Multiscale modeling of the low-temperature electron irradiation of beryllium
Presented are the methodology and the results of the multiscale modeling of radiation defects primary production and time evolution for 2.5 MeV cryogenic (77 K) irradiation of highly deformed to ~ 10¹² cm⁻² dislocations density beryllium at the NSC KIPT electron linac ELIAS. It is shown that the app...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/137263 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Multiscale modeling of the low-temperature electron irradiation of beryllium / M.I. Bratchenko, S.V. Dyuldya // Вопросы атомной науки и техники. — 2017. — № 6. — С. 30-38. — Бібліогр.: 26 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-137263 |
|---|---|
| record_format |
dspace |
| spelling |
Bratchenko, M.I. Dyuldya, S.V. 2018-06-17T09:33:50Z 2018-06-17T09:33:50Z 2017 Multiscale modeling of the low-temperature electron irradiation of beryllium / M.I. Bratchenko, S.V. Dyuldya // Вопросы атомной науки и техники. — 2017. — № 6. — С. 30-38. — Бібліогр.: 26 назв. — англ. 1562-6016 PACS: 61.80.-x, 61.82.Bg, 61.72.Cc, 61.80.Fe, 07.05.Tp, 02.70.Ns, 02.70.Uu https://nasplib.isofts.kiev.ua/handle/123456789/137263 Presented are the methodology and the results of the multiscale modeling of radiation defects primary production and time evolution for 2.5 MeV cryogenic (77 K) irradiation of highly deformed to ~ 10¹² cm⁻² dislocations density beryllium at the NSC KIPT electron linac ELIAS. It is shown that the application of low-temperature e⁻-irradiation of prestrained targets allows efficient suppression of vacancy-interstitial recombination due to escape of freely mi-grating self-interstitial atoms to dislocation sinks and results in abnormally high (~ 10⁻³ per atom) vacancy yield comparable with that of primarily produced Frenkel pairs at a reasonable (≤10³h)e⁻-beam exposure. Представлено методологію та результати багатомасштабного моделювання первинної продукції та еволюції у часі радіаційних дефектів за криогенного (77 К) опромінення сильнодеформованого до густини дислокацій ~10¹² cм⁻² берилію на електронному лінаці ELIAS ННЦ ХФТІ. Показано, що застосування низькотемпературного електронного опромінення попередньо напружених мішеней дозволяє ефективно пригнічувати рекомбінацію пар Френкеля через витік вільно мігруючих власних міжвузельних атомів до дислокаційних стоків і призводить до аномально високих (~10⁻³ на атом) концентрацій вакансій, які добре порівнянні з концентраціями первинних пар Френкеля за прийнятної (≤10³ год) тривалості електронного опромінення. Представлены методология и результаты многомасштабного моделирования первичной генерации и временной эволюции радиационных дефектов при криогенном (77 К) облучении сильнодеформированного до плотности дислокаций ~ 10¹² cм⁻² бериллия на электронном линаке ELIAS ННЦ ХФТИ. Показано, что применение низкотемпературного облучения предварительно напряженных мишеней позволяет эффективно подавлять рекомбинацию пар Френкеля за счет ухода свободно мигрирующих собственных межузельных атомов на дислокационные стоки и приводит к аномально высоким (~ 10⁻³ на атом) выходам вакансий, сопоставимых с концентрациями первичных пар Френкеля при разумной (≤10³ ч) длительности e⁻-облучения. The authors are very grateful to A.S. Bakai for drawing their attention to the problem, putting forward the basic idea of future experiments, and for the continuous support and critical discussion of this study. We acknowledge K.V. Kovtun and V.N. Borisenko for valuable data on the prestrained Be targets preparation and the ELIAS linac irradiation e – -beam parameters, opportunities and limitations. We thank I.I. Papirov and A.A. Nikolayenko for provision of their expertise on structural and mechanical properties of beryllium. We also always keep in memory the outstanding role of Yu.T. Petrusenko in providing cryogenic irradiations in NSC KIPT. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Чистые материалы и вакуумные технологии Multiscale modeling of the low-temperature electron irradiation of beryllium Багаторівневе моделювання електронного опромінення берилію за низьких температур Многоуровневое моделирование электронного облучения бериллия при низких температурах Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Multiscale modeling of the low-temperature electron irradiation of beryllium |
| spellingShingle |
Multiscale modeling of the low-temperature electron irradiation of beryllium Bratchenko, M.I. Dyuldya, S.V. Чистые материалы и вакуумные технологии |
| title_short |
Multiscale modeling of the low-temperature electron irradiation of beryllium |
| title_full |
Multiscale modeling of the low-temperature electron irradiation of beryllium |
| title_fullStr |
Multiscale modeling of the low-temperature electron irradiation of beryllium |
| title_full_unstemmed |
Multiscale modeling of the low-temperature electron irradiation of beryllium |
| title_sort |
multiscale modeling of the low-temperature electron irradiation of beryllium |
| author |
Bratchenko, M.I. Dyuldya, S.V. |
| author_facet |
Bratchenko, M.I. Dyuldya, S.V. |
| topic |
Чистые материалы и вакуумные технологии |
| topic_facet |
Чистые материалы и вакуумные технологии |
| publishDate |
2017 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Багаторівневе моделювання електронного опромінення берилію за низьких температур Многоуровневое моделирование электронного облучения бериллия при низких температурах |
| description |
Presented are the methodology and the results of the multiscale modeling of radiation defects primary production and time evolution for 2.5 MeV cryogenic (77 K) irradiation of highly deformed to ~ 10¹² cm⁻² dislocations density beryllium at the NSC KIPT electron linac ELIAS. It is shown that the application of low-temperature e⁻-irradiation of prestrained targets allows efficient suppression of vacancy-interstitial recombination due to escape of freely mi-grating self-interstitial atoms to dislocation sinks and results in abnormally high (~ 10⁻³ per atom) vacancy yield comparable with that of primarily produced Frenkel pairs at a reasonable (≤10³h)e⁻-beam exposure.
Представлено методологію та результати багатомасштабного моделювання первинної продукції та еволюції у часі радіаційних дефектів за криогенного (77 К) опромінення сильнодеформованого до густини дислокацій ~10¹² cм⁻² берилію на електронному лінаці ELIAS ННЦ ХФТІ. Показано, що застосування низькотемпературного електронного опромінення попередньо напружених мішеней дозволяє ефективно пригнічувати рекомбінацію пар Френкеля через витік вільно мігруючих власних міжвузельних атомів до дислокаційних стоків і призводить до аномально високих (~10⁻³ на атом) концентрацій вакансій, які добре порівнянні з концентраціями первинних пар Френкеля за прийнятної (≤10³ год) тривалості електронного опромінення.
Представлены методология и результаты многомасштабного моделирования первичной генерации и временной эволюции радиационных дефектов при криогенном (77 К) облучении сильнодеформированного до плотности дислокаций ~ 10¹² cм⁻² бериллия на электронном линаке ELIAS ННЦ ХФТИ. Показано, что применение низкотемпературного облучения предварительно напряженных мишеней позволяет эффективно подавлять рекомбинацию пар Френкеля за счет ухода свободно мигрирующих собственных межузельных атомов на дислокационные стоки и приводит к аномально высоким (~ 10⁻³ на атом) выходам вакансий, сопоставимых с концентрациями первичных пар Френкеля при разумной (≤10³ ч) длительности e⁻-облучения.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/137263 |
| citation_txt |
Multiscale modeling of the low-temperature electron irradiation of beryllium / M.I. Bratchenko, S.V. Dyuldya // Вопросы атомной науки и техники. — 2017. — № 6. — С. 30-38. — Бібліогр.: 26 назв. — англ. |
| work_keys_str_mv |
AT bratchenkomi multiscalemodelingofthelowtemperatureelectronirradiationofberyllium AT dyuldyasv multiscalemodelingofthelowtemperatureelectronirradiationofberyllium AT bratchenkomi bagatorívnevemodelûvannâelektronnogoopromínennâberilíûzanizʹkihtemperatur AT dyuldyasv bagatorívnevemodelûvannâelektronnogoopromínennâberilíûzanizʹkihtemperatur AT bratchenkomi mnogourovnevoemodelirovanieélektronnogooblučeniâberilliâprinizkihtemperaturah AT dyuldyasv mnogourovnevoemodelirovanieélektronnogooblučeniâberilliâprinizkihtemperaturah |
| first_indexed |
2025-11-27T02:25:12Z |
| last_indexed |
2025-11-27T02:25:12Z |
| _version_ |
1850791240523579392 |
| fulltext |
ISSN 1562-6016. PASТ. 2018. №1(113), p. 30-38.
MULTISCALE MODELING OF THE LOW-TEMPERATURE
ELECTRON IRRADIATION OF BERYLLIUM
M.I. Bratchenko, S.V. Dyuldya
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: sdul@kipt.kharkov.ua
Presented are the methodology and the results of the multiscale modeling of radiation defects primary production
and time evolution for 2.5 MeV cryogenic (77 K) irradiation of highly deformed to ~ 10
12
cm
–2
dislocations density
beryllium at the NSC KIPT electron linac ELIAS. It is shown that the application of low-temperature e
–
-irradiation
of prestrained targets allows efficient suppression of vacancy-interstitial recombination due to escape of freely mi-
grating self-interstitial atoms to dislocation sinks and results in abnormally high (~ 10
–3
per atom) vacancy yield
comparable with that of primarily produced Frenkel pairs at a reasonable ( 10
3
h) e
–
-beam exposure.
PACS: 61.80.-x, 61.82.Bg, 61.72.Cc, 61.80.Fe, 07.05.Tp, 02.70.Ns, 02.70.Uu
1. INTRODUCTION
The NSC KIPT sited charged particles accelerators
are widely used to support R&D of radiation damage
(RD) physics and radiation material science (RMS).
Major applications of the ion beam (IB) machines con-
cern the ‘simulation irradiation’ (SI) concept targeted
on the prediction of reactor (n, γ) irradiation induced ef-
fects in materials. The required IB exposure of SI ex-
periments is planned on the basis of calculation of the
primary RD (PRD) dose measured in the number of ato-
mic displacements per atom, Ndpa. The established stan-
dard practice [1] considers dpa only as “a unit of radia-
tion exposure”: Ndpa shall be calculated coherently for
both the targeting reactor and the accelerator irradiation
environments in a strict accordance with the Norgett-
Robinson-Torrens proposed ‘NRT standard’ model [2]
dPKADPKA
NRT
dpa 2EEEEN (1)
which is a generalization of the famous Kinchin-Pease
model primarily developed to estimate the number of
point defects in an atomic collision cascade (ACC) initi-
ated by the primary knock-on atom (PKA) of a given
energy EPKA. Here = 0.8, ED(EPKA) is the “damage en-
ergy”, the total elastic energy loss of a PKA available to
produce displacements, and Ed ~ 10
1
…10
2
eV is the ma-
terial-specific displacement threshold energy.
The validity of the NRT standard is confined in the
area of comparative dosimetry of reactor/accelerator ba-
sed neutron/ion damage of metals and alloys [3]. The
number of NRT dpa cannot be directly measured experi-
mentally and thus does not represent an observable phy-
sical quantity. Instead, one must consider the actual RD
metrics, the atomic concentrations CFP of Frenkel pairs
(FPs) as well of their constituents, CV of vacancies (V)
and CI of self-interstitial atoms (SIAs).
The observable CV,I are orders of magnitude smaller
than the NRT calculated dpa because of several reasons
[4, 5]. First, FPs annihilate inside the ‘hot’ ACC core
during its athermal quenching stage, ~ 10
–(13…11)
s. This
is essential [4] for fast neutron and ion impact when
successive atomic displacements occur at a distance ~ a,
the lattice constant of a material. But it is not so topical
for the moderate (~ MeV) energy electron beams (EBs)
impact when only isolated spatially separated FPs
appear. Next, the PRD stage produced defects evolve in
space and time through the complex short-term
(~ 10
–(11…6)
s) kinetic stage of their recovery and
agglomeration into complexes till the thermal diffusion
stage (> 10
–6
s) of their recombination and interaction
with sinks. Finally, this is asymptotically forming the
saturated damaged state of a material which results in
the observed irradiation induced changes of
macroscopic properties.
The complexity of the self-consistent description of
the whole RD picture (which covers 13…20 orders of
magnitude of temporal development at a spatial scale
10
–8
…10
2
cm) gave birth to the novel Multiscale
Modeling & Simulation (MSMS) paradigm of the RMS
computer modeling studies [6]. It involves the problem-
specific sequence of diverse methods and input/output
data concordant codes: ab initio quantum mechanics
(QM), classical Molecular Dynamics (MD), kinetic
Monte-Carlo (kMC) and reaction rate theory [5, 7]
calculations, dislocation dynamics [7], and Finite
Element Method (FEM). Each of them simulates its
own scale of the spatiotemporal evolution to transfer
outputs to the subsequent scale. Recently we have
proposed [8] the MSMS program incorporation into the
computational support of the NSC KIPT accelerator
based irradiations and identified the appropriate
simulation software toolbox [9].
The present paper encompasses the results of our
first attempt to push the rationale and planning of NSC
KIPT irradiations of materials ‘beyond NRT’. We pre-
sent the results of the trans-NRT MSMS of the accumu-
lation and evolution of point defects in a highly defor-
med high-purity hcp Beryllium, a structurally complex
anisotropic functional material, for the case of its cryo-
genic irradiation at the NSC KIPT EB linac ELIAS.
2. PROBLEM STATEMENT
Beryllium manifests the non-trivial properties and
effects (e.g., superplasticity) promoted by its pronoun-
ced anisotropy [10, 11]. This also applies to Be low-
temperature physics regarding its electronic structure
and transport properties, and particularly the structural
sensitivity of its superconducting transition temperature
Tc.
Without going into details that go beyond the scope
of this paper, let’s declare that the experimental investi-
gation of this lattice defects density-of-state dependent
effect requires high concentrations of the cryogenically
‘frozen’ vacancies, CV ~ 10
–3
per Be atom [12], much
greater than the thermal equilibrium CV. The extra non-
equilibrium vacancies can be injected by e
−
-irradiation.
However, the elastic displacement cross-section d [13]
based calculation shows that even the most conservative
estimate of CV as the concentration of as-irradiated pri-
mary FPs yields CFP ~ 10
–(5…4)
per atom per day of
exposure to ~ MeV energy EB. The thermal diffusion
activated recombination V + I = does diminish CFP by
orders of magnitude. So, the problem looks insoluble.
Nevertheless, it has been put forward [14] an idea to
solve it by means of the V–I recombination suppression
with the following experimental setup: (i) to apply the
nitrogen temperature T = 77 K e
−
-irradiation when only
SIA are diffusively mobile; (ii) to use the high-purity Be
target which is beforehand highly deformed up to the
dislocation densities d ~ 10
11…12
cm
–2
granting the
highest possible concentration of SIA sinks, and (iii) to
transfer the unheated irradiated sample into the helium
temperature appliance for subsequent measurements.
Despite of the extreme conditioning of each step of
this scenario, it is in fact feasible by means of the NSC
KIPT developed processes of high-purity Be samples
preparation and cryogenic e
−
-irradiation at the accelera-
tor ELIAS. It is worth noting the NSC KIPT ELIAS
team advanced capability to provide immediate post-ir-
radiation examination of samples (without their warm-
ing-up) at the same (or lower) temperature.
The goal of the present work is the computational
substantiation of the proposed technique by means of
the MSMS calculation of the utmost value of CV obtain-
able at the ELIAS e
−
-irradiation. For this purpose, we
apply the subset of our MSMS software toolkit [9] em-
bracing (i) the in-house developed GEANT4 Toolkit ba-
sed radiation transport (RT) Monte-Carlo (MC) code
RaT 3.1 [15], (ii) the LAMMPS MD [16], and (iii) the
SPPARKS kMC [17] packages developed and freely
distributed by the U.S. Sandia Nat. Lab. team.
3. PRIMARY RADIATION DAMAGE
Without loss of generality, we consider a semi-infi-
nite planar target of Be = 1.85 gm/cm
3
dense polycrys-
talline beryllium irradiated by a broad parallel e
−
-beam
with the nominal parameters of the ELIAS linac: the EB
energy Ee = 2.5 MeV, the current density j = 10 μA/cm
2
,
the e
−
-flux = j/e= 6.24·10
13
e
−
·cm
–2
·s
–1
.
An adequate computer modeling of the shortest-time
ballistic stage of the as-irradiated PRD was conducted
by means of the RaT 3.1 MC code using the GEANT4.9.5
supplied algorithms and data for simulation of energy
losses and multiple scattering of relativistic electrons in
matter. Relatively rare events of the strong electron–
atom displacing collisions were sampled according to
the Mott elastic scattering [13] cross-section d calcula-
ted for the NRT standard recommended value of the dis-
placement threshold energy Ed = 31 eV of beryllium.
Trajectories of electrons and -quanta of the radiati-
on cascade as well as those of all Be recoils (both PKAs
and secondary knock-ons, SKAs, of the ACC) were tra-
ced until a ‘thermalization’ i. e. down to the energy Emin,
~ 100 eV for e
–
, and ~ 1 eV for cascade atoms. Due to
fairly short ranges, Emin are small enough to not affect
the calculated spatial distributions vs. the EB penetrati-
on depth z. Note that the ACC was modeled explicitly
i. e. using the RaT code specific algorithm and data
[15, 3] validated against those of the SRIM package, a
practical standard of the IB induced PRD evaluation.
Primary results of simulation concerning the EB pe-
netration into a target are presented in Fig. 1. The depth
profile of thermalized electrons spreads up to the EB
extrapolated projected range Rp 1 cm. Only the brems-
strahlung produced secondary Compton electrons are
present at z > Rp. At z < Rp, the profile is drawn (roughly
exponentially) until a broad maximum, at z ¾Rp,
which is due to the complex interplay of energy loss,
straggling, and multiple scattering of electrons.
0.0 0.2 0.4 0.6 0.8 1.0 1.2
10
-3
10
-2
10
-1
10
0
D
ep
o
si
ti
o
n
r
at
e
(1
0
1
5
s
-1
·c
m
-3
)
Depth z (cm)
e
-beam electrons
Be recoil atoms
2.5 MeV e
Be
10 A/cm
2
RaT 3.1
0
5
10
15
20
25
D
o
se
r
at
e
(W
/g
m
)
e
-beam deposited power
Fig. 1. The Monte-Carlo calculated depth profiles of the
EB specific power deposition () and thermalized par-
ticles, electrons () and Be recoil atoms ()
0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0
0.2
0.4
0.6
0.8
1.0
P
ro
d
u
ct
io
n
r
at
e
(1
0
9
/s
/a
to
m
)
Depth z (cm)
displacements (d)
Frenkel pairs (FP)
replacements (r)
2.5 MeV e
10 A/cm
2
Be
E
d
= 31 eV
RaT 3.1 explicit cascade
N
FP
= N
d
N
r
0
2
4
6
8
P
ro
d
u
ct
io
n
r
at
e
(1
5
/d
ay
/a
t.
)
Fig. 2. The atomic displacement (dpa) rate depth profile
subdivided into contributions of the actually formed
Frenkel pairs and the Be–Be atoms replacements
We supplemented Fig. 1 with the standard dose (or
the mass specific power deposition) rate profile Pdep(z).
In itself, the EB deposited power does not affect the RD
of metal targets [4, 5]. But it is essential for the mainte-
nance of the thermal regimes of cryogenic e
−
-irradia-
tion. Note that Pdep is high as compared with the -hea-
ting relevant ~ 0.1…1 W/gm of in-pile test channels.
The Pdep(z) maximum is shifted to lower z ½Rp where
electrons are energetic enough to heat the target and to
displace the lattice atoms. Be recoils (both subthreshold
ones, and PKAs) are distributed almost uniformly right
up to this depth, as shown in greater details in Fig. 2.
The maximal atomic displacement rate occurs at the
depth z = 4 mm 0.4·Rp and exceeds the target surface
(z = 0) value only by 14%. But only 80% of
displacements (EPKA > Ed) are actual FPs. The rest
20% of them do not form a point defect but result in
Depth z, cm
Depth z, cm
D
ep
o
si
ti
o
n
r
at
e,
1
0
1
5
s-1
∙c
m
-3
D
o
se
r
at
e,
W
/g
m
P
ro
d
u
ct
io
n
r
at
e,
1
0
-9
/s
/a
t.
P
ro
d
u
ct
io
n
r
at
e,
1
-5
/d
ay
/a
t.
the replacement of one Be atom with another. They are
due to the Ed <EPKA < 2·Ed range of the PKA energy
spectrum.
The explicit modeling of an ACC and the simplified
NRT standard approach (1) treat the partitioning of dis-
placements onto FPs and replacements somewhat diffe-
rently [3]. This results in the systematic bias of the ac-
tual NFP = NI NV and NRT
dpa
NRT
FP NN shown in Fig. 3.
One can see that the NRT standard always underesti-
mates the number of actually produced point defects.
0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0
0.2
0.4
0.6
0.8
1.5 MeV e
10 A/cm
2
F
P
p
ro
d
u
ct
io
n
r
at
e
(1
0
9
/s
/a
t.
)
Depth z (cm)
RaT 3.1
calculation models:
explicit cascade
NRT standard
2.5 MeV e
10 A/cm
2
Be E
d
= 31 eV
0
1
2
3
4
5
6
F
P
p
ro
d
u
ct
io
n
r
at
e
(1
0
5
/d
ay
/a
t.
)
Fig. 3. The FP depth profiles of Be PRD by EB of dif-
ferent energies MC calculated in the NRT standard ap-
proximation () and by the explicit ACC modeling ()
0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0
0.2
0.4
0.6
0.8
1.0
F
P
p
ro
d
u
ct
io
n
r
at
e
(1
0
9
F
P
p
a/
s)
Depth z (cm)
total
PKA
SKA
2.5 MeV e
10 A/cm
2
Be
E
d
= 31 eV
RaT 3.1 explicit cascade
d
·
0
2
4
6
8
F
P
p
a
ra
te
(
1
0
5
p
er
d
ay
)
Fig. 4. The Be target PRD depth profile () partitioned
into contributions of primary (solid curve) and secon-
dary cascade (dashed curve) knock-on atoms
The ratio 1NRT
FPFP NN is only weakly depth
dependent in the highly damaged area (z < ½Rp) of a tar-
get; = 1.2…1.25 for both 1.5 MeV and 2.5 MeV e
−
-ir-
radiations of Be. But is known to grow with energy
(and mass) of a projectile when the PKA spectra beco-
me harder, the secondary displacement function (SDF)
increases, and ACCs become more and more developed.
For the LPE-10 linac 10 MeV e
−
-irradiation of Ni–Cr al-
loy 690, 1.5, and amounts 2 for heavy ions irra-
diation of structural steels [3]. This is significant enough
to opt for the explicit cascade modeling for estimations
of the actual concentrations of the V–I Frenkel pairs.
For not to get it mixed up with the conventional
NRT dpa, it is expedient to introduce the special unit of
measurement, FPpa = (NRT dpa). We shall use it
below for the topical case of the current study.
In Fig. 4, the dash-dotted arrow indicates the FPpa
rate calculated analytically using the total displacement
cross-section [13] d (Ee,Ed) = 7.44 barn for the initial
EB energy. It is fairly consistent with the zero-depth ex-
trapolation of the MC simulation data for the contribu-
tion of PKAs immediately displaced by electrons. How-
ever, it covers only two thirds ( 66%) of the actually
modeled total FPpa rate (markers) in a thin target. The
remaining one third is due to the ACC development.
The atomic collision cascades are frequently ignored
in a planning of the EB PRD production. Sporadic
ACCs are considered irrelevant to the electron impact
and a simple formula CFP = d (Ee, Ed)··t0 is applied for
the EB exposure duration t0. The Fig. 4 data show the
drawbacks and quantitative limitations of this approxi-
mation namely for the case of thin targets. The exact
MC modeling is favorable to obtain the reliable data.
For the subsequent MSMS calculations, we adopt,
from Fig. 4, the conservative zero-depth estimate of the
PRD FP production rate K0 = 7∙10
–10
FPpa/s.
4. THE REACTIONS RATE THEORY
ANSATZ AND MODEL ESTIMATES
The CV,I(r,t) spatiotemporal evolution at the next ti-
mescale of the RD development and subject to (V,SIA)
thermal diffusion and reactions with each other and with
sinks is generally described by the partial derivative
master equations of the RD rate theory [7]. For the limi-
ted purpose of the current study, we neglect gradient
terms and confine ourselves to the mean-field approxi-
mation of the reaction rate theory [5, 7] taking into ac-
count the problem specific simplifications. In this case,
the time derivatives tC IV,
are governed by the follow-
ing system of the ordinary differential equations (ODE)
)2.2(
)1.2(
II
2
VI
VIIRV
tCDktCtC
tCtCDtKtC
where the source term K(t) is the FPpa production rate,
K(t) = K0 for t t0 (EB on), K(t) = 0 otherwise (EB off);
DI, cm
2
·s
–1
, is the SIA diffusion coefficient; R, cm
–2
, is
the V–I recombination constant and k
2
, cm
–2
, is the total
sink strength [5] for SIAs. In Eq. 2, it is assumed that
only SIAs are mobile (DV = 0).
The ODE system (2) was readily solved numerically
for the initial conditions CV,I(0) = 0 (we neglect the
equilibrium CV(0) << 10
–6
for a cryogenic irradiation)
and benchmarked against the asymptotic solution [5]
)2.3(,
)1.3(,
000FP00
00FP00
0V
tttttCttK
tttCtK
tC
where the characteristic time t
*
= /K0 scales with the
dimensionless ratio = k
2
/R rating the sink absorption
of a SIA to its recombination with a vacancy. For short
t0 < t
*
of ballistic PRD irradiation exposure, CV t0. For
t0 > t
*
, the diffusion limited buildup of vacancies is slo-
wing down very notably; asymptotically, 0V tC .
First, we estimated CV(t) by applying some synoptic
RMS models and reference data for Be.
Assuming that the only SIA sinks are edge disloca-
tions, we evaluated the dislocation sink strength k
2
ac-
cording to the Nichols isotropic model [18]
4
3
ln2
c
d
d
2
r
R
k (4)
,
,
,
Depth z, cm
Depth z, cm
F
P
p
ro
d
u
ct
io
n
r
at
e,
1
0
-9
/s
/a
t.
F
P
p
ro
d
u
ct
io
n
r
at
e
,
1
0
-5
/d
ay
/a
t.
F
P
p
ro
d
u
ct
io
n
r
at
e,
1
0
-9
F
P
p
a/
s
F
P
p
a
ra
te
,
1
0
-5
p
er
d
ay
where Rd = (d)
–½
is the dislocation cylindrical unit cell
radius and rc is the dislocation core radius, ~ a = 2.3 Å
for Be. This yields k
2
10
12
cm
–2
for d = 10
11
cm
–2
.
The recombination constant R 4·reff/Be was es-
timated from the effective SIA capture radius reff of a
vacancy and the atomic volume Be. Since the MD data
derived reff 2a [7], R 10
17
cm
–2
>> k
2
, and << 1.
The SIA self-diffusion coefficient DI is strongly
temperature T dependent
Tk
E
DD
B
m
0I exp , (5)
where kB is Boltzmann’s constant and Em is the SIA mi-
gration barrier energy. In Be, the pre-exponential factor
D0 0.62 cm
2
/s [11] while Em is highly anisotropic.
Vladimirov and coworkers carried out an extensive
ab initio QM MD simulation of the SIA diffusion in Be
[19, 20] by the density-functional (DFT) code VASP.
They found Em = 0.12 eV for the preferential basal pla-
ne (BP) diffusion and twice as much, Em = 0.27 eV, for
the diffusion out of BP [20]. For T = 77 K, this yields
DI(0.12 eV) 8.4·10
–8
cm
2
/s while DI(0.27 eV)0. For
a reasonable mean Em = 0.2 eV, DI 4.8·10
–14
cm
2
/s.
According to Eq. (2), the saturation of CI(t) occurs at
a diffusion-to-sink time = (k
2
·DI)
–1
which varies from
~ 10
–4
s for Em = 0.12 eV up to ~ 10
2
s for Em = 0.2 eV.
In our case, K0 ~ 10
–9
s
–1
, the saturated maximal values
of CI() = K0· are ~ 10
–13
and ~ 10
–7
, respectively. The-
refore, CI << CV for t0 >> , the V–I recombination rate
becomes negligible for t > t0, and the SIA diffusion in-
dependent asymptotic (3.2) is fairly applicable.
We applied it to estimate the ELIAS EB exposure ti-
me tKCt 2
0
2
V0 required to inject the requested CV,
say, 10
–3
. Having t
*
10
4
s, we obtained t0 ~ 10
8
s
which is more than 3 years long, and is inadmissible.
This issue impels a revision of the models and data
used above in this section. There is no vagueness about
the values of R, Rd, rc, and D0 the more so as the result
is DI independent. Only the dislocation sink strength k
2
remains open to questions. The model (4) neglects the
dislocation elastic field which can enhance the SIA cap-
ture rate. It also disregards the hcp lattice inherent ani-
sotropy. We suggested the k
2
evaluation (4) looks un-
derestimated, and proceeded to its refined MSMS calcu-
lation by means of the MD and kMC simulations.
5. MULTISCALE CALCULATIONS
OF THE DISLOCATION SINK STRENGTH
5.1. MD EVALUATION OF THE SIA-EDGE
DISLOCATION ELASTIC INTERACTION FIELD
We started from the linear theory of elasticity deri-
ved [21] potential energy Ud(r,
) of a SIA first-order
size interaction with an edge dislocation of Burgers vec-
tor b(b,0,0). In a cylindrical (r,
,z) frame of reference
with the dislocation line L aligned axis z,
r
bUrU
sin
, 0d , (6)
where the interaction strength factor U0 has the form
VU
1
1
3
0 , (7)
is the elastic shear modulus; is Poisson’s ratio; V is
the dilative volume change of an isotropic elastic me-
dium due to the presence of a SIA. Hereinafter we ne-
glect the presence of screw dislocations since, for them,
Ud is vanished to a first-order of magnitude [21].
The ab initio simulations [19, 20] have shown that
the basal-octahedral (BO) interstitial position is highly
preferential for Be SIAs at low temperatures. Thus, a
simple estimate of the SIA dilatation volume difference
is 3
BO
3
Be3
4 RRV , where RBe = a/2 1.14 Å is the
maximal radius of the hexagonally closely packed hard
spheres representing Be atoms, RBO 0.41·RBe 0.47 Å
is the corresponding inner radius of the BO spherical
void. This yields V 5.82 Å
3
= 0.72·Be for the refer-
ence atomic volume of beryllium Be = 8.08 Å
3
.
Substituting this value of V into (7) together with
the up-to-date measured data [22] on the elastic cons-
tants of beryllium, = 150.1 GPa and =0.050, we ob-
tained the interaction energy factor U0 = 0.64 eV. Other
(,) data taken from the compendium [22] result in the
rather close values of U0 = 0.58…0.66 eV. However,
notably smaller U0 0.5 eV can be also derived from
the earlier measured (,) reference data [10, 11]. In
order to refine the proposed heuristic hard-sphere
model, we proceeded to the atomic-scale MD
simulation.
The general formula V = tr(Pij)/3B [21] expresses
the SIA dilatation volume change in terms of the trace
of the point defect dipole-force elastic tensor Pij and the
bulk modulus B of an anisotropic medium. We applied
the MD code LAMMPS [16] and the Be–Be interatomic
potential taken from ref. [23] to calculate Pij according
to the following method [24] and algorithm.
To evaluate Pij atomistically, one has to calculate the
tensor ij of internal stress produced by a solitary point
defect in an equilibrated fixed volume V crystallite with
periodic boundary conditions (p.b.c.). Then Pij = –ij·V.
The rectilinear p.b.c. N1N2N3 size 3D simulation
box of N = 4N1·N2·N3 hcp-Be atoms is first MD equili-
brated, by energy minimization at zero temperature, to
find its ground state structure, size, and volume V. After
that, and with these parameters fixed, the extra Be SIA
is inserted into the BP BO position, and the system is
MD re-relaxed to its minimal energy at a fixed V. Fi-
nally, ij is calculated by the LAMMPS code intrinsic
routine, and the dipole tensor Pij is found as – ij·V.
To avoid unphysical effects of the crystallite size li-
mitation, this procedure was repeated for the simulation
box expanded from 223 up to 121219 hcp lattice
units. It was found that the ij components become the
box size independent for sufficiently large N > 10
3
.
For the representative 10944 atoms 121219 box,
the BO SIA dipole-force tensor Pij has a diagonal form
with principal components Pxx = 2.33 eV, Pyy = 6.98 eV,
Pzz = 3.24 eV, and tr(Pij) = 13.25 eV. Using the consis-
tently measured [22] elastic constants B = 116.8 GPa,
= 150.1 GPa, = 0.05 of Be, we readily obtained
V = tr(Pij)/3B = 5.73 Å
3
= 0.709·Be and, from Eq. (7),
U0 = 0.63 eV. This agrees well with the hard-sphere mo-
del estimate, 0.64 eV, and thus is quite reliable.
5.2. THE SINK STRENGTH kMC CALCULATION
We treated the diffusion-timescale evolution of point
defects statistically as their random walks (RW), mutual
annihilations, and absorptions by sinks. The object kMC
(okMC) method [25, 26] was applied as the following
problem-specific algorithm for the Sandia SPPARKS
kMC package [17] to sample all these events.
Vacancies are randomly placed into the hcp Be latti-
ce sites with probability CFP. According to the ab initio
results [19, 20], only the most energy profitable BO in-
terstitial sites, the centers of the basal plane octahedral
voids, are randomly filled by the same number of SIAs.
Edge dislocations with Burgers vector ]1102[
3
1b are
modeled as the rc = 2a core radius cylinders centered in
the 10, 2
1
d
, p.b.c. simulation box.
For the thermally activated diffusion kMC modeling,
the frequency ij of a defect transition from i
th
to j
th
po-
sitions ri,j is assumed to follow the Arrhenius rule
ij = 0exp[–Ea(rirj)/kBT] , (8)
where 0 is the transition attempt frequency, Ea is the
transition activation energy
Ea(rirj) = Em(rirj) + Ud(rj) – Ud(ri), (9)
Em is the dislocation elastic field Ud(r) (6) independent
migration barrier energy ([20], see in sec. 4).
The reactions events are governed by the following
rules. The recombination occurs if the V–SIA distance
r reff = 2a; both are excluded from simulation. The
dislocation trap occurs if the freely migrating SIA is fo-
und inside the core, rd rc; then, it is immobilized.
The sketches of this algorithm outputs are shown in
Fig. 5 for the same RW step #50. Three L-directions,
}0001{ , }1110{ and }1011{ , relevant to Be major slip
systems were modeled. Cause of the ab initio predicted
bias in SIA Em, 0.12 eV in BP vs. 0.27 eV out of it, the
major feature of the diffusion anisotropy is clearly seen.
SIAs are readily trapped onto the }0001{ and }1110{
oriented dislocations while no absorption occurs for the
BP parallel }1011{ sink. The reason is the BP confined
SIA diffusion which effectively happens in 2D.
Fig. 5. SPPARKS kMC simulation of Be SIA () diffusi-
on, recombination with vacancies (), and trapping by
differently directed edge dislocation sinks, T = 77 K
This okMC algorithm is easily extendable to sinks of
other kind and dimensionality (voids, grain boundaries,
etc.). In general, it can model the solutions of the rate
theory ODE system (2) explicitly by the incorporation
of the FP source K(t) [25, 26] and at the expense of sig-
nificant computational efforts. But for the specific semi-
analytical framework of our study we shall use it only
for calculations of the sink strength k
2
.
In Eq. (2.2), k
2
DI = 1/ is the characteristic
frequency of SIA absorption by a dislocation sink. Thus,
by definition, k
2
= (DI)
–1
is a scalar (not a tensor)
quantity.
The okMC tally of k
2
within the scope of the d-di-
mensional RW in
d
has been proposed in ref. [25]:
k
2
= 2d
/
(l
2
n) where l is the rirj jump length, n is the
mean number of jumps each SIA performs before being
trapped by a sink (such that = n/0). For the isotropic
RW (e.g., in bcc-Fe [26]), l = l(a) is a unique lattice unit
dependent constant. Case of hcp-Be, l|| l (the sub-
scripts || and denote intra- and inter-BP jumps, respec-
tively) and the RW is generally characterized by the
(unknown) anisotropic diffusion coefficient tensor D.
This implies the 2
k tensor which is out of the scope of
the rate theory ansatz (2). To score the properly avera-
ged k
2
as a scalar okMC tally, one has to apply, to it, a
certain appropriate probabilistic measure p(l).
The hcp-Be SIA BP-BO lattice has N|| = 6 intra-BP
closest-neighbor and N = 14 next-neighbor inter-BP
BO sites. Following the refined okMC approach [26],
we assume the attempt frequency 0 to be isotropic, and
measure the intra/inter-BP jumps with the probabilities
p||, = N||,||,/(N|||| + N), ||, = 0exp(–E||,/kBT),
where E||, are the anisotropic jumps activation energies
(E >> E|| for Be [20]). The averaging operator of this
measure is x = p||x|| + px. Let’s define the Eq. (2)
consistent sink strength as k
2
= (Deffeff)
–1
with the
effective diffusion coefficient Deff = l
2
/
(2d· t) of
the isotropic RW jumps of mean square (m.s.) length
l
2
and duration t. The effective mean diffusion-to-
sink time eff = n||· t|| + n· t is composed from the
numbers n||, and durations t||, of intra/inter-BP jumps,
n|| + n = n. Since n||, = p||,n, eff = n·(p||· t|| + p· t) = n· t
and, consequently, k
2
= (Deffeff)
–1
= 2d
/
(l
2
n).
Therefore, the ‘isotropic’ k
2
tally [25] is still applicable
to score the anisotropic case sink strength, but at a
redefined temperature dependent m.s. jump length l
2
.
Having a = 2.286 Å, c = 3.584 Å, c/a = 1.568, we
obtain l|| = a = 2.286 Å, l = [(
c
/2)
2
+
6
/7a
2
]
½
= 2.773 Å.
In a very high temperature limit kBT >> E||,, ||, 0,
the r.m.s. l = l
2
½
lmax = (
9
/10·a
2
+
7
/40·c
2
)
½
= 2.636 Å.
This is an our study irrelevant limiting case of a 3D iso-
tropic SIA diffusion. At low temperatures, p << p|| and
l lmin = a = 2.286 Å also independently on 0 and T.
This corresponds to an entirely 2D BP SIA diffusion.
Calculations show the 3D diffusion RW component sha-
rply appearing just at room temperature, T 293 K, and
gradually increasing at elevated temperatures.
We applied the developed okMC algorithm to calcu-
late k
2
by means of the SPPARKS kMC code and omit-
ted vacancies as irrelevant to the SIA k
2
evaluation to
speed-up the k
2
tally convergence. The per-dislocation
normalized dimensionless sink efficiency = k
2
/d kMC
calculation results are presented in Figs. 6 and 7.
To uncover the sink strength qualitative regularities,
the kMC simulations of Figs. 6, 7 were performed for
the ]1102[
3
1b , L = {0001} dislocation of Be in wide
ranges of temperature T (incl. the topical T = 77 K),
dislocation density d = 10
10
…10
12
cm
–2
and the
dislocation elastic field strength parameter
U0 = 0.0….0 eV (incl. the quite realistic value
U0 = 0.5 eV). We compared the results with the
simplistic T and U0 independent estimates (4) labeled, in
Figs. 6, 7, as the ‘isotropic theory’.
One can see that the SIA diffusion anisotropy itself
(U0 = 0) has only a small ( 50%) temperature indepen-
dent effect on the SIA trapping efficiency . In contrast
to this, the SIA-dislocation interaction affects its absor-
ption very considerably, and results in a drastically (by
1...2 orders of magnitude) increasing . This enhance-
ment is mainly a low-temperature effect, see Fig. 6. It is
the most pronounced at kBT << U0 while tends to disap-
pear at high kBT ~ U0 when the SIA-to-sink drift is com-
peting with its thermally enhanced chaotic diffusion.
10
-3
10
-2
10
-1
10
0
10
1
10
2
U
0
= 5.0 eV
U
0 = 0.5 eV
U
0 = 0.1 eV
U
0
= 0.0 eV
S
in
k
ef
fi
ci
en
cy
=
k2
/
d
(r
el
.u
n.
)
Temperature T (eV)
d
= 10
11
cm
2
77 K
isotropic theory, Eq.
4
SPPARKS kMC
10 K 100 K 1000 K
Fig. 6. Temperature dependencies of the normalized ef-
ficiency k
2
/d of the {0001} edge dislocation sink at dif-
ferent SIA-dislocation interaction parameters U0
10
10
10
11
10
12
1
10
100
SPPARKS
kMC
U
0
= 0 eV
isotropic theory, Eq. 4
5.0 eV
1.0 eV
0.5 eV
0.1 eV
U
0
= 0 eV
S
in
k
ef
fi
ci
en
cy
=
k2
/
d
(r
el
.u
n.
)
Dislocation density
d
(cm
2
)
T = 77 K
Fig. 7. Dislocation density dependence of the SIA-
{0001} sink efficiency for different values of U0
Fig. 7 clearly shows that the per-dislocation sink ef-
ficiency increases with d. Abt. twofold gain of (d), at
d 10
1012
cm
–2
, is predicted already by a field-free
isotropic theory (4). For U0 = 0.5 eV and T = 77 K, it
optimally amounts to 5. One can see that the kMC cal-
culations confirm both of the proposed features which
enhance the SIA sink efficiency, the cryogenic tempera-
ture and the highest possible d of an irradiated sample.
The very significant (d) anisotropy is found in the
Fig. 8 data calculated for three dislocation line
directions at the sec. 5.1 MD modeling evaluated
U0 = 0.63 eV.
The {0001} dislocations capture SIAs most effici-
ently. The }1110{ system is (25…50)% less
efficient, esp. at higher d. The difference is mainly due
to the
-dependence of Ud (6) and, thus, is of the hcp
lattice geometry nature. The BP parallel }1011{
dislocations do not capture SIAs at all ((d) 0 at a
SIA low-T 2D diffusion, see in Fig. 5). With respect to
our main goal, the mobile SIA removal maximization,
this system is lost. Properly textured targets with
lowered content of the BP parallel dislocation are
favorable. But for the subsequent final calculations, we
adopted the cautious hypothesis of an equipartitioning
of these slip systems in a Be target.
10
10
10
11
10
12
0
10
20
30
40
50
60
70
SPPARKS kMC
{0 0 0 1}
{0 1 1 1}
{1 1 1 0}
Be
S
in
k
ef
fi
ci
en
cy
=
k2
/
d
(r
el
.u
n.
)
Dislocation density
d
(cm
2
)
T = 77 K
U
0
= 0.63 eV
Fig. 8. Anisotropy of the SIA-dislocation sink efficiency
6. RESULTS AND DISCUSSION
The consolidated results of the MSMS calculations
of the residual concentrations CV of surviving vacancies
are shown in figures below. They were calculated, ac-
cording to the rate theory Eqs. (2)–(3), using the Be
target parameters (R, k
2
, etc.) evaluated in sections 4
and 5.
10
-6
10
-5
10
-4
10
-3
10
-2
10
-6
10
-5
10
-4
10
-3
10
-2
3
2
FPpa
C
V
(
v
ac
an
ci
es
p
er
a
to
m
)
Primary FP concentration (FPpa)
Be
Eq. 4
theory kMC
1.
d
=10
10
cm
2
2.
d
=10
11
cm
2
3.
d
=10
12
cm
2
K
0
= 7·10
10
FPpa/s
1
T = 77 K
U
0
= 0.63 eV
FPpa
1 h 10 h 100 h 1000 h
2.5 MeV e
10 A/cm
2
t
0
=
Fig. 9. The residual vacancy concentrations plotted vs.
the initial FPpa produced at a EB exposure t0 (top axis)
in Be targets of various dislocation densities d
In Fig. 9, it is seen that the increase of d allows to
prolongate effectively, in exposure time t0, the ballistic
PRD stage (3.1) (when CV FPpa) and to delay the oc-
currence of the kinetic V–I recombination dominance
stage (3.2), CV (FPpa)
½
, to much greater t0. Note that
this prediction relies entirely on the results of the ade-
quate MD and kMC calculation of k
2
(sec. 5) since the
isotropic field-free theory (4) results in the much more
pessimistic data plotted with dashed curves of Fig. 9.
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
t
0
=
1000 h
Be
2.5 MeV e
10 A/cm
2
C
V
(
1
0
3
v
ac
an
ci
es
p
er
a
to
m
)
Depth z (cm)
primary FPpa
d =
10
10
cm
2
10
11
cm
2
10
12
cm
2
Fig. 10. Depth profiles of the residual CV in Be targets
of different dislocation densities d (,,) in com-
parison with the initial FPpa depth profile ()
Fig. 9 can be used as a diagram for the evaluation of
the ELIAS linac EB exposure duration t0(CV) needed to
obtain the required CV. The top-right corner arrows indi-
cate this paper topical t0(10
–3
) 10
3
h for the highest
considered d = 10
12
cm
–2
. The depth profiles CV(z, t0)
were calculated by combining the Fig. 9 data with the
primary FPpa rate depth profile K0(z) of Fig. 4 (sec. 3).
In Fig. 10, they are shown for the 1000 h long exposure.
One can see that the most essential is the strong dis-
location density d impact on the residual CV. In a hypo-
thetical SIA-sink-free beryllium (k
2
= 0), the maximal
CV = (K0 /RDI)
½
(see Eq. (2.1)) of the irradiation
induced vacancies drops to zero within a FP
recombination time (RDI)
–1
< 10
–4
s just after switching
off the EB. In a well annealed beryllium, d~10
8
cm
–2
,
the residual CV is of ~ (10
–6
…10
–5
) even at t0 = 10
3
h.
However, Be targets prestrained to d ~ 10
11
…10
12
cm
–2
can retain 10
–4
…10
–3
vacancies per atom that is
sufficient for subsequent cryogenic measurements of
their impact on the electronic properties of beryllium.
Sinks of all other kinds will promote the SIA outflow
enhancing the V–I imbalance in favor of vacancies.
Therefore, this work model gives only a lower estimate
of the residual CV, and thus is a conservative evaluation.
The estimated EB exposure, 1000 h 42 days, is rather
challenging but is not so impossible bearing in mind the
already gained experience of long-time (500…700 h)
e
–
-irradiation of materials at the NSC KIPT operating
electron accelerators.
CONCLUSIONS
In the present work, the developed multiscale com-
puter modeling technique was successfully applied to
the characterization and planning of cryogenic irradiati-
ons at the NSC KIPT sited electron accelerator ELIAS
in order to study experimentally the impact of point de-
fects on the superconductivity of beryllium.
The primary radiation damage rate in a target was
calculated using the e
–
-beam transport Monte-Carlo mo-
deling code. The quantitative distinction of the results of
its explicit atomistic simulation from the NRT standard
model predictions and the considerable contribution of
atomic collision cascades into the spatial distributions of
primarily produced Frenkel pairs have been revealed.
The later stages of the primary damage time evolu-
tion were modeled by different simulation methods bas-
ing on the ab initio calculated and other reference data
on the structure and migration of point defects in Be.
Molecular dynamics modeling has been applied to
evaluate the parameters of the elastic interaction of Be
self-interstitial atoms with dislocations sinks. Reliable
estimates of the dipole-force tensor Pij and the interacti-
on energy factor U0 = 0.63 eV have been obtained.
Kinetic Monte-Carlo modeling has been used for
calculation of the dislocation sink strength k
2
basing on
ab initio and MD data with due account of the hcp-Be
anisotropy and the elastic strain of dislocations. The sig-
nificant growth of k
2
with a decrease in temperature and
an increase in the dislocations density has been found.
The k
2
anisotropy has been revealed and explained by
the preferentially two-dimensional basal plane confined
diffusion of self-interstitial atoms at low temperatures.
The concluding data on the multiscale calculated ef-
ficiency of the introduction of vacancies into the e
–
-irra-
diated Be target were obtained within the scope of the
mean-field reaction rate theory. It has been shown that
the application of cryogenic (77 K) e
–
-irradiation of Be
targets prestrained up to ~ 10
12
cm
–2
dislocation density
results in the abnormally high (~ 10
–3
per atom) yield of
residual vacancies which is comparable, to within a half,
with that of primarily produced Frenkel pairs at a rea-
sonable ( 10
3
h) ELIAS linac e
–
-beam exposure.
In conclusion, it should be noted that the presented
MSMS technique and software are flexible enough to be
applied, in future, for the computational support of the
other NSC KIPT sited accelerators driven irradiations,
including the RMS ‘simulation irradiations’ with ion
beam machines and neutron sources.
ACKNOWLEDGMENTS
The authors are very grateful to A.S. Bakai for draw-
ing their attention to the problem, putting forward the
basic idea of future experiments, and for the continuous
support and critical discussion of this study. We ackno-
wledge K.V. Kovtun and V.N. Borisenko for valuable
data on the prestrained Be targets preparation and the
ELIAS linac irradiation e
–
-beam parameters, opportuni-
ties and limitations. We thank I.I. Papirov and A.A. Ni-
kolayenko for provision of their expertise on structural
and mechanical properties of beryllium. We also always
keep in memory the outstanding role of Yu.T. Petrusen-
ko in providing cryogenic irradiations in NSC KIPT.
REFERENCES
1. ASTM E521-96. Standard practice for neutron
radiation damage simulation by charged-particle irra-
diation. Annual Book of ASTM Standards, v. 12.02.
American Society for Testing and Materials,
Philadelphia, PA, USA, 1996, p. 141-160.
2. M.J. Norgett, M.T. Robinson, I.M. Torrens. A
proposed method of calculating displacement dose rates
// Nucl. Eng. Design. 1975, v. 33, N 1, p. 50-54.
3. M.I. Bratchenko, V.V. Bryk, S.V. Dyuldya,
A.S. Kalchenko, N.P. Lazarev, V.N. Voyevodin. Com-
ments on DPA calculation methods for ion beam driven
simulation irradiations // PAST. Ser. “Rad. Dam. Phys.
Rad. Mat. Sci.” 2013, N 2(84), p. 11-16.
4. R.E. Stoller. Primary radiation damage
formation / R. Konings (ed.). Comprehensive Nuclear
Materials. Amsterdam: Elsevier, 2012, v. 1, p. 293-330.
5. G.S. Was. Fundamentals of radiation materials
science: metals and alloys. Berlin, Heidelberg: Sprin-
ger-Verlag, 2007, 827 p.
6. J.A. Elliott. Novel approaches to multiscale
modelling in materials science // Int. Materials Reviews.
2011, v. 56, N 4, p. 207-225.
7. S.I. Golubov, A.V. Barashev, R.E. Stoller.
Radiation damage theory / R. Konings (ed.). Compre-
hensive Nuclear Materials. Amsterdam: Elsevier, 2012,
v. 1, p. 357-391.
8. S.V. Dyuldya, M.I. Bratchenko. Multiscale
modeling of radiation damage in the computational
support of accelerator driven simulation studies // Proc.
of the 3
rd
Int. Conf. “High-purity materials: production,
application, properties”. Kharkov: NSC KIPT, 2015,
p. 60.
9. S.V. Dyuldya, M.I. Bratchenko. Methodology
and software for multiscale modeling of radiation
impact on materials // Abstr. of XV Conf. “HEP. Nucl.
Phys. Accelerators.” Kharkov: NSC KIPT, 2017, p. 51-
52.
10. I. Papirov, A. Nikolayenko, Yu. Tuzov.
Beryllium: monograph. M.: MEPhi NNRU, 2017, 344 p.
11. I.I. Papirov. Handbook on the structure and
properties of beryllium alloys. M.: “Energoatomizdat”,
1981, 368 p.
12. A.S. Bakai, A.N. Timoshevskii, S.A. Kalkuta,
A. Moeslang, V.P. Vladimirov. On the influence of
vacancies on the electronic properties of beryllium //
Low Temp. Phys. 2007, v. 33, issue 10, p. 889-891.
13. A. McKinley (Jr.), H. Feshbach. The Coulomb
scattering of relativistic electrons by nuclei // Phys. Rev.
1948, v. 74, N 12, p. 1759-1763.
14. A.S. Bakai, M.I. Bratchenko, S.V. Dyuldya.
Impact of the highly deformed Be dislocation structure
on the point defects kinetics at the NSC KIPT ELIAS li-
nac cryogenic electron irradiation // Abstr. of the XIII
Conf. “HEP. Nucl. Phys. Accelerators”. Kharkov: NSC
KIPT, 2015, p. 85.
15. S.V. Dyuldya, M.I. Bratchenko. Refined model
and code for calculation of point defects concentrations
in multicomponent heterogeneous materials // Proc. of
the ICPRP-XX, Alushta, Sept. 10–15, 2012. Kharkov:
NSC KIPT, 2012, p. 42-43.
16. S. Plimpton. Fast parallel algorithms for short-
range molecular dynamics // J. Comput. Phys. 1995,
v. 117, N 1, p. 1-19; http://lammps.sandia.gov.
17. S. Plimpton, C. Battaile, M. Chandross, et al.
Crossing the mesoscale No-Man’s Land via parallel
Kinetic Monte Carlo. SANDIA Report SAND2009-
6226, Oct. 2009; http://spparks.sandia.gov.
18. F.A. Nichols. On the estimation of sink-
absorption terms in reaction-rate-theory analysis of
radiation damage // JNM. 1978, v. 75, issue 1, p. 32-41.
19. M.G. Ganchenkova, P.V. Vladimirov,
V.A. Borodin. Vacancies, interstitials and gas atoms in
beryllium: ab initio study // JNM. 2009, v. 386-388,
N 1, p. 79-81.
20. V.A. Borodin, P.V. Vladimirov. Self-
interstitial diffusion in beryllium: elementary jumps and
overall dynamics // Proc. of the 10
th
IEA Int. Workshop
on Beryllium Technology, Sept. 19–21, 2012, Karlsruhe,
Germany. KIT Sci. Publ., 2012, p. 318-326.
21. C. Teodosiu. Elastic models of crystal defects.
Berlin Heidelberg: Springer-Verlag, 1982, 336 p.
22. A. Migliori, H. Ledbetter, D.J. Thoma,
T.W. Darling. Beryllium’s monocrystal and polycrystal
elastic constants // J. Appl. Phys. 2004, v. 95, N 5,
p. 2436-2440.
23. C. Björkas, K.O.E. Henriksson, M. Probst,
K. Nordlund. A Be–W interatomic potential // J. Phys.:
Cond. Matter. 2010, v. 22, N 35, 352206 (6 p.).
24. E. Clouet, S. Garruchet, H. Nguyen, M. Perez,
C.S. Becquart. Dislocation interaction with C in -Fe: A
comparison between atomic simulations and elasticity
theory // Acta Materialia. 2008, v. 56, N 14, p. 3450-
3460.
25. L. Malerba, C.S. Becquart, Ch. Domain.
Object kinetic Monte-Carlo study of sink strengths //
JNM. 2007, v. 360, N 2, p. 159-169.
26. A.B. Sivak, V.M. Chernov, V.A. Romanov,
P.A. Sivak. Kinetic Monte-Carlo simulation of self-
point defect diffusion in dislocation elastic fields in bcc
iron and vanadium // JNM. 2011, v. 417, N 1-3, p. 1067-
1070.
Article received 02.11.2017
МНОГОУРОВНЕВОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОННОГО ОБЛУЧЕНИЯ БЕРИЛЛИЯ
ПРИ НИЗКИХ ТЕМПЕРАТУРАХ
М.И. Братченко, С.В. Дюльдя
Представлены методология и результаты многомасштабного моделирования первичной генерации и
временной эволюции радиационных дефектов при криогенном (77 К) облучении сильнодеформированного
до плотности дислокаций ~ 10
12
см
–2
бериллия на электронном линаке ELIAS ННЦ ХФТИ. Показано, что
применение низкотемпературного облучения предварительно напряженных мишеней позволяет эффективно
подавлять рекомбинацию пар Френкеля за счет ухода свободно мигрирующих собственных межузельных
атомов на дислокационные стоки и приводит к аномально высоким (~ 10
–3
на атом) выходам вакансий, сопо-
ставимых с концентрациями первичных пар Френкеля при разумной ( 10
3
ч) длительности e
–
-облучения.
http://lammps.sandia.gov/
http://spparks.sandia.gov/
БАГАТОРІВНЕВЕ МОДЕЛЮВАННЯ ЕЛЕКТРОННОГО ОПРОМІНЕННЯ БЕРИЛІЮ
ЗА НИЗЬКИХ ТЕМПЕРАТУР
М.І. Братченко, С.В. Дюльдя
Представлено методологію та результати багатомасштабного моделювання первинної продукції та ево-
люції у часі радіаційних дефектів за криогенного (77 К) опромінення сильнодеформованого до густини дис-
локацій ~10
12
см
–2
берилію на електронному лінаці ELIAS ННЦ ХФТІ. Показано, що застосування низько-
температурного електронного опромінення попередньо напружених мішеней дозволяє ефективно пригнічу-
вати рекомбінацію пар Френкеля через витік вільно мігруючих власних міжвузельних атомів до дислокацій-
них стоків і призводить до аномально високих (~10
–3
на атом) концентрацій вакансій, які добре порівнянні з
концентраціями первинних пар Френкеля за прийнятної ( 10
3
год) тривалості електронного опромінення.
|