Effect of iron additives on the properties of Zr1%Nb alloy
The effect of iron additives on the microstructure and properties of Zr1%Nb alloy were investigated. The Zr1%Nb alloy with microadditives of iron was obtained by vacuum-arc melting method. Microhardness of experimental samples obtained during testing was measured. It was shown that microhardness of...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/137350 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Effect of iron additives on the properties of Zr1%Nb alloy / M.M. Pylypenko, A.A. Drobyshevskaya, Yu.S. Stadnik, I.G. Tantsyura, M.M. Pylypenko Jr. // Вопросы атомной науки и техники. — 2018. — № 1. — С. 101-104. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-137350 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1373502025-02-09T09:31:25Z Effect of iron additives on the properties of Zr1%Nb alloy Вплив добавок заліза на властивості сплаву Zr1%Nb Влияние добавок железа на свойства сплава Zr1%Nb Pylypenko, M.M. Drobyshevskaya, A.A. Stadnik, Yu.S. Tantsyura, I.G. Pylypenko Jr., M.M. Физика и технология конструкционных материалов The effect of iron additives on the microstructure and properties of Zr1%Nb alloy were investigated. The Zr1%Nb alloy with microadditives of iron was obtained by vacuum-arc melting method. Microhardness of experimental samples obtained during testing was measured. It was shown that microhardness of samples of the Zr1%Nb alloy varies with increasing iron concentration. It was found that the properties of the Zr1%Nb alloy can be enhanced significantly by addition of iron into the material. Досліджено вплив добавок заліза на мікроструктуру та властивості сплаву Zr1%Nb. Методом вакуумно-дугової плавки отримано сплав Zr1%Nb з мікрододатками заліза. Проведено вимірювання мікротвердості зразків сплаву Zr1%Nb, отриманих під час випробувань. Показано, що мікротвердість зразків сплаву Zr1%Nb змінюється зі збільшенням концентрації заліза. Встановлено, що властивості сплаву Zr1%Nb можуть бути значно покращені шляхом введення в матеріал заліза. Исследовано влияние добавок железа на микроструктуру и свойства сплава Zr1%Nb. Методом вакуумно-дуговой плавки получен сплав Zr1%Nb с микродобавками железа. Проведено измерение микротвердости образцов сплава Zr1%Nb, полученных в ходе испытаний. Показано, что микротвердость образцов сплава Zr1%Nb изменяется с увеличением концентрации железа. Установлено, что свойства сплава Zr1%Nb могут быть значительно улучшены в результате введения в материал железа. 2018 Article Effect of iron additives on the properties of Zr1%Nb alloy / M.M. Pylypenko, A.A. Drobyshevskaya, Yu.S. Stadnik, I.G. Tantsyura, M.M. Pylypenko Jr. // Вопросы атомной науки и техники. — 2018. — № 1. — С. 101-104. — Бібліогр.: 9 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/137350 669.296 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Физика и технология конструкционных материалов Физика и технология конструкционных материалов |
| spellingShingle |
Физика и технология конструкционных материалов Физика и технология конструкционных материалов Pylypenko, M.M. Drobyshevskaya, A.A. Stadnik, Yu.S. Tantsyura, I.G. Pylypenko Jr., M.M. Effect of iron additives on the properties of Zr1%Nb alloy Вопросы атомной науки и техники |
| description |
The effect of iron additives on the microstructure and properties of Zr1%Nb alloy were investigated. The Zr1%Nb alloy with microadditives of iron was obtained by vacuum-arc melting method. Microhardness of experimental samples obtained during testing was measured. It was shown that microhardness of samples of the Zr1%Nb alloy varies with increasing iron concentration. It was found that the properties of the Zr1%Nb alloy can be enhanced significantly by addition of iron into the material. |
| format |
Article |
| author |
Pylypenko, M.M. Drobyshevskaya, A.A. Stadnik, Yu.S. Tantsyura, I.G. Pylypenko Jr., M.M. |
| author_facet |
Pylypenko, M.M. Drobyshevskaya, A.A. Stadnik, Yu.S. Tantsyura, I.G. Pylypenko Jr., M.M. |
| author_sort |
Pylypenko, M.M. |
| title |
Effect of iron additives on the properties of Zr1%Nb alloy |
| title_short |
Effect of iron additives on the properties of Zr1%Nb alloy |
| title_full |
Effect of iron additives on the properties of Zr1%Nb alloy |
| title_fullStr |
Effect of iron additives on the properties of Zr1%Nb alloy |
| title_full_unstemmed |
Effect of iron additives on the properties of Zr1%Nb alloy |
| title_sort |
effect of iron additives on the properties of zr1%nb alloy |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2018 |
| topic_facet |
Физика и технология конструкционных материалов |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/137350 |
| citation_txt |
Effect of iron additives on the properties of Zr1%Nb alloy / M.M. Pylypenko, A.A. Drobyshevskaya, Yu.S. Stadnik, I.G. Tantsyura, M.M. Pylypenko Jr. // Вопросы атомной науки и техники. — 2018. — № 1. — С. 101-104. — Бібліогр.: 9 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT pylypenkomm effectofironadditivesonthepropertiesofzr1nballoy AT drobyshevskayaaa effectofironadditivesonthepropertiesofzr1nballoy AT stadnikyus effectofironadditivesonthepropertiesofzr1nballoy AT tantsyuraig effectofironadditivesonthepropertiesofzr1nballoy AT pylypenkojrmm effectofironadditivesonthepropertiesofzr1nballoy AT pylypenkomm vplivdobavokzalízanavlastivostísplavuzr1nb AT drobyshevskayaaa vplivdobavokzalízanavlastivostísplavuzr1nb AT stadnikyus vplivdobavokzalízanavlastivostísplavuzr1nb AT tantsyuraig vplivdobavokzalízanavlastivostísplavuzr1nb AT pylypenkojrmm vplivdobavokzalízanavlastivostísplavuzr1nb AT pylypenkomm vliâniedobavokželezanasvojstvasplavazr1nb AT drobyshevskayaaa vliâniedobavokželezanasvojstvasplavazr1nb AT stadnikyus vliâniedobavokželezanasvojstvasplavazr1nb AT tantsyuraig vliâniedobavokželezanasvojstvasplavazr1nb AT pylypenkojrmm vliâniedobavokželezanasvojstvasplavazr1nb |
| first_indexed |
2025-11-25T07:02:51Z |
| last_indexed |
2025-11-25T07:02:51Z |
| _version_ |
1849744878194393088 |
| fulltext |
ISSN 1562-6016. PASТ. 2018. №1(113), p. 101-104.
UDС 669.296
EFFECT OF IRON ADDITIVES ON THE PROPERTIES
OF Zr1%Nb ALLOY
M.M. Pylypenko, A.A. Drobyshevskaya, Yu.S. Stadnik, I.G. Tantsyura, M.M. Pylypenko Jr.
National Science Center “Kharkov Institute of Physics and Technology”,
Kharkov, Ukraine
E-mail: mpylypenko@kipt.kharkov.ua
The effect of iron additives on the microstructure and properties of Zr1%Nb alloy were investigated. The
Zr1%Nb alloy with microadditives of iron was obtained by vacuum-arc melting method. Microhardness of
experimental samples obtained during testing was measured. It was shown that microhardness of samples of the
Zr1%Nb alloy varies with increasing iron concentration. It was found that the properties of the Zr1%Nb alloy can be
enhanced significantly by addition of iron into the material.
INTRODUCTION
Modern atomic energy is based on reactors in which
shells of fuel elements and other details are made of
zirconium alloys. Shells of fuel elements work in
difficult conditions (high temperatures, powerful
radiation fields, the presence of loads from static and
dynamic stresses, corrosion interaction with coolant and
nuclear fuel) and therefore they must have high
mechanical properties, heat resistance and good
corrosion resistance.
Creation of zirconium alloys for the manufacture of
structural elements of the reactor core of nuclear power
plants is based on alloying of zirconium with elements
that provide the necessary complex of properties to
zirconium alloys. Alloying elements should positively
influence the corrosion resistance of products under
operating conditions in the reactor and provide the
necessary mechanical properties and reliability of
products during operation [1–3]. Numerous works have
shown that alloying of zirconium with iron is promising
in developing alloys for high temperatures. The increase
of the iron content in the zirconium alloy provides the
material of the shell tubes with the required resistance to
creep and strengthening under irradiation. In addition,
the alloying of Zr1%Nb alloy with iron increases its
corrosion and radiation resistance in the conditions of
the operation of a nuclear reactor.
The analysis of literature data showed that there is a
correlation between the structural-phase transformations
and the properties of zirconium alloys (corrosion,
mechanical properties, radiation growth and radiation
creep). It has been experimentally found that Nb and Fe,
in addition to their presence in small amounts in the -
solid solution, are found in the structure of tubes made
of zirconium alloys in the form of triple Zr-Nb-Fe
intermetallics (L and T-phases). These phases determine
the technological and operational properties of the alloy.
The main phase in the structure of alloys is the Laves
phase (L) of the composition Zr(Nb,Fe)2, a significantly
smaller number of T-phase – (Zr,Nb)2Fe. The amount of
Laves phase precipitates is determined by the content of
iron in the alloy. With increasing iron content in the
Zr1%Nb alloy the amount of Laves phase precipitates in
the structure of the shell tubes increases which
positively affects their corrosion resistance in water
with lithium additions, especially for shells made of
alloys based on zirconium sponge. Iron under the action
of irradiation comes out from the Laves phase into the
matrix with the formation of secondary finely dispersed
precipitates and thus delays the formation of dislocation
loops <с>-type which are responsible for accelerating
the radiation growth of the alloy. At the same time it
was established that as a result of additional alloying with
iron the technological efficiency of the Zr1%Nb alloy
decreases requiring the development of a new
deformation and thermal scheme of tube manufacturing.
So, determination of the optimal iron content in the
Zr1%Nb alloy is a prerequisite for providing
manufacturability of the alloy and improving its
operational properties.
A goal of the present study was obtaining zirconium
alloys Zr1%Nb alloyed with iron and investigation of
their structure and mechanical properties depending on
the iron concentration.
EXPERIMENTAL TECHNIQUE
AND MATERIALS
As initial materials for obtaining experimental
samples a Zr1%Nb alloy based on magnesium-thermal
zirconium was used. Optimization processes of melting
of Zr1%Nb alloy based on magnesium-thermal
zirconium by methods of electron beam and vacuum arc
melting in laboratory conditions are described in detail
in [4].
A vacuum-arc melting method was applied to obtain
a homogeneous zirconium alloy with microadditives of
iron. The Zr1%Nb alloy samples in the form of 1 mm
thick plates were prepared by rolling in a vacuum with
intermediate annealing. The samples obtained were
contained iron from 0.012 to 0.192 wt.% with an
interval of 0.03 wt.%. After rolling all samples were
annealed in a vacuum of 10
-5
mm Hg at a temperature of
580 C for 3 hours.
For alloying a pure iron refined by electron beam
melting was used. Spongy carbonyl iron was used as the
source material. Electron beam melting of iron was
carried out in two stages. At the first stage pieces of
carbonyl iron were filled up in a crystallizer with a
diameter of 150 mm. There iron was sintered and
melted. The gases were removed from the metal in the
process of sintering and melting. Due to the high
content of gas impurities a “bubble” stage of gas
emissions was observed. Then the ingot was hanging
over the crystallizer and the subsequent melting was
carried out by the classic drip method with the
extraction of the ingot. On samples of iron after the
electron beam melting chemical analysis was carried
out.
Metallographic studies of the structure of Zr1%Nb
alloy samples before and after alloying with iron were
performed using a scanning electron microscope JSM-
7001F with X-ray spectral analyzer INCA Energy 350.
The chemical composition of the particles was studied
using the X-ray spectral microanalysis. Microhardness
was measured with a device PMT-3.
RESULTS AND DISCUSSION
Iron is the main component for the creation of alloys
used in nuclear energy. It is known that the content of
impurities penetration strongly affects the strength,
corrosion and radiation properties of metals and alloys.
Therefore refining of iron from impurities is important
in the creation of new alloys [5].
For the refining of iron both from metal impurities
and from impurities penetration the electron-beam
melting was carried out. The content of impurities in the
initial samples of iron and in samples after the electron
beam melting is given in Table. It is seen that after the
EBM the iron contains significantly less impurities and
can be used to create new alloys.
The content of impurities in iron after the EBM, wt.%
Impurity Initial After EBM
N 6.0·10
-3
3.0·10
-3
Al 2.0·10
-2
1.0·10
-3
O 3.0·10
-2
2.0·10
-2
Co 1.7·10
-2
1.7·10
-2
Si 2.0·10
-1
5.0·10
-2
Ni 1.2·10
-1
2.0·10
-3
Mn 1.5·10
-1
1.0·10
-2
Cu 1.5·10
-1
1.0·10
-1
Ni 5.0·10
-2
1.0·10
-2
C 6.0·10
-3
3.0·10
-3
The mechanical and corrosion properties of
zirconium are largely influenced by impurities, so
obtaining high-purity zirconium with a low content of
impurities is one of the conditions for its use in the
nuclear industry. Experimental samples of Zr1%Nb
alloy with low content of impurities were obtained by
the method of electron-beam melting.
Then a series of ingots of Zr1%Nb alloy with an iron
content of up to 0.192 wt.% was obtained by the
vacuum arc melting method.
The photographs of the microstructure of Zr1%Nb
alloy samples depending on the composition are
presented in Fig. 1. It can be seen that the additional
introduction of iron into Zr1%Nb alloy leads to the
appearance of precipitates the density of which
increases with increasing iron content.
a
b
c
Fig. 1. Microstructure of Zr1%Nb alloy samples
depending on the iron content: а – 0.042 wt.% Fe;
b – 0.072 wt.% Fe; c – 0.162 wt.% Fe
The properties of alloys are determined by their
structural-phase state and even small changes in the
composition of Zr-Nb alloys lead to significant
changes due to the appearance of different types of
precipitates and changes in the matrix composition
[1, 6, 7]. The kinetics of release of new phases in α-
zirconium is determined by the composition of the
alloy, the degree of supersaturation of the solid
solution α-Zr, the composition and the crystal
structure of the phases. The alloying elements have a
low solubility in α-zirconium (0.0050.02% Fe,
about 0.5% Nb) and are precipitated as particles of
the second phase with dimensions of 50500 nm.
The composition and type of precipitates are
determined by the degree of solubility of the main
alloying elements of niobium and iron in α-zirconium
and their total content in the alloy [8, 9].
The presence of fine particles of β-Nb precipitate
and a small number of larger precipitates – the Laves
phases Zr(Nb, Fe)2 are characteristic for samples with
an iron content of up to 0.042 wt.% (see Fig. 1,a).
The concentration of Laves phases is much lower
than the concentration of β-Nb particles and is less
than 3% of it. The study of the chemical composition
of particles using the X-ray spectral microanalysis
confirmed the presence of two types of precipitates.
The iron content in the matrix is at the level of
00.1%, niobium 0.30.7%.
The change in the iron content in the alloy from
0.042 to 0.072 wt.% did not lead to a significant
increase in the concentration of Laves phase
precipitates. Noticeable growth occurred when
alloying to 0.162 wt.% (see Fig. 1,b,c). Precipitates
of β-Nb and Laves phase were detected in the
structure of samples with a content of iron
0.0720.162 wt.%. The average size of the β-Nb
precipitates is 4050 nm. The precipitates of Laves
phase is slightly larger, their average size is
80100 nm.
The concentration of Laves phase precipitates is
much lower than the total concentration of particle.
Studies show that the number of Laves phase
precipitates significantly depends on the iron content
in the alloy.
It is difficult to distinguish precipitates of two
types, since their size and morphology are close. Due
to the very low solubility of iron in α-Zr, practically
all of it is concentrated in the Laves phase.
The change of the microhardness of the samples
with an increase in the iron content is shown in
Fig. 2.
Fig. 2. Dependence microhardness of the alloy Zr1%Nb
samples on the iron concentration
It is seen that the value of microhardness obtained
for the alloy with an iron concentration of 0.192 wt.%
is evidently higher relative to the alloy containing
0.012 wt.% of iron. The microhardness of the initial
sample was 1720 MPa, the addition of iron to
0.192 wt.% increased the microhardness value to
1880 MPa.
CONCLUSIONS
Research on obtaining Zr1%Nb alloy with iron
additives by vacuum arc melting has been carried out.
The results of the studies have shown that the
properties of the Zr1%Nb alloy widely used in
nuclear power industry can be enhanced by addition
into the material iron. Small additions of iron in
Zr1%Nb alloy lead to a change in its structure due to
the appearance of Laves phase precipitates,
concentration of which increases with increasing iron
content. It has been found that the number of Laves
phase precipitates is determined by the iron content
in the alloy. It is shown that with increasing iron
content in the Zr1%Nb alloy the microhardness
increases.
REFERENCES
1. А.С. Займовский, А.В. Никулина, Н.Г. Реше-
тников. Циркониевые сплавы в ядерной энергетике.
М.: «Энергоатомиздат», 1994, 252 с.
2. M.M. Pylypenko. Research and development for
obtaining of nuclear-pure zirconium and alloy on its
basis // PAST. Series “Vacuum, Pure Materials,
Superconductors”. 2009, N 6(64), p. 12-18.
3. S.D. Lavrinenko, M.M. Pylypenko, P.N. Vjugov.
Pure metals for nuclear power // PAST. Series “The
Physics of Radiation Damages and Radiation Materials
Science”. 2014, N 4(92), p. 72-81.
4. S.D. Lavrinenko, M.M. Pylypenko, A.A. Dro-
byshevskaya, Yu.P. Bobrov, Yu.S. Stadnik,
I.G. Tantsyura. Alloy Zr1Nb based on magnesium-
thermal zirconium // PAST. Series “Vacuum, Pure
Materials, Superconductors”. 2016, N 1(101), p. 10-13.
5. V.M. Azhazha, P.N. Vjugov, S.D. Lavrinenko,
M.M. Pylypenko. Iron refining by physical methods //
PAST. Series “The Physics of Radiation Damages and
Radiation Materials Science”. 2001, N 2(79), p. 107-
109.
6. D.L. Douglas. The Metallurgy of Zirconium.
Atom. En. Rev., Vienna, 1971, 466 p.
7. Y. Perlovich, M. Isaenkova. Distribution of c-
and a-dislocations in tubes of Zr alloys // Metallurgical
and Materials Transactions. 2002, v. 33A, N 3,
p. 867-874.
8. A.V. Nikulina. Zirconium alloys for elements of
active zones of reactors with water under pressure //
Materials and Heat treatment. 2003, N 8, p. 7-12.
9. A.V. Nikulina. Zirconium alloys in nuclear
power engineering // Material Science and Heat
Treatment. 2004, N 11, p. 8-12.
Article received 07.11.2017
ВЛИЯНИЕ ДОБАВОК ЖЕЛЕЗА НА СВОЙСТВА СПЛАВА Zr1%Nb
Н.Н. Пилипенко, А.А. Дробышевская, Ю.С. Стадник, И.Г. Танцюра, Н.Н. Пилипенко мл.
Исследовано влияние добавок железа на микроструктуру и свойства сплава Zr1%Nb. Методом вакуумно-
дуговой плавки получен сплав Zr1%Nb с микродобавками железа. Проведено измерение микротвердости
образцов сплава Zr1%Nb, полученных в ходе испытаний. Показано, что микротвердость образцов сплава
Zr1%Nb изменяется с увеличением концентрации железа. Установлено, что свойства сплава Zr1%Nb могут
быть значительно улучшены в результате введения в материал железа.
ВПЛИВ ДОБАВОК ЗАЛІЗА НА ВЛАСТИВОСТІ СПЛАВУ Zr1%Nb
М.М. Пилипенко, А.О. Дробишевська, Ю.С. Стадник, І.Г. Танцюра, М.М. Пилипенко мол.
Досліджено вплив добавок заліза на мікроструктуру та властивості сплаву Zr1%Nb. Методом вакуумно-
дугової плавки отримано сплав Zr1%Nb з мікрододатками заліза. Проведено вимірювання мікротвердості
зразків сплаву Zr1%Nb, отриманих під час випробувань. Показано, що мікротвердість зразків сплаву
Zr1%Nb змінюється зі збільшенням концентрації заліза. Встановлено, що властивості сплаву Zr1%Nb
можуть бути значно покращені шляхом введення в матеріал заліза.
|