2017 |
| topic_facet |
Characterization and properties |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/136731 |
| citation_txt |
Effect of Y addition on the microstructures and mechanical properties of Mg-Gd-Y-Sm-Zr alloys / Fu sanling, Li quanan, Chen Jun, Zhang Qing // Functional Materials. — 2017. — Т. 24, № 2. — С. 264-269. — Бібліогр.: 14 назв. — англ. |
| series |
Functional Materials |
| work_keys_str_mv |
AT fusanling effectofyadditiononthemicrostructuresandmechanicalpropertiesofmggdysmzralloys AT liquanan effectofyadditiononthemicrostructuresandmechanicalpropertiesofmggdysmzralloys AT chenjun effectofyadditiononthemicrostructuresandmechanicalpropertiesofmggdysmzralloys AT zhangqing effectofyadditiononthemicrostructuresandmechanicalpropertiesofmggdysmzralloys AT fusanling vplivdodavannâynamíkrostrukturuímehaníčnívlastivostísplavívmggdysmzr AT liquanan vplivdodavannâynamíkrostrukturuímehaníčnívlastivostísplavívmggdysmzr AT chenjun vplivdodavannâynamíkrostrukturuímehaníčnívlastivostísplavívmggdysmzr AT zhangqing vplivdodavannâynamíkrostrukturuímehaníčnívlastivostísplavívmggdysmzr |
| first_indexed |
2025-11-26T05:01:07Z |
| last_indexed |
2025-11-26T05:01:07Z |
| _version_ |
1849827816083816448 |
| fulltext |
264 Functional materials, 24, 2, 2017
ISSN 1027-5495. Functional Materials, 24, No.2 (2017), p. 264-269
doi:https://doi.org/10.15407/fm24.02.264 © 2017 — STC “Institute for Single Crystals”
Effect of Y addition on the microstructures and
mechanical properties of Mg–Gd–Y–Sm–Zr
alloys
Fu sanling1, Li quanan2, Chen Jun2, Zhang Qing2
1College of Physics and Engineering; Henan University of Science and
Technology, Luoyang, 471023, China
2 School of Materials Science and Engineering; Henan University of Science
and Technology, Luoyang 471023, China
Recieved December 22, 2016
The microstructure and mechanical properties of Mg–12Gd–xY–Sm–0.5Zr (x = 0, 1, 3, 5; mass%)
alloys were investigated. Results showed β’-Mg5Gd phase composition evolution of Mg5(Gd,Y).
The tensile strength of the alloys are better the WE54 alloy at high temperatures (200–300 °C).
The optimal mechanical properties of the Mg-12Gd-3Y-1Sm-0.5Zr alloy are achieved at high
temperatures, and the maximum tensile strength of this alloy is 323 MPa at 250 °C. The short
heat-resisting performance of Mg–Gd–Y–Sm–Zr alloys under the high temperature will provide
new scientific basis for the development of heat resistant magnesium alloys.
Keywords: Y, Mg–Gd–Sm–Zr alloy, microstructure, tensile property.
Исследованы микроструктура и механические свойства сплавов Mg-12Gd-xY-Sm-
0.5Zr (x = 0, 1, 5,%). Результаты показали, что фазовый состав β'-Mg5Gd эволюционирует
в Mg5 (Gd, Y). Прочность на растяжение этих сплавов лучше сплава WE54 при высоких
температурах (200-300 °C). Оптимальные механические свойства сплава Mg-12Gd-3Y-1Sm-
0.5Zr достигаются при высоких температурах, а максимальная прочность на растяжение
этого сплава составляет 323 МПа при 250 °C. Жаростойкие сплавы Mg-Gd-Y-Sm-Zr при
высокой температуре станут новой научной основой для разработки термостойких магниевых
сплавов.
Вплив додавання Y на мікроструктуру і механічні властивості сплавів Mg-Gd-Y-
Sm-Zr. Фу Санлин, Ли Цюанан, Чэнь Цзюнь, Чжан Цин
Досліджено мікроструктура і механічні властивості сплавів Mg-12Gd-xY-Sm-0.5Zr
(x = 0, 1, 5,%). Результати показали, що фазовий склад β’-Mg5Gd еволюціонує в Mg5 (Gd,
Y). Міцність на розтяг сплавів краще сплаву WE54 при високих температурах (200-300 °C).
Оптимальні механічні властивості сплаву Mg-12Gd-3Y-1Sm-0.5Zr досягаються при високих
температурах, а максимальна міцність на розтягнення цього сплаву становить 323 МПа
при 250 °C. Жаростойкие сплави Mg-Gd-Y-Sm-Zr при високій температурі стануть новою
науковою основою для розробки термостійких магнієвих сплавів.
1. ������������������������
Energy saving and environment protection
have become important concerns worldwide.
Consequently, increasing efforts have been ex-
erted to develop lightweight Mg-based structur-
al materials that feature low density and high
specific stiffness. However, the low mechanical
properties and poor corrosive resistance of Mg
alloys limit their applications. Hence, other al-
loying elements are added to improve the me-
chanical and anticorrosive properties of Mg
alloys. Rare earth (RE) elements are effective
alloying elements for Mg alloys [1,2]. Mg alloys
Functional materials, 24, 2, 2017 265
Fu sanling et al. / Effect of Y addition on the microstructures ...
containing RE elements offer favorable me-
chanical properties, such as high anticorrosive
properties and good cast ability, particularly
at temperatures exceeding 200 °C. These al-
loys exhibit considerable potential applications
in the automotive industry. Therefore, recent
studies have focused on the development of nov-
el Mg–RE (Gd, Nd, Er, and Y) alloys[3–7]. The
solubility of Gd in Mg can reach 23.5% (mass
fraction) at a eutectic temperature of 548 °C,
but this value decreases to 3.82% (mass frac-
tion) as the temperature decreases to 200 °C.
Changes in solubility significantly affect the
mechanical properties of alloys through solu-
tion strengthening and precipitation hardening
[8,9]. Y and Sm are partly replaced by Gd be-
cause of their higher cost performance than Gd,
and Y can promote the precipitation of Mg5Gd
phase and combined with Mg-Gd phase to form
a better performance of Mg5(Gd,Y) phase. How-
ever, contributions concerning the microstruc-
ture evolution and mechanical properties of
Mg–Gd–Sm–Zr alloys are rarely reported. Sm
is a fairly effective and relatively economic RE
alloying element. The strength of Mg–Gd–Y al-
loys increases with the addition of 1% Sm [10].
Despite the efficient alloying strengthening ef-
fect of Sm, few studies reported on the addition
of Sm. In the present study, the microstructure
and tensile properties of Mg–Gd–Sm–Zr-based
alloys with Y addition were studied.
2. Ma�e��als a�� me�h��s
Alloys with a nominal composition of Mg–
12Gd–xY–1Sm–0.5Zr (x=0, 1, 3, 5; mass%)
were prepared from Mg (99.98% pure), Mg–
30Gd (mass%), Mg–25Y (mass%), Mg–30Sm
(mass%), and Mg–25Zr (mass%) master alloys
in a corundum crucible under a mixed atmo-
sphere of CO2 and SF6 Subsequently, these
alloys were poured into an electric resistance
furnace. The melted mixture was poured into
a steel mold and cooled down at room temper-
ature. The samples were machined from the
casting, covered with MgO powder before being
heated for solution treatment at 525 °C for 6
h, and then quenched in water. Artificial aging
treatments were performed at 225 °C for 10 h.
Tensile test with a tensile speed of 1 mm/min
was tested by Shimadzu AUTOGRAPH (AG-I
250kN, Japan) at room temperature, 200 °C,
250 °C, and 300 °C. High-temperature tensile
was heat preserved for 5 min under the corre-
sponding temperature. The microstructures,
fracture morphology, and alloy composition
were observed and analyzed via optical micros-
copy, scanning electron microscopy (SEM), en-
ergy dispersive spectrometry (EDS), and trans-
mission electron microscopy (TEM). Specimens
for TEM were prepared via electrolytic double-
jet thinning in a solution of 30% (volume frac-
tion) HNO3 in methanol. Alloy phase analysis
Fig. 1. Optical micrographs of as-cast Mg-12Gd-xY-1Sm-0.5Zr alloys: (a) x=0, (b) x=1, (c) x=3, and (d) x=5
266 Functional materials, 24, 2, 2017
Fu sanling et al. / Effect of Y addition on the microstructures ...
was also carried out through X-ray diffraction
(XRD). Grain size was determined from a large
number of non-overlapping measurements by
using a linear intercept method.
3. Res�l�s a�� ��s��ss���
The microstructures of the as-cast alloys are
shown in Fig. (1). As shown in the micrograph,(1). As shown in the micrograph,1). As shown in the micrograph,). As shown in the micrograph,. As shown in the micrograph,
the microstructures of all the as-cast alloys are
composed of α-Mg matrix and coarse dendrite.
When the alloy is without Y, the dendrite
shape is connected together and coarse, and the
middle is surrounded by a white α-Mg matrix
area. Thus, the cast alloy grain without Y can
be relatively large compared with other sam-
ples. Figs. (1b–1d) show the microstructures of(1b–1d) show the microstructures of1b–1d) show the microstructures of1d) show the microstructures ofd) show the microstructures of
the as-cast alloys added with Y. The secondary
phases, which are intensive dendrites, have in-
termittent shape distribution, and the middle
region surrounded by a white α-Mg matrix area
is relatively small. Moreover, the grain size of
all the as-cast alloys decreases with the addi-
tion of Y. The alloy sizes are 32, 20, 29, and 30
μm, which are shown in Fig. (1a), (1b), (1c), and(1a), (1b), (1c), and1a), (1b), (1c), and1b), (1c), andb), (1c), and
(1d), respectively. The alloys display the lowest
grain size when the Y content is 1%.
The XRD patterns of the alloys homogenized
at 225 °C for 10 h analysis shown in Fig. (2). As(2). As2). As). As. As
shown in the diagram, the XRD patterns of all
experimental alloys are mainly composed of α-
Mg, Mg5Gd, and Mg24Y5 characteristic absorp-
tion peaks. The alloys added with Y contain
the Mg24Y5 phase, and the Mg24Y5 characteris-
tic absorption peak becomes apparent with in-
creasing Y. The Gd and Y atoms in the β’ phase
can replace each other because of their similar
atomic radii (0.178 and 0.182 nm, respectively)
and electronegativities (1.20 and 1.22, respec-
tively) [10]. Such replacement can be formed
using the bottom heart orthogonal structure of
Mg5(Gd, Y), thus the β’ phase composition evo-
lution of Mg5(Gd, Y) and β’ in Ref. [12] The char-
acteristic diffraction peaks of Mg24Y5, Mg5Gd,
and Mg5(Gd, Y) are overlapping and almost
unable to separate. Not marked in the picture
with the characteristics of Sm diffraction peak
due to less Sm elements are added.
The SEM and corresponding EDS results on
the morphology of the Mg–12Gd–xY–1Sm–0.5Zr
alloys are shown in Fig. (3), the precipitation(3), the precipitation3), the precipitation), the precipitation, the precipitation
phase of the experimental alloy comprises dis-
continuous dendrites that are distributed along
the grain boundaries. In order to determine the
distribution of elements, EDS was carried out
in boundary intermittent dendrites, the results
indicate which is enriched in Mg, Gd, Y, and
Sm. The atomic ratios of Y and Gd in the two
types of compounds are 5.35 and 3.78, respec-
tively. The EDS results further verify that the
addition of Y to the Mg–Gd–Sm–Zr alloy causes
the formation of the Mg24Y5 phase. Previous in-
vestigations on the effects of RE on Mg alloys
reported that adding Y to Mg–Gd–Sm–Zr alloys
causes the formation of a new Mg24Y5 phase. The
possibility of compound formation between Mg
and Y atoms can be estimated using the elec-
tronegativity differences. XRD analysis shows
that secondary phases can be identified as an
intermittent dendrite compound composed of
the Mg5Gd and Mg24Y5 phases.
Fig. 2. X-ray diffraction patterns of solid solu-
tion-treated Mg–12Gd–xY–1Sm–0.5Zr alloys.
Fig. 3. Scanning electron micrograph and energy
dispersive spectral analysis of the microstruc-
ture of the Mg–12Gd–3Y–1Sm–0.5Zr alloy.
Functional materials, 24, 2, 2017 267
Fu sanling et al. / Effect of Y addition on the microstructures ...
The TEM images of aged Mg–12Gd–3Y–
1Sm–0.5Zr alloy are shown in Fig. (4), bright-(4), bright-4), bright-), bright-, bright-
field (BF) image electron beam and correspond-
ing selected area electron diffraction (SAED)
pattern. It is known that the alloy composed
of white α-Mg matrix and black granular pre-
cipitated phase in the Fig. (4a). There are three(4a). There are three4a). There are three
β’ phase small diffraction spots evenly spaced
distribution in between the α-Mg(010) from
the analysis of rectangular box corresponding
SAED, and the β’ phase located in 1/4 (010) α,
1/2 (010) α, 3/4 (010) α successively .
The β’ phase is the main secondary phase.
Fig. (4a) shows the direction of the arrow using(4a) shows the direction of the arrow using4a) shows the direction of the arrow using
the black strip precipitates, and the size is be-
low 20-40 nm. Fig. (4b) shows the correspond-
ing SAED and precipitation of high-resolution
TEM and corresponding Fourier transforma-
tion diagram. The precipitated phase can be
determined for the nanoscale precipitated β’
phase with mole stripe, the results with the
corresponding Fig. (4b) is consistent with FFT,(4b) is consistent with FFT,4b) is consistent with FFT,
and the experiment indicates that the phase
can effectively strengthen the alloy.
The mechanical properties of the Mg–12Gd–
xY–1Sm–0.5Zr alloys are shown in Fig. (5). The(5). The5). The). The. The
best tensile strength and yield strength are
obtained upon the addition of 3% Y at room
temperature, but the elongation decreases with
increasing Y content. Alloy tensile strength is
reduced after the first rise with the increase in
stretching temperature. The alloy added with
3% Y displays optimal mechanical properties at
a high temperature. This result indicates that
a moderate amount of Y addition is crucial to
improve the heat-resistant properties of alloys.
The tensile strength of the Mg–Gd–Y–Sm–Zr
alloys initially increases, decreases, and then
peaks at 250 °C with increasing test tempera-
ture. The yield strength decreases with increas-
ing stretching temperature, but the elongation
increases with increasing test temperature.
In the commercial department of Mg–RE
heat-resistant Mg alloys, the WE54 alloy ex-
hibits the most suitable high-temperature me-
chanical properties; its T6 state at room-tem-
perature mechanical properties is as follows:
σb=280 MPa, σ0.2=205 MPa, and δ=4%[13]. The
mechanical properties of the Mg–Gd–Y–Sm–Zr
alloys are close to those of the WE54 alloy at
room temperature but are better at high tem-
peratures (200–300°C). The optimal mechani-
cal properties of the Mg-12Gd-3Y-1Sm-0.5Zr
alloy are obtained at high temperatures, and
the maximum tensile strength is 323 MPa at
250 °C. The Mg-12Gd-3Y-1Sm-0.5Zr alloy also
exhibits favorable mechanical properties at
a high temperature of 300 °C, and the tensile
strength, yield strength, and elongation of this
alloy are 293 MPa, 203 MPa, and 6.45%, re-
spectively.
As is known to all, the design features of
mechanical property in metal materials is that
the bonding force between the metal atoms re-
duced with the increase of temperature, and
the tensile strength decreased and the elonga-
tion increased with the increase of stretching
temperature. Tensile strength of Mg–12Gd–
xY–1Sm–0.5Zr series magnesium alloys ap-
peared abnormal phenomenon, and the tensile
strength did not reduce with increasing stretch-
ing temperature, but increased significantly,
at room temperature to 250 °С in this experi-
ment. The short heat-resisting performance of
Mg–12Gd–xY–1Sm–0.5Zr series magnesium
alloys under the high temperature will provide
Fig. 4. Transmission electron micrographs re-
corded from the Mg–12Gd–3Y–1Sm–0.5Zr alloy
after T6 treatment. (a) bright-field image and
the illustrations for the corresponding SAED; (b)
Corresponding HRTEM image and FFT patterns
obtained from areas A and B in (b), respectively.
268 Functional materials, 24, 2, 2017
Fu sanling et al. / Effect of Y addition on the microstructures ...
experimental basis in the application of missile
hull, and which will provide new scientific basis
for the development of heat resistant magne-
sium alloys.
In this study, Y improves the mechanical
properties of the Mg–Gd–Y–Sm–Zr alloys in
addition to achieve strengthening of grain re-
finement, and due to Gd in the Mg balance has
a high solubility. With the decrease in temper-
ature, the solubility of exponential decreases
quickly, and precipitation forms an ideal rein-
forcement system. Mg5Gd is a product of alloy
Fig. 5. The mechanical properties of the
Mg–12Gd–xY–1Sm–0.5Zr alloys.
(a) – tensile strength; (b) – yield strength;
(c) – elongation
during solidification, with a punctate or den-
dritic distribution on the grain boundaries or
intermediate dendrite spacing. In addition, the
Mg5(Gd,Y) phase has high-temperature stabil-
ity in high phase. These phases are distributed
in the α-Mg matrix, and the equivalent of hard
particles embedded in the matrix of some irreg-
ular punctate or branched during tensile tests
can hinder the movement of dislocations and
grain deformation. Consequently, the strength
of the Mg–Gd–Y–Sm–Zr alloys is improved.
The metal-mold casting conditions are as
follows: the cooling rate is higher than the
balance of cooling required for speed, which
belongs to the non-equilibrium solidification.
Furthermore, at a high-temperature solid solu-
tion on the base of the α-Mg part of the Gd, Y
is preserved at room temperature, and a super-
saturated solid solution is formed because the
difference in the atomic radius of Mg is large.
The solution on the base of α-Mg results in seri-
ous distortion of the lattice and solid solution
strengthening effect, thereby improving the
mechanical properties of the alloy.
4. C���l�s���s
Y has properties similar to those of other RE
elements. These elements function in the puri-
fication of Mg solution, hydrogen removal, and
grain refinement. Moreover, the atomic radius
of Y is similar to that of Mg, and the Y in the
solid solubility of Mg is large. Solid solubility
also decreases with rapidly decreasing temper-
ature. Therefore, the addition of Y in Mg can
result in the strengthening of fine grains, solid
solution, and precipitation. Thus, the addition
of Y in Mg can effectively improve the micro-
structure and mechanical properties of the al-
loy. In this study, the specific roles of Y in the
Mg–Gd–Y–Sm–Zr alloy are discussed and sum-
marized as follows:
(1) Y plays an important role in refining the
grain of the Mg–12Gd–xY–1Sm–0.5Zr alloy.
When the Y content is 1%, the cast alloy exhib-
its the most obvious grain refinement;
(2) The mechanical properties of the Mg–
Gd–Y–Sm–Zr alloys are similar to those of the
WE54 alloy at room temperature but better at
high temperatures (200–300 °C). The optimal
mechanical properties of the Mg-12Gd-3Y-1Sm-
0.5Zr alloy are obtained at high temperatures,
and the maximum tensile strength of this al-
loy is 323 MPa at 250 °C. The Mg-12Gd-3Y-
1Sm-0.5Zr alloy also demonstrates favorable
mechanical properties at a high temperature of
300 °C, and the tensile strength, yield strength,
Functional materials, 24, 2, 2017 269
Fu sanling et al. / Effect of Y addition on the microstructures ...
elongation of this alloy are 293 MPa, 203 MPa,
and 6.45% respectively;
(3) Mg–Gd–Y–Sm–Zr alloys mainly via
strengthening of grain refinement, solid solu-
tion and secondary phase.
A�k��wle�geme��s
This work was supported by National Nat-
ural Science Foundation of China (51571084,
51171059), Scientific and Technological Project
of Henan Province (Grant No. 152102210072),
the Basic and Frontier Technologies Research
Plan of Henan Province (102300410018), and
the Program for Innovative Research Team (in
Science and Technology) in the University of
Henan Province (2012IRTSTHN008).
Refe�e��es
1. B.�.Mordike and T. Ebert,.�.Mordike and T. Ebert,�.Mordike and T. Ebert,.Mordike and T. Ebert,Mordike and T. Ebert, and T. Ebert,T. Ebert,. Ebert, Ebert,, Mat. Sci. Eng A, .
302,. 37, 2001., 2001.
2. X.Y. Xia, A.A. �uo, D.S. Stone,.Y. Xia, A.A. �uo, D.S. Stone, Xia, A.A. �uo, D.S. Stone,.A. �uo, D.S. Stone,A. �uo, D.S. Stone,. �uo, D.S. Stone, �uo, D.S. Stone,, D.S. Stone, D.S. Stone,.S. Stone,S. Stone,. Stone, Stone,, J. Alloy.Comp.,
649, 649, 2015.2015.
3. S. Zhang, W.C. �iu, X.Y. Gu, C. �u, et al, J. Al-
loy.Comp..557, 91, 2013.2013..
4. K.Y. Zheng, J. Dong, X.Q. Zeng W.J. Ding, Mat.
Charact., 59, 857, 2008.
5. X. Xia, K. Zhang, X. �i, M. Ma, Y. �i. Mat.De-
sign, 44, 521, 2013.
6. Z.H. Wang, W.B. Du, X.D. Wang, et al.H. Wang, W.B. Du, X.D. Wang, et alH. Wang, W.B. Du, X.D. Wang, et al. Wang, W.B. Du, X.D. Wang, et al Wang, W.B. Du, X.D. Wang, et al, W.B. Du, X.D. Wang, et al W.B. Du, X.D. Wang, et al.B. Du, X.D. Wang, et alB. Du, X.D. Wang, et al. Du, X.D. Wang, et al Du, X.D. Wang, et alu, X.D. Wang, et alX.D. Wang, et al.D. Wang, et alD. Wang, et al. Wang, et al Wang, et al, et alet al Trans.
Nonferr. Metals Soc. China, 23, 593, 2013.
7. Y.B. Hu, �. Deng, C. Zhao, et al,Y.B. Hu, �. Deng, C. Zhao, et al, Trans.Nonferr.
Metals Soc. China, 21, 732, 2011.
8. �.M. Peng, N. Ma, H. �i,�.M. Peng, N. Ma, H. �i, J. Rare Earths, 30,
1064, 2012.
9. Y. Gao, H. �iu, R. Shi, et al,Y. Gao, H. �iu, R. Shi, et al, Acta Mat., 61, 453,
2013.
10. �.�. Wang, �.D. Wang, Y.M. Wu,,�.�. Wang, �.D. Wang, Y.M. Wu,,Wang, �.D. Wang, Y.M. Wu,,�.D. Wang, Y.M. Wu,,Wang, Y.M. Wu,,, Y.M. Wu,, Y.M. Wu,,Y.M. Wu,,Wu,,,, Mat. Sci.Eng.
A, 528, 4115, 2011. 4115, 2011.4115, 2011., 2011.2011.
11. T. Honma, T. Ohkubo, K. Hono, S. Kamado,. Honma, T. Ohkubo, K. Hono, S. Kamado, Honma, T. Ohkubo, K. Hono, S. Kamado,, T. Ohkubo, K. Hono, S. Kamado,T. Ohkubo, K. Hono, S. Kamado,. Ohkubo, K. Hono, S. Kamado, Ohkubo, K. Hono, S. Kamado,, K. Hono, S. Kamado,K. Hono, S. Kamado,. Hono, S. Kamado, Hono, S. Kamado,, S. Kamado,S. Kamado,. Kamado, Kamado,, Mat.
Sci. Eng.: A, 395, 301, 2005. 301, 2005., 2005.2005..
12. Z. Yang, �.P. �i, Y.X. Wu, Z.�. Yang, Foundry,
62, 545, 2013.
13. Z.Y. Zhang, �.M. Peng, X.�. Zeng, et al Mat.
Charact., 60, 555, 2009.
|