Оptimization of power control program switching for a WWER-1000 under transient operating conditions

This paper is devoted to solution of the scientific and technical problem of safe switching of static power control programs for a nuclear power unit with a WWER-1000 under transient operating conditions, so that to minimize the influence of disturbances of external and internal operating parameters...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2018
Main Authors: Huiyu Zhou, Pelykh, S.N., Odrekhovska, I.O., Maksymova, O.B.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/137360
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Оptimization of power control program switching for a WWER-1000 under transient operating conditions / Huiyu Zhou, S.N. Pelykh, I.O. Odrekhovska, O.B. Maksymova // Вопросы атомной науки и техники. — 2018. — № 1. — С. 218-222. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-137360
record_format dspace
spelling Huiyu Zhou
Pelykh, S.N.
Odrekhovska, I.O.
Maksymova, O.B.
2018-06-17T10:36:43Z
2018-06-17T10:36:43Z
2018
Оptimization of power control program switching for a WWER-1000 under transient operating conditions / Huiyu Zhou, S.N. Pelykh, I.O. Odrekhovska, O.B. Maksymova // Вопросы атомной науки и техники. — 2018. — № 1. — С. 218-222. — Бібліогр.: 16 назв. — англ.
1562-6016
https://nasplib.isofts.kiev.ua/handle/123456789/137360
621.039.5:681.5
This paper is devoted to solution of the scientific and technical problem of safe switching of static power control programs for a nuclear power unit with a WWER-1000 under transient operating conditions, so that to minimize the influence of disturbances of external and internal operating parameters, as well as to increase the safety and efficiency of reactor operation. The switching optimization task for static power control programs has been solved by finding a decision of the objective function which allows to switch safely the energy equipment modes in a predetermined range of load variations. The possibility of switching between static power control programs during a 4-year reactor campaign has been studied. The control program optimization problem for anuclear power unit with a WWER-1000 operated under variable loading, considering different power control programs during a 4-year campaign, has been solved.
Стаття присвячена вирішенню науково-технічної проблеми безпечного перемикання статичних програм регулювання ядерного енергоблоку з ВВЕР-1000 у змінних режимах навантаження, щоб мінімізувати вплив відхилень зовнішніх і внутрішніх експлуатаційних параметрів, а також підвищити безпеку і ефективність експлуатації реактора. Завдання оптимізації перемикань статичних програм регулювання вирішене шляхом знаходження екстремуму цільової функції, що дозволяє безпечно перемикати режими експлуатації енергетичного обладнання в передбаченому інтервалі зміни навантаження. Вивчена можливість перемикання статичних програм регулювання протягом 4-річної кампанії реактора. Розглядаючи різні програми регулювання потужності ядерного енергоблоку з ВВЕР-1000 у змінному режимі навантаження, вирішена задача оптимізації вибору програми протягом 4-річної кампанії.
Статья посвячена решению научно-технической проблемы безопаcрного переключения статических программ регулирования ядерного энергоблока с ВВЭР-1000 в переменных режимах нагружения, чтобы минимизировать влияние отклонений внешних и внутренних эксплуатационных параметров, а также повысить безопасность и эффективность эксплуатации реактора. Задача оптимизации переключений статических программ регулирования решена путем нахождения экстремума целевой функции, что позволяет безопасно переключать режимы эксплуатации энергетического оборудования в предусмотренном интервале изменения нагрузки. Изучена возможность переключения статических программ регулирования в течение 4-годичной кампании реактора. Рассматривая различные программы регулирования мощности ядерного энергоблока с ВВЭР-1000 в переменном режиме нагружения, решена задача оптимизации выбора программы на протяжении 4-годичной кампании.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Физика и технология конструкционных материалов
Оptimization of power control program switching for a WWER-1000 under transient operating conditions
Оптимізація перемикання програм регулювання потужності ВВЕР-1000 у перехідних режимах експлуатації
Оптимизация переключения программ регулирования мощности ВВЭР-1000 в переходных режимах эксплуатации
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Оptimization of power control program switching for a WWER-1000 under transient operating conditions
spellingShingle Оptimization of power control program switching for a WWER-1000 under transient operating conditions
Huiyu Zhou
Pelykh, S.N.
Odrekhovska, I.O.
Maksymova, O.B.
Физика и технология конструкционных материалов
title_short Оptimization of power control program switching for a WWER-1000 under transient operating conditions
title_full Оptimization of power control program switching for a WWER-1000 under transient operating conditions
title_fullStr Оptimization of power control program switching for a WWER-1000 under transient operating conditions
title_full_unstemmed Оptimization of power control program switching for a WWER-1000 under transient operating conditions
title_sort оptimization of power control program switching for a wwer-1000 under transient operating conditions
author Huiyu Zhou
Pelykh, S.N.
Odrekhovska, I.O.
Maksymova, O.B.
author_facet Huiyu Zhou
Pelykh, S.N.
Odrekhovska, I.O.
Maksymova, O.B.
topic Физика и технология конструкционных материалов
topic_facet Физика и технология конструкционных материалов
publishDate 2018
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Оптимізація перемикання програм регулювання потужності ВВЕР-1000 у перехідних режимах експлуатації
Оптимизация переключения программ регулирования мощности ВВЭР-1000 в переходных режимах эксплуатации
description This paper is devoted to solution of the scientific and technical problem of safe switching of static power control programs for a nuclear power unit with a WWER-1000 under transient operating conditions, so that to minimize the influence of disturbances of external and internal operating parameters, as well as to increase the safety and efficiency of reactor operation. The switching optimization task for static power control programs has been solved by finding a decision of the objective function which allows to switch safely the energy equipment modes in a predetermined range of load variations. The possibility of switching between static power control programs during a 4-year reactor campaign has been studied. The control program optimization problem for anuclear power unit with a WWER-1000 operated under variable loading, considering different power control programs during a 4-year campaign, has been solved. Стаття присвячена вирішенню науково-технічної проблеми безпечного перемикання статичних програм регулювання ядерного енергоблоку з ВВЕР-1000 у змінних режимах навантаження, щоб мінімізувати вплив відхилень зовнішніх і внутрішніх експлуатаційних параметрів, а також підвищити безпеку і ефективність експлуатації реактора. Завдання оптимізації перемикань статичних програм регулювання вирішене шляхом знаходження екстремуму цільової функції, що дозволяє безпечно перемикати режими експлуатації енергетичного обладнання в передбаченому інтервалі зміни навантаження. Вивчена можливість перемикання статичних програм регулювання протягом 4-річної кампанії реактора. Розглядаючи різні програми регулювання потужності ядерного енергоблоку з ВВЕР-1000 у змінному режимі навантаження, вирішена задача оптимізації вибору програми протягом 4-річної кампанії. Статья посвячена решению научно-технической проблемы безопаcрного переключения статических программ регулирования ядерного энергоблока с ВВЭР-1000 в переменных режимах нагружения, чтобы минимизировать влияние отклонений внешних и внутренних эксплуатационных параметров, а также повысить безопасность и эффективность эксплуатации реактора. Задача оптимизации переключений статических программ регулирования решена путем нахождения экстремума целевой функции, что позволяет безопасно переключать режимы эксплуатации энергетического оборудования в предусмотренном интервале изменения нагрузки. Изучена возможность переключения статических программ регулирования в течение 4-годичной кампании реактора. Рассматривая различные программы регулирования мощности ядерного энергоблока с ВВЭР-1000 в переменном режиме нагружения, решена задача оптимизации выбора программы на протяжении 4-годичной кампании.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/137360
citation_txt Оptimization of power control program switching for a WWER-1000 under transient operating conditions / Huiyu Zhou, S.N. Pelykh, I.O. Odrekhovska, O.B. Maksymova // Вопросы атомной науки и техники. — 2018. — № 1. — С. 218-222. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT huiyuzhou optimizationofpowercontrolprogramswitchingforawwer1000undertransientoperatingconditions
AT pelykhsn optimizationofpowercontrolprogramswitchingforawwer1000undertransientoperatingconditions
AT odrekhovskaio optimizationofpowercontrolprogramswitchingforawwer1000undertransientoperatingconditions
AT maksymovaob optimizationofpowercontrolprogramswitchingforawwer1000undertransientoperatingconditions
AT huiyuzhou optimízacíâperemikannâprogramregulûvannâpotužnostívver1000uperehídnihrežimahekspluatacíí
AT pelykhsn optimízacíâperemikannâprogramregulûvannâpotužnostívver1000uperehídnihrežimahekspluatacíí
AT odrekhovskaio optimízacíâperemikannâprogramregulûvannâpotužnostívver1000uperehídnihrežimahekspluatacíí
AT maksymovaob optimízacíâperemikannâprogramregulûvannâpotužnostívver1000uperehídnihrežimahekspluatacíí
AT huiyuzhou optimizaciâpereklûčeniâprogrammregulirovaniâmoŝnostivvér1000vperehodnyhrežimahékspluatacii
AT pelykhsn optimizaciâpereklûčeniâprogrammregulirovaniâmoŝnostivvér1000vperehodnyhrežimahékspluatacii
AT odrekhovskaio optimizaciâpereklûčeniâprogrammregulirovaniâmoŝnostivvér1000vperehodnyhrežimahékspluatacii
AT maksymovaob optimizaciâpereklûčeniâprogrammregulirovaniâmoŝnostivvér1000vperehodnyhrežimahékspluatacii
first_indexed 2025-11-25T10:13:45Z
last_indexed 2025-11-25T10:13:45Z
_version_ 1850509897086533632
fulltext ISSN 1562-6016. PASТ. 2018. №1(113), p. 218-221. UDC 621.039.5:681.5 ОPTIMIZATION OF POWER CONTROL PROGRAM SWITCHING FOR A WWER-1000 UNDER TRANSIENT OPERATING CONDITIONS Huiyu Zhou, S.N. Pelykh, I.O. Odrekhovska, O.B. Maksymova Odessa National Polytechnic University, Odessa, Ukraine E-mail: 1@pelykh.net; tel.: +38(066)187-21-45 This paper is devoted to solution of the scientific and technical problem of safe switching of static power control programs for a nuclear power unit with a WWER-1000 under transient operating conditions, so that to minimize the influence of disturbances of external and internal operating parameters, as well as to increase the safety and efficiency of reactor operation. The switching optimization task for static power control programs has been solved by finding a decision of the objective function which allows to switch safely the energy equipment modes in a predetermined range of load variations. The possibility of switching between static power control programs during a 4-year reactor campaign has been studied. The control program optimization problem for anuclear power unit with a WWER-1000 operated under variable loading, considering different power control programs during a 4-year campaign, has been solved. INTRODUCTION Considering the present state of power generation in Ukraine, operation of nuclear power plants (NPPs) with WWER-reactors is a long-term project to which Ukraine will remain committed for many years to come [1]. As there is a lack of load following units in the consolidated power system of Ukraine, in order to insure a sufficient level of electricity quality, NPPs with WWERs should participate in peak load and frequency regulation. Even if a WWER-1000 reactor is operated under stationary operating conditions, the reactor core is influenced by a number of disturbances having different nature and origin. But the number of disturbances influencing core stability, safety and efficiency is greatly increased when a reactor is operated under variable loading, e. g. according to a daily load variation cycle, as a reactor power maneuvering is characterized by considerably changing values of mainreactor technological parameters [2]. If a WWER-1000 is operated under variable loading, e.g. in the range 100…80% of the nominal reactor power N0, reactor power control methods should be chosen based on solving an optimization task, because a power control method influences greatly on the power equipment operation and safety. The following WWER- 1000 power control methods will be considered in this paper [3, 4]: – core averaged coolant temperature is constant: <tW> = const (program I); – second circuit in let steam pressure is constant: p2 = const (program II); – core inlet coolant temperature is constant: tW,0 = const (program III). The modern state of optimal control theory and automated control systems allows us to control the reactor power, according to a daily load cycle, on the basis of changing both reactor technological parameters and the structure of automation equipment fulfilling a power control method.The main aim of this paper is to solve the optimization task in switching WWER-1000 power control programs under transient operating conditions, based on accounting for disturbances of technological parameters, as well as for the current state of the reactor equipment, in order to increase the competitive ability of NPPs with WWER-1000 reactors. OBJECTIVE FUNCTION COMPONENTS Following the method of construction of the WWER-1000 fuel assembly (FA) rearrangement efficiency criterion proposed in [4, 5], the objective function for optimization of switching between reactor power control programs includes such variables: – axial offset module AO (for simplicity, herein after the module sign for AO can be omitted) as a measure of neutron flux stability in the reactor core, that is a measure of both safety and efficiency of reactor core and fuel operation; – nuclear fuel burn up (B) as a measure of fuel operation efficiency; – cladding damage parameter (ω) as a measure of both safety and efficiency of fuel operation; The value of axial offset is determined by the ratio of the difference between heat powers of higher ( hQ ) and lower ( lQ ) parts of the core, to the total heat power of the core: %,100 )()( )(-)( )АО(     lh lh QQ QQ (1) where τ is time. The value of nuclear fuel burn up is determined by the equation: ,)( 1 )( 0 ,,    dttQ m B jiji (2) where jiQ , is heat power of the i-th axial segment of a fuel element (FE) averaged in the j-th FA, W; m is mass of the nuclear fuel in the corresponding axial segment, kg. The value of cladding damage parameter is determined by the equation [6, 7]: ,)()()(;/)()( 0 . 0    dpAAA ee  (3) where )(A is specific dispersion energy (SDE), J/m 3 ; 0A is the value of SDE at the moment 0 that cladding material failure starts; )(e and . )(ep are equivalent stress (Pa) and rate of equivalent creep strain (s –1 ), respectively, for the inner most cladding radial element having the maximum temperature; 0A is constant for a given material of cladding and does not differ for operating modes, the calculated value of 0A is 55 МJ/m 3 for a FE cladding made of Zircaloy-4 alloy [4]. The objective function for optimization of WWER- 1000 power control program switching is based on the criterion model of FE behavior control taking into account safety and economic requirements simultaneously [4]. So, the objective function for optimization of WWER-1000 power control program switching has been constructed using the following principles [8]: 1. The goal for optimization of reactor power control program switchingis an increase of both safety and efficiency when operating the reactor core under normal conditions, by means of simultaneous consideration of axial offset, nuclear fuel burnup and cladding damage parameter. 2. Optimization of reactor power control program switchingis carried out on the basis of a priori requirements for FE and core behavior. 3. Advantage of some reactor power control program over another is determined on the basis of summation of advantages given by the dimensionless normalized components ,АО*( *B , *) of the objective function J. 4. The physical meaning of the objective function J for optimization of WWER-1000 power control program switching is that if any of the dimensionless normalized components ,АО*( *B , *) of J lies out of the corresponding permissible range, then this component gives a negative contribution to the total efficiency defined by the following equation for the objective function [9]: ,*AO*)1*( 222  BJ (4) where ;/* limBBB  ;/* lim limAO/AO*AO  , where a priori requirements are: limB = 88 (МW·d)/kg U; lim = 1; limAO = 0,05. So, the problem of control program optimization for a nuclear power unit with a WWER-1000 reactor operated under variable loading, during a 4-year campaign, was solved by minimization of J functional: .min*)AO*,*,( BJ (5) Taking into account that the components ,АО*( *,B *) of J are mainly determined by core inlet coolant temperature 0,Wt , neutron flux density n, n/(cm 2 ·s) and fuel service life τ [6], the minimum of the objective function was found using the method of quickest descent [9]. CALCULATION ASSUMPTIONS Such calculation assumptions were accepted in this paper: – WWER-1000 FE, FA, core operating and design parameters were assigned in compliance with the design characteristics [10], though the FE cladding material was Zircaloy-4 and accordingly the MATPRO-A cladding corrosion model was used [11]; – “Reactor simulator” code was used for calculation of linear heat rates in axial segments of a FA–averaged FE [12]; –“Femaxi” code was used to calculate the evolution of stresses and strains in FE claddings [11, 13];  “Advanced” power control algorithm was considered and thus the lay out of regulating units was set according to the method described in [4, 14]; – N = 100 % → N = 80 % →N = 100% daily loading cycle was considered, where N is core power [4, 5]; – time dependences for N and the axial coordinate H of the lower edge of control elements of regulating units were set according to the method described in [6, 14];  if core coolant in let temperature stays constant during a power maneuvering, it equals to 287 ºС;  composition of nuclear fuel was set for the start of the 5-th campaign of Khmelnitskyi NPP, Unit 2 [4, 6]; – FA rearrangement model was based on modelling rearrangements of FAs in a core segment containing 1/6 of FAs placed in the core and 1/6 of regulating units used for reactor power maneuvering [8]; – distribution of FAs within a 1/6 core segment was set based on the albums of neutron-physical characteris- tics of the core [15], according to the method [14]; – calculation model of the power density distribution in fuel assembly – averaged FEs was based on a two- group neutron diffusion model [16]; – in order to account for most unfavourable cladding operation conditions, values of )( and )(B included in the objective function J were calculated for the 6-th axial segment of a FA–averaged FE, consideringa FE located in a FA transposed in a 1/6 core segment according to the A rearrangement algorithm 3 (core cell) →22→54→29 characterized by most extreme conditions for FE claddings [8, 14]. Also the distribution of )(t among FEs included in this FA was taken into account by multiplying linear heat rates (calculated for axial segments) by the volume power-density irregularity coefficient 1.6 [14]. RESULTS Using the “Reactor simulator” code which is an universal instrument for modeling of WWER-1000 operation, first of all stability of neutron flux and power release processes in a core during a 4-year reactor campaign, under reactor power maneuvering conditions according to N = 100 % → N = 80 % → N = 100% daily loading cycle, has been studied. For reactor power control programs I, II, and III, core averaged coolant temperature <tW>, second circuit in let steam pressure p2 and core inlet coolant temperature tW,0 were kept constant, respectively. Based on the requirement limAO = 0.05, the duration of reactor power maneuvering permissible for different power control programs, has been found. It was obtained that AO and the axial profile of neutrons stay stable during 7, 1, and 6 months for programs I, II, and III, respectively (Tabl. 1). Тable1 Permissible duration of reactor power maneuvering Reactor power control program Duration, months I (<tW> = const) 7 II (p2 = const) 1 III (tW,0 = const) 6 The calculated AО dependence on time for reactor power control program I (<tW> = const) is shown in Fig. 1. Fig. 1. Axial offset dependence on time for WWER-1000 power control program I It can be seen that the amplitude of АО change in creases when the duration of reactor power maneuvering with <tW> = const increases also, though AO stays in the permissible ranges: [–5; 2.5] and [–5; 4] for N = 100 and 80%, respectively [12]. The calculated AО dependence on time for reactor power control program II (p2 = const) is shown in Fig. 2. It can be seen that the amplitude of АО change exceeds the permissible range when the duration of reactor power maneuvering with p2 = const exceeds one month, though the value of AO returns to permissible values and goes on staying in the permissible range after a reactor has been transferred from the mode of variable loading to the stationary mode. Fig. 2. Axial offset dependence on time for WWER-1000 power control program II The calculated AО dependence on time for reactor power control program III (tW,0 = const) is shown in Fig. 3. Fig. 3. Axial offset dependence on time for WWER-1000 power control program III As it follows from Fig. 3, the amplitude of АО change increases when the duration of reactor power maneuvering with tW,0 = const increases also, though AO stays in its permissible ranges. Using the “Femaxi” code, other components *(B and *) of the objective function J, for reactor power control programs with <tW> = const, p2 = const, and tW,0 = const, have been found. The calculated dependence of burn up B on time for programs I, II, and III is shown in Fig. 4. Fig. 4. Burn up dependence on time for WWER-1000 power control program I (<tW>=const), II (p2=const), and III (tW,0 =const) It can be seen that the dependences of burn up on time for programs I and III are practically similar, while program II is characterized by a slightly greater value of burn up. The calculated dependence of cladding damage parameter ω on time for programs I, II, and III is shown in Fig. 5. Fig. 5. Cladding damage parameter dependence on time for WWER-1000 power control program I (<tW>=const), II (p2=const), and III (tW,0 =const) So, the dependences of cladding damage parameter ω on time for programs I and III are similar also, but program II is characterized by a greater valueof ω. Having found stable operating regimes for a WWER-1000 operated under daily variable loading according to power control programs I, II, and III, the problem of control program optimization during a 4-year campaign was solved by minimization of J functional. If the duration of reactor power maneuvering is one month, and further a WWER-1000 is operated under stationary loading conditions during 11 months, then the reactor peration will be optimal, from the point of view of both safety and efficiency, when 11 transitions between power control programs are made (Fig. 6). Fig. 6. Schedule of transitions between power control programs for one month of power maneuvering Also the solutions of the objective function J have been found for the following WWER-1000 loading scenarios during a 4-year reactor campaign: – 2 months of reactor power maneuvering, 10 months under stationary loading conditions (scenario 1); – 3 months of reactor power maneuvering, 9 months under stationary loading conditions (scenario 2); – 4 months of reactor power maneuvering, 8 months under stationary loading conditions (scenario 3); – 5 months of reactor power maneuvering, 7 months under stationary loading conditions (scenario 4); – 6 months of reactor power maneuvering, 6 months under stationary loading conditions (scenario 5). Considering these loading scenarios, for a reactor under transient operating conditions according to N = 100% →N= 80% →N =100% daily loading cycle, the calculated optimal number of transitions between power control programs I and III, is shown in Tabl. 2. Тable 2 The optimal number of transitions between programs I and III Scenario 1 2 3 4 5 Number of transitions 38 65 69 75 107 Program II is not considered in Tabl. 2 because the permissible duration of WWER-1000 power maneuvering for this program is one month only. CONCLUSIONS As optimization of WWER-1000 power control program switching is one of important directions for improvement of both safety and efficiency of reactor operation under transient operating conditions according to the daily loading cycle N = 100% → N = 80% →N = 100%, the optimization task in switching between reactor power control programs has been solved based on accounting for disturbances of axial offset as a measure of neutron flux stability in a core, nuclear fuel burnup as a measure of fuel operation efficiency, as well as cladding damage parameter as a measure of both safety and efficiency of nuclear fuel operation. The duration of reactor power maneuvering permissible from the point of view of AO stability, for reactor power control programs I (<tW> = const), II (p2 = const), and III (tW,0 = const) is 7, 1, and 6 months, respectively. If the duration of WWER-1000 reactor power mane uvering is 1 month only, then the reactor operation will be optimal, fromthe point of view of both safety and efficiency, when 11 transitions between power control programs I, II, and III are made. If the duration of WWER-1000 reactor power maneuvering is 2, 3, 4, 5, and 6 months, then the reactor operation will be optimal, from the point of view of both safety and efficiency, when 38, 65, 69, 75, and 107 transitions between power control programs I and III are made, respectively. REFERENCES 1. N.I. Vlasenko. A long-term evaluation of nuclear power engineering development in Ukraine // Proc. of the XX nd Int. Conf. on Physics of Radiative Effects and Radiative Study of Materials, Alushta, NSС “Kharkov Institute of Physics and Technology”. 2012, p. 7-8. 2. H. Zhou, S.N. Pelykh, T.V. Foshch, O.B. Maksy- mova. An improved method for automated control of the WWER-1000 power maneuvering // Problems of Atomic Science and Technology. Series “Physics of Radiation Effect and Radiation Materials Science”. 2017, N 5(111), p. 57-64. 3. F.Y. Оvchinnikov, V.V. Semenov. The operating regimes of water-water power reactors. М.: “Energo- atomizdat”, 1988, 359 p. 4. S.N. Pelykh, M.V. Maksimov, V.E. Baskakov. Grounds of WWER-1000 fuel cladding life control // Annals of Nuclear Energy. 2013, N 58, p. 188-197. 5. S.N. Pelykh, M.V. Maksimov, G.T. Parks. A method for WWER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup // Nuclear Engineering and Design. 2013, v. 257, N 4, p. 53-60. 6. S.N. Pelykh. Grounds of WWER fuel element behavior control. Saarbrücken: “Palmarium Academic Publishing”, 2013, 160 p. 7. O.V. Sosnin, B.V. Gorev, A.F. Nikitenko. The energy variant of creep theory. Novosibirsk: “The Siberian Branch of USSR Academy of Sciences”, 1986, 95 p. 8. S.N. Pelykh, M.V. Maksimov, M.V. Nikolsky. A method for minimization of cladding failure parameter accumulation probability in WWER fuel elements // Problems of Atomic Science and Technology. Series “Physics of Radiation Effect and Radiation Materials Science”. 2014, N 4, p. 108-116. http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2013_2.html http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2013_2.html http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2013_2.html http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2013_2.html 9. S.N. Pelykh, E.O. Odrekhovska, O.B. Maksy- mova. Search for the best power control program at NPP with WWER-1000 using gradient descent method // Automation of technological and businessprocesses. 2016, v. 8, N 3, p. 36-40. 10. V.D. Shmelev, Y.G. Dragunov, V.P. Denisov. The WWER Active Cores for Nuclear Stations. М.: “Аka-demkniga”, 2004, 220 p. 11. М. Suzuki. Light Water Reactor Fuel Analysis Code FEMAXI-V (Ver.1). JAERI-Data/Code 2000-030. Tokai: “Japan Atomic Energy Research Institute”, 2000, 285 p. 12. P.Е. Philimonov, V.V. Мамichev, S.P. Averya- nova. The “Reactor simulator” code for modeling of Maneuvering WWER-1000 regimes // Аtomnaya Energiya. 1998, N 6, p. 560-563 (in Russian). 13. М. Suzuki. Моdelling of Light-water Reactor Fuel Element Behaviour in Different Loading Regimes. Оdessа: “Аstroprint”, 2010, 248 p. 14. S.N. Pelykh, M.V. Maksimov, S.D. Ryabchikov. The prediction problems of WWER fuel element cladding failure theory // Nuclear Engineering and Design. 2016, v. 302, Part A (June), p. 46-55. 15. R.Y. Vorobyev. Albums of neutron-physical characteristics of the reactor core, Unit 5, Zaporizhzhya NPP. Campaigns 20−23. Energodar: “Zaporizhzhya NPP”, 2011, 323 p. 16. S.N. Pelykh, M.V. Maksimov. Cladding rupture life control methods for a power-cycling WWER-1000 nuclear unit // Nuclear Engineering and Design. 2011, v. 241, p. 2956-2963. Article received 20.11.2017 ОПТИМИЗАЦИЯ ПЕРЕКЛЮЧЕНИЯ ПРОГРАММ РЕГУЛИРОВАНИЯ МОЩНОСТИ ВВЭР-1000 В ПЕРЕХОДНЫХ РЕЖИМАХ ЭКСПЛУАТАЦИИ Х. Чжоу, С.Н. Пелых, Е.А. Одреховская, О.Б. Максимова Статья посвячена решению научно-технической проблемы безопаcрного переключения статических программ регулирования ядерного энергоблока с ВВЭР-1000 в переменных режимах нагружения, чтобы минимизировать влияние отклонений внешних и внутренних эксплуатационных параметров, а также повысить безопасность и эффективность эксплуатации реактора. Задача оптимизации переключений статических программ регулирования решена путем нахождения экстремума целевой функции, что позволяет безопасно переключать режимы эксплуатации энергетического оборудования в предусмотренном интервале изменения нагрузки. Изучена возможность переключения статических программ регулирования в течение 4-годичной кампании реактора. Рассматривая различные программы регулирования мощности ядерного энергоблока с ВВЭР-1000 в переменном режиме нагружения, решена задача оптимизации выбора программы на протяжении 4-годичной кампании. ОПТИМІЗАЦІЯ ПЕРЕМИКАННЯ ПРОГРАМ РЕГУЛЮВАННЯ ПОТУЖНОСТІ ВВЕР-1000 У ПЕРЕХІДНИХ РЕЖИМАХ ЕКСПЛУАТАЦІЇ Х. Чжоу, С.М. Пелих, Є.О. Одреховська, О.Б. Максимова Стаття присвячена вирішенню науково-технічної проблеми безпечного перемикання статичних програм регулювання ядерного енергоблоку з ВВЕР-1000 у змінних режимах навантаження, щоб мінімізувати вплив відхилень зовнішніх і внутрішніх експлуатаційних параметрів, а також підвищити безпеку і ефективність експлуатації реактора. Завдання оптимізації перемикань статичних програм регулювання вирішене шляхом знаходження екстремуму цільової функції, що дозволяє безпечно перемикати режими експлуатації енергетичного обладнання в передбаченому інтервалі зміни навантаження. Вивчена можливість перемикання статичних програм регулювання протягом 4-річної кампанії реактора. Розглядаючи різні програми регулювання потужності ядерного енергоблоку з ВВЕР-1000 у змінному режимі навантаження, вирішена задача оптимізації вибору програми протягом 4-річної кампанії.