Structural transformation in Zr/Mg multilayer on Si substrate after annealing
A Zr/Mg periodic multilayer was deposited onto silicon substrate by DC magnetron sputtering. Study of the Zr/Mg multilayer structure in an initial state and after thermal annealing in a temperature range of 100...600 °C was made by the X-ray diffraction and cross-section transmission electron micros...
Gespeichert in:
| Datum: | 2017 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/137265 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Structural transformation in Zr/Mg multilayer on Si substrate after annealing / L.E. Konotopsky, I.A. Kopilets, S.M. Kosmachev, V.V. Kondratenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 39-42. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-137265 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1372652025-02-09T23:04:27Z Structural transformation in Zr/Mg multilayer on Si substrate after annealing Структурно-фазові перетворення у багатошарових рентгенівських дзеркалах Zr/Mg на кремнієвій підкладці Структурно-фазовые превращения в многослойных рентгеновских зеркалах Zr/Mg на кремниевой подложке при отжиге Konotopsky, L.E. Kopilets, I.A. Kosmachev, S.M. Kondratenko, V.V. Чистые материалы и вакуумные технологии A Zr/Mg periodic multilayer was deposited onto silicon substrate by DC magnetron sputtering. Study of the Zr/Mg multilayer structure in an initial state and after thermal annealing in a temperature range of 100...600 °C was made by the X-ray diffraction and cross-section transmission electron microscopy methods. It was shown that Zr/Mg multilayers are stable up to 400 °C. Further heating to 500 °C leads to decreasing of the number of the operable periods due to the zirconium and magnesium layers interaction with the silicon substrate. Annealing at 550 °C leads to multilayer periodicity destructing. Рентгенографічними і електронно-мікроскопічними методами досліджено багатошарове рентгенівське дзеркало (БПК) Zr/Mg у вихідному стані та після відпалу (100…600 °С). БПК Zr/Mg на кремнієвій підкладці було виготовлено методом прямоточного магнетронного розпилення. Показано, що структура рентгенівського дзеркала зберігається незмінною при відпалі до 400 °С. Подальший нагрів до 500 °С супроводжується зниженням числа робочих періодів за рахунок взаємодії шарів цирконію і магнію з кремнієвої підкладкою. Відпал при 550 °C призводить до руйнування періодичної структури в БПК. Рентгенографическими и электронно-микроскопическими методами исследовано многослойное рентгеновское зеркало (МРЗ) Zr/Mg в исходном состоянии и после отжига (100…600 °С). МРЗ Zr/Mg на кремниевой подложке было изготовлено методом прямоточного магнетронного распыления. Показано, что структура рентгеновского зеркала сохраняется неизменной при отжиге вплоть до 400 °С. Дальнейший нагрев до 500 °С сопровождается снижением числа рабочих периодов за счет взаимодействия слоев циркония и магния с кремниевой подложкой. Отжиг при 550 °C приводит к разрушению периодической структуры в МРЗ. 2017 Article Structural transformation in Zr/Mg multilayer on Si substrate after annealing / L.E. Konotopsky, I.A. Kopilets, S.M. Kosmachev, V.V. Kondratenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 39-42. — Бібліогр.: 19 назв. — англ. 1562-6016 PACS: 07.85.FV, 61.05.CM, 61.05.CF, 68.65.AC https://nasplib.isofts.kiev.ua/handle/123456789/137265 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Чистые материалы и вакуумные технологии Чистые материалы и вакуумные технологии |
| spellingShingle |
Чистые материалы и вакуумные технологии Чистые материалы и вакуумные технологии Konotopsky, L.E. Kopilets, I.A. Kosmachev, S.M. Kondratenko, V.V. Structural transformation in Zr/Mg multilayer on Si substrate after annealing Вопросы атомной науки и техники |
| description |
A Zr/Mg periodic multilayer was deposited onto silicon substrate by DC magnetron sputtering. Study of the Zr/Mg multilayer structure in an initial state and after thermal annealing in a temperature range of 100...600 °C was made by the X-ray diffraction and cross-section transmission electron microscopy methods. It was shown that Zr/Mg multilayers are stable up to 400 °C. Further heating to 500 °C leads to decreasing of the number of the operable periods due to the zirconium and magnesium layers interaction with the silicon substrate. Annealing at 550 °C leads to multilayer periodicity destructing. |
| format |
Article |
| author |
Konotopsky, L.E. Kopilets, I.A. Kosmachev, S.M. Kondratenko, V.V. |
| author_facet |
Konotopsky, L.E. Kopilets, I.A. Kosmachev, S.M. Kondratenko, V.V. |
| author_sort |
Konotopsky, L.E. |
| title |
Structural transformation in Zr/Mg multilayer on Si substrate after annealing |
| title_short |
Structural transformation in Zr/Mg multilayer on Si substrate after annealing |
| title_full |
Structural transformation in Zr/Mg multilayer on Si substrate after annealing |
| title_fullStr |
Structural transformation in Zr/Mg multilayer on Si substrate after annealing |
| title_full_unstemmed |
Structural transformation in Zr/Mg multilayer on Si substrate after annealing |
| title_sort |
structural transformation in zr/mg multilayer on si substrate after annealing |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2017 |
| topic_facet |
Чистые материалы и вакуумные технологии |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/137265 |
| citation_txt |
Structural transformation in Zr/Mg multilayer on Si substrate after annealing / L.E. Konotopsky, I.A. Kopilets, S.M. Kosmachev, V.V. Kondratenko // Вопросы атомной науки и техники. — 2017. — № 6. — С. 39-42. — Бібліогр.: 19 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT konotopskyle structuraltransformationinzrmgmultilayeronsisubstrateafterannealing AT kopiletsia structuraltransformationinzrmgmultilayeronsisubstrateafterannealing AT kosmachevsm structuraltransformationinzrmgmultilayeronsisubstrateafterannealing AT kondratenkovv structuraltransformationinzrmgmultilayeronsisubstrateafterannealing AT konotopskyle strukturnofazovíperetvorennâubagatošarovihrentgenívsʹkihdzerkalahzrmgnakremníêvíipídkladcí AT kopiletsia strukturnofazovíperetvorennâubagatošarovihrentgenívsʹkihdzerkalahzrmgnakremníêvíipídkladcí AT kosmachevsm strukturnofazovíperetvorennâubagatošarovihrentgenívsʹkihdzerkalahzrmgnakremníêvíipídkladcí AT kondratenkovv strukturnofazovíperetvorennâubagatošarovihrentgenívsʹkihdzerkalahzrmgnakremníêvíipídkladcí AT konotopskyle strukturnofazovyeprevraŝeniâvmnogosloinyhrentgenovskihzerkalahzrmgnakremnievoipodložkepriotžige AT kopiletsia strukturnofazovyeprevraŝeniâvmnogosloinyhrentgenovskihzerkalahzrmgnakremnievoipodložkepriotžige AT kosmachevsm strukturnofazovyeprevraŝeniâvmnogosloinyhrentgenovskihzerkalahzrmgnakremnievoipodložkepriotžige AT kondratenkovv strukturnofazovyeprevraŝeniâvmnogosloinyhrentgenovskihzerkalahzrmgnakremnievoipodložkepriotžige |
| first_indexed |
2025-12-01T14:49:39Z |
| last_indexed |
2025-12-01T14:49:39Z |
| _version_ |
1850317821425221632 |
| fulltext |
ISSN 1562-6016. PASТ. 2018. №1(113), p. 39-42.
STRUCTURAL TRANSFORMATION IN Zr/Mg MULTILAYER ON SI
SUBSTRATE AFTER ANNEALING
L.E. Konotopsky, I.A. Kopilets, S.M. Kosmachev, V.V. Kondratenko
National Technical University “Kharkov Polytechnic Institute”, Kharkov, Ukraine
E-mail: LKonotopsky@gmail.com
A Zr/Mg periodic multilayer was deposited onto silicon substrate by DC magnetron sputtering. Study of the
Zr/Mg multilayer structure in an initial state and after thermal annealing in a temperature range of 100...600 °C was
made by the X-ray diffraction and cross-section transmission electron microscopy methods. It was shown that
Zr/Mg multilayers are stable up to 400 °C. Further heating to 500 °C leads to decreasing of the number of the
operable periods due to the zirconium and magnesium layers interaction with the silicon substrate. Annealing at
550 °C leads to multilayer periodicity destructing.
PACS: 07.85.FV, 61.05.CM, 61.05.CF, 68.65.AC
INTRODUCTION
Zirconium and magnesium are one of the most
promising pairs of materials for creating multilayer X-
ray mirrors (MXM) for the 25…35 nm wavelengths
range due to their optical constants [1]. This part of the
soft X-ray spectrum contains the emission lines of iron
and helium [2]. The registration and analysis of these
spectral lines allows us to obtain important information
about the processes taking place in the solar corona
[3–5].
Previous studies showed that Zr/Mg multilayers
deposited by DC magnetron sputtering with a period of
10 nm have a high geometric perfection and an
acceptable level of interlayer roughness [6]. These
features provided the Zr/Mg multilayer X-Ray mirror
reflection coefficient of 30.6 at.% a wavelength of
30.4 nm [7].
Long-term and thermal stability coupled with high
reflectance are important requirements for the practical
application of multilayers in X-Ray telescopes [4, 8]. It
is known that multilayer mirrors based on magnesium,
such as SiC/Mg [9], Co/Mg [10], ZrC/Mg [11], and
Y2O3/Mg [12], lost their reflectivity after heating up to
350 °C. This is due to the fact that magnesium reacts
with the second material of the mirror.
The use of non-interacting materials is an effective
way to suppress the mixing of layers in a multilayer
coating. [13]. The Zr-Mg is one of these pairs of
materials. There are no chemical compounds in the
Mg-Zr system [14]. But the ultimate answer to about
application of Zr/Mg multilayer at high temperature
needs experimental verification.
The aim of this work was to study effect of heating
in the 100…600 °C temperature range on the structure
of Zr/Mg MXM deposited on a silicon substrate.
1. SAMPLES AND INVESTIGATION
TECHNIQUE
The Zr/Mg multilayer was deposited onto a polished
Si (001) wafer by DC magnetron sputtering by alternate
deposition of the Mg and Zr. The residual gas pressure
before deposition was 10
-4
Pa and that of sputtering gas
(Ar) was 0.2 Pa. The Si substrates were cleaned by the
Ar ions before deposition. The deposition rates for Mg
and Zr were 0.45 and 0.08 nm/s, respectively. The
number of periods is 40.
Multilayer structures were studied with small-angle
X-Ray reflectometry (in the Θ–2Θ mode) using Cu-Kα1
(8.0 keV) radiation. The measurements were performed
with a DRON-3M diffractometer in the two-crystal
scheme with a single crystal Si (110) monochromator. A
0.1 mm slit after the monochromator provided selection
of the Cu-Kα1 line. Periodicity of multilayer was
defined with the full Bragg equation (taking into
account refraction). X-Ray diffraction measurements at
large angles was carried out in the Θ–2Θ mode and
grazing incidence x-ray diffraction (GIXRD) mode [15]
at the same wavelength with the diffractometer
equipped with a graphite analyzer.
Cross-sectional TEM images and analysis of the
chemical elements along the thickness of the Zr/Mg
MXM were obtained using a JEOL JEM-ARM200F
electron microscope.
The specimen was annealed in vacuum furnace at
10
-4
Pa in a temperature range of 100…600 °C in steps
of 100 °C. The time of each annealing was 1 hour.
2. RESULTS AND DISCUSSION
Fig. 1 shows measured small-angle X-ray diffraction
curves for the Zr/Mg MXM with a period of
d = 16.2 nm.
Fig. 1. Measured small-angle X-Ray diffraction
curves for the Zr/Mg MXM on a Si (001) substrate in an
as-deposited state and after annealing at temperatures
of 400, 500, 550, and 600 °C
It should be noted that the Bragg maxima on the
diffraction pattern from the Zr/Mg MXM in an as-
deposited state are narrow and symmetrical. This
indicates a high level of the MXM periodicity.
Fig. 2 shows the X-ray diffraction pattern at large
angles for the Zr/Mg MXM. The diffraction for
coherent structures [16–18] is observed. Instead of
individual peaks from individual phases, there is a peak
from the “average lattice” S0 in the diffraction curve,
which is located between the reflections of Mg (002)
and Zr (002). On each side of the S0 the S
+
j and S
-
j
superstructural maxima are observed. This phenomenon
occurs in layered systems that consist of crystalline
layers with the very small lattice mismatch [18, 19].
Analysis of the superstructural maxima intensity ratio
provides additional information on the multilayer
system structure [19]. This work was done in [6]. It was
shown that Zr/Mg multilayers with thicknesses of the
magnesium layers more than 5.2 nm can be used for
creation of the X-ray mirrors [6]. When thicknesses of
the Mg layers less than 5.2 nm they are discontinuous.
This is accompanying with decreasing in reflectivity of
Zr/Mg MXM. It is important to note that the long-period
Zr/Mg multilayers possess a high level of geometric
perfection and an acceptable interfaces roughness [6].
a
b
Fig. 2. Measured X-Ray diffraction curves for Zr/Mg
MXM in Cu–Kα radiation at large angles in an as-
deposited state and after annealing at temperatures
of 400, 500 °C
Annealing the Zr/Mg multilayer up to 400 °C does
not lead to a significant change in the small-angle X-ray
diffraction pattern (see Fig. 1). This constitutes evidence
that the parameters of the layers remain intact. Hence
the mirror is stable up to 400 °C. Further annealing at
500 °C is accompanied by disappearing of the distant
Bragg orders of reflection (see Fig. 1). This result
differs from one of the authors of [7], where the small-
angle x-ray diffraction remains unchanged upon
annealing up to 600 °C.
The X-Ray diffraction curves measured at large
angles (see Fig. 2,a) also did not change significantly
when the Zr/Mg MXM was annealed at 400 °C. Only
the displacement of the reflex S0 toward large angles
was observed. It was shown in [7] that compressive
stresses are set up in the zirconium layers during the
Zr/Mg MXMs manufacturing. Value of the stresses
decreases upon the annealing. That leads to a change of
the lattice spacing in the zirconium layers. A
consequence of this is the displacement of S0, which
position depends on the interplanar distances of the both
materials in the multilayer [19].
Further annealing at 500 °C leads to decreasing of
the superstructural maxima intensity (see Fig. 2,a). At
the same time, peaks corresponding to silicides of the
zirconium and magnesium appear on the GIXRD curves
(see Fig. 2,b). These reflexes were absent in an initial
state of the MXM. We suppose that the silicides are
formed by an interaction of the zirconium and
magnesium bottom layers with a silicon substrate. This
results in a decrease in the number of the MXM periods.
As a consequence of this process, the intensity of Bragg
reflections on the small-angle X-Ray pattern decreased
(see Fig. 1). According to our rough estimate based on
the computer modeling of the small-angle pattern, about
20 periods of the Zr/Mg MXM disappeared after
annealing at 500 °C. They interacted with the Si
substrate. Decreasing of the number of the MXM
periods leads to a reducing superstructure maxima
intensity too (see Fig. 2,a). In particular, intensity of the
S0 decreased by 1500 cps after annealing at 500 °C in
comparison with the intensity of S0 at 400 °C. It is
important to note that periodicity of the top layers
remained intact as evidenced by retained Braggs peaks
on the small-angle X-ray pattern. Thus the destruction
of the Zr/Mg MXM deposited onto a silicon substrate
begins from the bottom layers resulting from their
interaction with the substrate silicon.
a
b c
Fig. 3. Cross-sectional TEM images (a) and selected-
area electron diffraction patterns for the bottom (b)
and top (c) layers for Zr/Mg MXM annealed at 600 °C
ISSN 1562-6016. PASТ. 2018. №1(113), p. 39-42.
Annealing at 550 °C destroys the multilayer
periodicity (see Fig. 1). As this takes place, the intensity
of peaks corresponding to magnesium and zirconium
silicides increases on the X-ray diffraction curves at
large angles (see Fig. 2,b). Obtained results on the
Zr/Mg MXM destruction after annealing are confirmed
by cross section electron microscopy (Fig. 3,a) and
electron microanalysis (Fig. 4). As can be seen, the
initial multilayer transforms into a two-layer film
consisting of magnesium and zirconium silicides
separated by silicon oxide. The selected-area electron
diffraction patterns indicate the formation of silicides of
Mg2Si (see Fig. 3,b) and ZrSi (see Fig. 3,c).
The formation of zirconium silicide of exactly this
composition (ZrSi) is confirmed by a calculation of
volume changes in the zirconium after interaction with
silicon. Namely, 130 nm thick ZrSi should be formed as
a result of reaction of the 82.76-nm thick zirconium (the
total thickness of Zr layers in the MXM) with silicon.
This is in accordance with the EDS data of the
distribution of chemical elements across the Zr/Mg
MXM (Fig.4).
Fig. 4. Distribution of chemical elements along the
thickness of Zr/Mg MXM annealed at 600 °C obtained
by microanalysis
According to the EDS data in the MXM, both the
formation of silicides and an interaction of the mirrors
surface with the residual atmosphere occur. In our
opinion, these processes of interaction with the
atmosphere are most intense at temperatures of 500 °C
and above, when a considerable part of the mirror is
already destroyed. That is confirmed by significant
decreasing (by a factor of 10) of the total external
reflection intensity (see Fig. 1).
Thus, according to our results, the mechanism of
Zr/Mg X-ray mirror destruction is the interaction of the
MXM layers with a silicon substrate The use of
substrates of other materials, for example of quartz, can
increase a thermal stability of the Zr/Mg MXM.
However, this statement invites further investigation.
CONCLUSIONS
The carried out studies show that the main
mechanism of destruction of the Zr/Mg MXM deposited
on a silicon substrate after annealing is the interaction of
the Zr and Mg with the silicon substrate to form ZrSi
and Mg2Si. The interaction process begins from the
bottom layers when the MXM heated up to 400 °C. In
this case, the “undamaged” top layers retain their
periodicity and the initial period value. Further
increasing of temperature leads to decreasing of the
operable periods amount, and at 550 °C mirror
completely destroyed.
It is necessary to use other substrates, for example
quartz, for a practical application of the Zr/Mg MXM at
elevated temperatures. In addition, it is advisable to use
protective coatings on top of the multilayer.
REFERENCES
1. http://henke.lbl.gov/optical_constants.
2. I.A. Zhitnik, S.V. Kuzin, A.M. Urnov, I.L. Beig-
man, S.A. Bozhenkov, I.Yu. Tolstikhina. Extreme
Vacuum Ultraviolet Solar Spectra Obtained during the
SPIRIT Experiment aboard CORONAS-F: A Catalog of
Lines in the Range 280–330 // Astronomy Letters. 2005.
v. 31, N 1, p. 37-56.
3. P.G. Burke, H. KIeinpoppen. Progress in atomic
spectroscopy. New York: “Plenum Press”, 1979, p. 713-
1500.
4. Alan G. Michette. Optical systems for soft X-
Rays. New York: “Plenum Press”, 1986, p. 334.
5. Roger F. Malina, S. Bowyer. Extreme ultraviolet
astronomy. Oxford: “Pergamon Press”, 1989, p. 520.
6. L.E. Konotopsky, I.F. Mikhailov, I.A. Kopilets,
V.V. Mamon, V.V. Kondratenko. Dependence of Zr/Mg
multilayer structure on Mg nanolayer thickness //
Metallofizika i noveishie tekhnologii. 2017. v. 39, N 6,
p. 767-778 (in Russian).
7. Haochuan Li, Jingtao Zhu, Sika Zhou, Zhanshan
Wang, Hong Chen, et al. Zr/Mg multilayer mirror for
extreme ultraviolet application and its thermal stability
// Applied physics letters. 2013, v. 102, N 11, p. 111103-
1-111103-4.
8. A.D. Rousseau, D.L. Windt, B. Winter, L. Harra,
H. Lamoureux, F. Eriksson. Stability of EUV
multilayers to long-term heating, and to energetic
protons and neutrons, for extreme solar missions //
Proc. SPIE 5900, Optics for EUV, X-Ray, and Gamma-
Ray Astronomy II. 2005, v. 590004, p. 1-9.
9. Hisataka Takenaka, Satoshi Ichimaru, Tadayuki
Ohchia, E.M. Gullikson. Soft-X-ray reflectivity and heat
resistance of SiC/Mg multilayer // Journal of Electron
Spectroscopy and Related Phenomena. 2005, v. 144-
147, p. 1047-1049.
10. K. Le Guen, M.-H. Hu, J.-M. Andre, P. Jonnard.
Development and interfacial characterization of Co/Mg
periodic multilayers for the EUV range // The journal of
physical chemistry C. 2010, v. 114, N 14, p. 6484-6490.
11. T. Ejima, A. Yamazaki, T. Banse, K. Saito,
Y. Kondo, S. Ichimaru, H. Takenaka. Thermal Stability
of Mg-Based Reflection Multilayers // UVSOR activity
report. 2004, p. 43.
12. L.E. Konotopskyi, I.A. Kopylets, V.V. Kon-
dratenko. ZrC/Mg multilayers for radiation at 30.4 nm //
Journal of surface physics and engineering. 2015, v. 13,
N 1, p. 24-33.
13. V.V. Kondratenko, Yu.P. Pershin, O.V. Pol-
tseva, A.I. Fedorenko, E.N. Zubarev, S.A. Yulin,
I.V. Kozhevnikov, S.I. Sagitov, V.A. Chirkov,
V.E. Levashov, A.V. Vinogradov. Thermal stability of
soft x-ray Mo-Si and MoSi2-Si multilayer mirrors //
Applied optics. 1993, v. 32, N 10, p. 1811-1816.
14. N.P. Lyakishev. Diagrammyi sostoyaniya
dvoynyih metallicheskih sistem. Spravochnik T. 3. М.:
“Mashinostroenie”, 2001, p. 872 (in Russian).
15. I.A. Kopylets, E.M. Zubarev, V.V. Kondra-
tenko, V.A. Sevryukova. Changes in the Structure of the
Multilayer Film Sb/B4C Nanocomposition under
Heating up to 360 °C // Metallofizika i noveishie
tekhnologii. 2016, v. 38, N 7, p. 911-921 (in Russian).
16. Mario Birkholz. Thin Film Analysis by X-Ray
Scattering. Weinheim: ”WILEY-VCH Verlag GmbH &
Co. KGaA”, 2006, p. 356.
17. A.G. Hachaturyan. Teoriya fazovyih
prevrascheniy i struktura tverdyih rastvorov. M.:
“Nauka”, 1974, p. 384 (in Russian).
18. Leroy L. Chang, B.C. Giessen. Synthetic
modulated structures. Orlando: “Academic Press”,
1985, p. 503.
19. L.S. Palatnik, A.A. Kozma, I.F. Mihaylov,
V.N. Maslov // Kristallografiya. 1978, v. 23, N 3, p. 570
(in Russian).
Article received 13.11.2017
СТРУКТУРНО-ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В МНОГОСЛОЙНЫХ РЕНТГЕНОВСКИХ
ЗЕРКАЛАХ Zr/Mg НА КРЕМНИЕВОЙ ПОДЛОЖКЕ ПРИ ОТЖИГЕ
Л.Е. Конотопский, И.А. Копылец, С.М. Космачев, В.В. Кондратенко
Рентгенографическими и электронно-микроскопическими методами исследовано многослойное
рентгеновское зеркало (МРЗ) Zr/Mg в исходном состоянии и после отжига (100…600 °С). МРЗ Zr/Mg на
кремниевой подложке было изготовлено методом прямоточного магнетронного распыления. Показано, что
структура рентгеновского зеркала сохраняется неизменной при отжиге вплоть до 400 °С. Дальнейший
нагрев до 500 °С сопровождается снижением числа рабочих периодов за счет взаимодействия слоев
циркония и магния с кремниевой подложкой. Отжиг при 550 °C приводит к разрушению периодической
структуры в МРЗ.
СТРУКТУРНО-ФАЗОВІ ПЕРЕТВОРЕННЯ У БАГАТОШАРОВИХ РЕНТГЕНІВСЬКИХ
ДЗЕРКАЛАХ Zr/Mg НА КРЕМНІЄВІЙ ПІДКЛАДЦІ
Л.Є. Конотопський, І.А. Копилець, С.М. Космачов, В.В. Кондратенко
Рентгенографічними і електронно-мікроскопічними методами досліджено багатошарове рентгенівське
дзеркало (БПК) Zr/Mg у вихідному стані та після відпалу (100…600 °С). БПК Zr/Mg на кремнієвій підкладці
було виготовлено методом прямоточного магнетронного розпилення. Показано, що структура
рентгенівського дзеркала зберігається незмінною при відпалі до 400 °С. Подальший нагрів до 500 °С
супроводжується зниженням числа робочих періодів за рахунок взаємодії шарів цирконію і магнію з
кремнієвої підкладкою. Відпал при 550 °C призводить до руйнування періодичної структури в БПК.
|