Оptimization of power control program switching for a WWER-1000 under transient operating conditions
This paper is devoted to solution of the scientific and technical problem of safe switching of static power control programs for a nuclear power unit with a WWER-1000 under transient operating conditions, so that to minimize the influence of disturbances of external and internal operating parameters...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2018 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/137360 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Оptimization of power control program switching for a WWER-1000 under transient operating conditions / Huiyu Zhou, S.N. Pelykh, I.O. Odrekhovska, O.B. Maksymova // Вопросы атомной науки и техники. — 2018. — № 1. — С. 218-222. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-137360 |
|---|---|
| record_format |
dspace |
| spelling |
Huiyu Zhou Pelykh, S.N. Odrekhovska, I.O. Maksymova, O.B. 2018-06-17T10:36:43Z 2018-06-17T10:36:43Z 2018 Оptimization of power control program switching for a WWER-1000 under transient operating conditions / Huiyu Zhou, S.N. Pelykh, I.O. Odrekhovska, O.B. Maksymova // Вопросы атомной науки и техники. — 2018. — № 1. — С. 218-222. — Бібліогр.: 16 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/137360 621.039.5:681.5 This paper is devoted to solution of the scientific and technical problem of safe switching of static power control programs for a nuclear power unit with a WWER-1000 under transient operating conditions, so that to minimize the influence of disturbances of external and internal operating parameters, as well as to increase the safety and efficiency of reactor operation. The switching optimization task for static power control programs has been solved by finding a decision of the objective function which allows to switch safely the energy equipment modes in a predetermined range of load variations. The possibility of switching between static power control programs during a 4-year reactor campaign has been studied. The control program optimization problem for anuclear power unit with a WWER-1000 operated under variable loading, considering different power control programs during a 4-year campaign, has been solved. Стаття присвячена вирішенню науково-технічної проблеми безпечного перемикання статичних програм регулювання ядерного енергоблоку з ВВЕР-1000 у змінних режимах навантаження, щоб мінімізувати вплив відхилень зовнішніх і внутрішніх експлуатаційних параметрів, а також підвищити безпеку і ефективність експлуатації реактора. Завдання оптимізації перемикань статичних програм регулювання вирішене шляхом знаходження екстремуму цільової функції, що дозволяє безпечно перемикати режими експлуатації енергетичного обладнання в передбаченому інтервалі зміни навантаження. Вивчена можливість перемикання статичних програм регулювання протягом 4-річної кампанії реактора. Розглядаючи різні програми регулювання потужності ядерного енергоблоку з ВВЕР-1000 у змінному режимі навантаження, вирішена задача оптимізації вибору програми протягом 4-річної кампанії. Статья посвячена решению научно-технической проблемы безопаcрного переключения статических программ регулирования ядерного энергоблока с ВВЭР-1000 в переменных режимах нагружения, чтобы минимизировать влияние отклонений внешних и внутренних эксплуатационных параметров, а также повысить безопасность и эффективность эксплуатации реактора. Задача оптимизации переключений статических программ регулирования решена путем нахождения экстремума целевой функции, что позволяет безопасно переключать режимы эксплуатации энергетического оборудования в предусмотренном интервале изменения нагрузки. Изучена возможность переключения статических программ регулирования в течение 4-годичной кампании реактора. Рассматривая различные программы регулирования мощности ядерного энергоблока с ВВЭР-1000 в переменном режиме нагружения, решена задача оптимизации выбора программы на протяжении 4-годичной кампании. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Физика и технология конструкционных материалов Оptimization of power control program switching for a WWER-1000 under transient operating conditions Оптимізація перемикання програм регулювання потужності ВВЕР-1000 у перехідних режимах експлуатації Оптимизация переключения программ регулирования мощности ВВЭР-1000 в переходных режимах эксплуатации Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Оptimization of power control program switching for a WWER-1000 under transient operating conditions |
| spellingShingle |
Оptimization of power control program switching for a WWER-1000 under transient operating conditions Huiyu Zhou Pelykh, S.N. Odrekhovska, I.O. Maksymova, O.B. Физика и технология конструкционных материалов |
| title_short |
Оptimization of power control program switching for a WWER-1000 under transient operating conditions |
| title_full |
Оptimization of power control program switching for a WWER-1000 under transient operating conditions |
| title_fullStr |
Оptimization of power control program switching for a WWER-1000 under transient operating conditions |
| title_full_unstemmed |
Оptimization of power control program switching for a WWER-1000 under transient operating conditions |
| title_sort |
оptimization of power control program switching for a wwer-1000 under transient operating conditions |
| author |
Huiyu Zhou Pelykh, S.N. Odrekhovska, I.O. Maksymova, O.B. |
| author_facet |
Huiyu Zhou Pelykh, S.N. Odrekhovska, I.O. Maksymova, O.B. |
| topic |
Физика и технология конструкционных материалов |
| topic_facet |
Физика и технология конструкционных материалов |
| publishDate |
2018 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Оптимізація перемикання програм регулювання потужності ВВЕР-1000 у перехідних режимах експлуатації Оптимизация переключения программ регулирования мощности ВВЭР-1000 в переходных режимах эксплуатации |
| description |
This paper is devoted to solution of the scientific and technical problem of safe switching of static power control programs for a nuclear power unit with a WWER-1000 under transient operating conditions, so that to minimize the influence of disturbances of external and internal operating parameters, as well as to increase the safety and efficiency of reactor operation. The switching optimization task for static power control programs has been solved by finding a decision of the objective function which allows to switch safely the energy equipment modes in a predetermined range of load variations. The possibility of switching between static power control programs during a 4-year reactor campaign has been studied. The control program optimization problem for anuclear power unit with a WWER-1000 operated under variable loading, considering different power control programs during a 4-year campaign, has been solved.
Стаття присвячена вирішенню науково-технічної проблеми безпечного перемикання статичних програм регулювання ядерного енергоблоку з ВВЕР-1000 у змінних режимах навантаження, щоб мінімізувати вплив відхилень зовнішніх і внутрішніх експлуатаційних параметрів, а також підвищити безпеку і ефективність експлуатації реактора. Завдання оптимізації перемикань статичних програм регулювання вирішене шляхом знаходження екстремуму цільової функції, що дозволяє безпечно перемикати режими експлуатації енергетичного обладнання в передбаченому інтервалі зміни навантаження. Вивчена можливість перемикання статичних програм регулювання протягом 4-річної кампанії реактора. Розглядаючи різні програми регулювання потужності ядерного енергоблоку з ВВЕР-1000 у змінному режимі навантаження, вирішена задача оптимізації вибору програми протягом 4-річної кампанії.
Статья посвячена решению научно-технической проблемы безопаcрного переключения статических программ регулирования ядерного энергоблока с ВВЭР-1000 в переменных режимах нагружения, чтобы минимизировать влияние отклонений внешних и внутренних эксплуатационных параметров, а также повысить безопасность и эффективность эксплуатации реактора. Задача оптимизации переключений статических программ регулирования решена путем нахождения экстремума целевой функции, что позволяет безопасно переключать режимы эксплуатации энергетического оборудования в предусмотренном интервале изменения нагрузки. Изучена возможность переключения статических программ регулирования в течение 4-годичной кампании реактора. Рассматривая различные программы регулирования мощности ядерного энергоблока с ВВЭР-1000 в переменном режиме нагружения, решена задача оптимизации выбора программы на протяжении 4-годичной кампании.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/137360 |
| citation_txt |
Оptimization of power control program switching for a WWER-1000 under transient operating conditions / Huiyu Zhou, S.N. Pelykh, I.O. Odrekhovska, O.B. Maksymova // Вопросы атомной науки и техники. — 2018. — № 1. — С. 218-222. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT huiyuzhou optimizationofpowercontrolprogramswitchingforawwer1000undertransientoperatingconditions AT pelykhsn optimizationofpowercontrolprogramswitchingforawwer1000undertransientoperatingconditions AT odrekhovskaio optimizationofpowercontrolprogramswitchingforawwer1000undertransientoperatingconditions AT maksymovaob optimizationofpowercontrolprogramswitchingforawwer1000undertransientoperatingconditions AT huiyuzhou optimízacíâperemikannâprogramregulûvannâpotužnostívver1000uperehídnihrežimahekspluatacíí AT pelykhsn optimízacíâperemikannâprogramregulûvannâpotužnostívver1000uperehídnihrežimahekspluatacíí AT odrekhovskaio optimízacíâperemikannâprogramregulûvannâpotužnostívver1000uperehídnihrežimahekspluatacíí AT maksymovaob optimízacíâperemikannâprogramregulûvannâpotužnostívver1000uperehídnihrežimahekspluatacíí AT huiyuzhou optimizaciâpereklûčeniâprogrammregulirovaniâmoŝnostivvér1000vperehodnyhrežimahékspluatacii AT pelykhsn optimizaciâpereklûčeniâprogrammregulirovaniâmoŝnostivvér1000vperehodnyhrežimahékspluatacii AT odrekhovskaio optimizaciâpereklûčeniâprogrammregulirovaniâmoŝnostivvér1000vperehodnyhrežimahékspluatacii AT maksymovaob optimizaciâpereklûčeniâprogrammregulirovaniâmoŝnostivvér1000vperehodnyhrežimahékspluatacii |
| first_indexed |
2025-11-25T10:13:45Z |
| last_indexed |
2025-11-25T10:13:45Z |
| _version_ |
1850509897086533632 |
| fulltext |
ISSN 1562-6016. PASТ. 2018. №1(113), p. 218-221.
UDC 621.039.5:681.5
ОPTIMIZATION OF POWER CONTROL PROGRAM SWITCHING
FOR A WWER-1000 UNDER TRANSIENT OPERATING CONDITIONS
Huiyu Zhou, S.N. Pelykh, I.O. Odrekhovska, O.B. Maksymova
Odessa National Polytechnic University, Odessa, Ukraine
E-mail: 1@pelykh.net; tel.: +38(066)187-21-45
This paper is devoted to solution of the scientific and technical problem of safe switching of static power control
programs for a nuclear power unit with a WWER-1000 under transient operating conditions, so that to minimize the
influence of disturbances of external and internal operating parameters, as well as to increase the safety and
efficiency of reactor operation. The switching optimization task for static power control programs has been solved
by finding a decision of the objective function which allows to switch safely the energy equipment modes in a
predetermined range of load variations. The possibility of switching between static power control programs during a
4-year reactor campaign has been studied. The control program optimization problem for anuclear power unit with a
WWER-1000 operated under variable loading, considering different power control programs during a 4-year
campaign, has been solved.
INTRODUCTION
Considering the present state of power generation in
Ukraine, operation of nuclear power plants (NPPs) with
WWER-reactors is a long-term project to which
Ukraine will remain committed for many years to come
[1]. As there is a lack of load following units in the
consolidated power system of Ukraine, in order to
insure a sufficient level of electricity quality, NPPs with
WWERs should participate in peak load and frequency
regulation. Even if a WWER-1000 reactor is operated
under stationary operating conditions, the reactor core is
influenced by a number of disturbances having different
nature and origin. But the number of disturbances
influencing core stability, safety and efficiency is
greatly increased when a reactor is operated under
variable loading, e. g. according to a daily load variation
cycle, as a reactor power maneuvering is characterized
by considerably changing values of mainreactor
technological parameters [2].
If a WWER-1000 is operated under variable loading,
e.g. in the range 100…80% of the nominal reactor
power N0, reactor power control methods should be
chosen based on solving an optimization task, because a
power control method influences greatly on the power
equipment operation and safety. The following WWER-
1000 power control methods will be considered in this
paper [3, 4]:
– core averaged coolant temperature is constant:
<tW> = const (program I);
– second circuit in let steam pressure is constant:
p2 = const (program II);
– core inlet coolant temperature is constant:
tW,0 = const (program III).
The modern state of optimal control theory and
automated control systems allows us to control the
reactor power, according to a daily load cycle, on the
basis of changing both reactor technological parameters
and the structure of automation equipment fulfilling a
power control method.The main aim of this paper is to
solve the optimization task in switching WWER-1000
power control programs under transient operating
conditions, based on accounting for disturbances of
technological parameters, as well as for the current state
of the reactor equipment, in order to increase the
competitive ability of NPPs with WWER-1000 reactors.
OBJECTIVE FUNCTION COMPONENTS
Following the method of construction of the
WWER-1000 fuel assembly (FA) rearrangement
efficiency criterion proposed in [4, 5], the objective
function for optimization of switching between reactor
power control programs includes such variables:
– axial offset module AO (for simplicity, herein
after the module sign for AO can be omitted) as a
measure of neutron flux stability in the reactor core, that
is a measure of both safety and efficiency of reactor
core and fuel operation;
– nuclear fuel burn up (B) as a measure of fuel
operation efficiency;
– cladding damage parameter (ω) as a measure of
both safety and efficiency of fuel operation;
The value of axial offset is determined by the ratio
of the difference between heat powers of higher ( hQ )
and lower ( lQ ) parts of the core, to the total heat power
of the core:
%,100
)()(
)(-)(
)АО(
lh
lh
QQ
QQ
(1)
where τ is time.
The value of nuclear fuel burn up is determined by
the equation:
,)(
1
)(
0
,,
dttQ
m
B jiji (2)
where jiQ , is heat power of the i-th axial segment of a
fuel element (FE) averaged in the j-th FA, W; m is mass
of the nuclear fuel in the corresponding axial
segment, kg.
The value of cladding damage parameter is
determined by the equation [6, 7]:
,)()()(;/)()(
0
.
0
dpAAA ee
(3)
where )(A is specific dispersion energy (SDE), J/m
3
;
0A
is the value of SDE at the moment 0 that cladding
material failure starts; )(e and
.
)(ep are equivalent
stress (Pa) and rate of equivalent creep strain (s
–1
),
respectively, for the inner most cladding radial element
having the maximum temperature; 0A is constant for a
given material of cladding and does not differ for
operating modes, the calculated value of 0A is
55 МJ/m
3
for a FE cladding made of Zircaloy-4 alloy
[4].
The objective function for optimization of WWER-
1000 power control program switching is based on the
criterion model of FE behavior control taking into
account safety and economic requirements
simultaneously [4]. So, the objective function for
optimization of WWER-1000 power control program
switching has been constructed using the following
principles [8]:
1. The goal for optimization of reactor power control
program switchingis an increase of both safety and
efficiency when operating the reactor core under normal
conditions, by means of simultaneous consideration of
axial offset, nuclear fuel burnup and cladding damage
parameter.
2. Optimization of reactor power control program
switchingis carried out on the basis of a priori
requirements for FE and core behavior.
3. Advantage of some reactor power control
program over another is determined on the basis of
summation of advantages given by the dimensionless
normalized components ,АО*( *B , *)
of the
objective function J.
4. The physical meaning of the objective function J
for optimization of WWER-1000 power control
program switching is that if any of the dimensionless
normalized components ,АО*( *B , *) of J lies out
of the corresponding permissible range, then this
component gives a negative contribution to the total
efficiency defined by the following equation for the
objective function [9]:
,*AO*)1*( 222 BJ
(4)
where ;/* limBBB ;/* lim
limAO/AO*AO ,
where a priori requirements are: limB = 88 (МW·d)/kg U;
lim = 1;
limAO = 0,05.
So, the problem of control program optimization for
a nuclear power unit with a WWER-1000 reactor
operated under variable loading, during a 4-year
campaign, was solved by minimization of J functional:
.min*)AO*,*,( BJ (5)
Taking into account that the components
,АО*( *,B *) of J are mainly determined by core inlet
coolant temperature 0,Wt , neutron flux density
n, n/(cm
2
·s) and fuel service life τ [6], the minimum of
the objective function was found using the method of
quickest descent [9].
CALCULATION ASSUMPTIONS
Such calculation assumptions were accepted in this
paper:
– WWER-1000 FE, FA, core operating and design
parameters were assigned in compliance with the design
characteristics [10], though the FE cladding material
was Zircaloy-4 and accordingly the MATPRO-A
cladding corrosion model was used [11];
– “Reactor simulator” code was used for calculation
of linear heat rates in axial segments of a FA–averaged
FE [12];
–“Femaxi” code was used to calculate the evolution
of stresses and strains in FE claddings [11, 13];
“Advanced” power control algorithm was
considered and thus the lay out of regulating units was
set according to the method described in [4, 14];
– N = 100 % → N = 80 % →N = 100% daily loading
cycle was considered, where N is core power [4, 5];
– time dependences for N and the axial coordinate H
of the lower edge of control elements of regulating units
were set according to the method described in [6, 14];
if core coolant in let temperature stays constant
during a power maneuvering, it equals to 287 ºС;
composition of nuclear fuel was set for the start of
the 5-th campaign of Khmelnitskyi NPP, Unit 2 [4,
6];
– FA rearrangement model was based on modelling
rearrangements of FAs in a core segment containing 1/6
of FAs placed in the core and 1/6 of regulating units
used for reactor power maneuvering [8];
– distribution of FAs within a 1/6 core segment was
set based on the albums of neutron-physical characteris-
tics of the core [15], according to the method [14];
– calculation model of the power density distribution
in fuel assembly – averaged FEs was based on a two-
group neutron diffusion model [16];
– in order to account for most unfavourable cladding
operation conditions, values of )(
and )(B
included in the objective function J were calculated for
the 6-th axial segment of a FA–averaged FE,
consideringa FE located in a FA transposed in a 1/6 core
segment according to the A rearrangement
algorithm 3 (core cell) →22→54→29 characterized by
most extreme conditions for FE claddings [8, 14]. Also
the distribution of )(t among FEs included in this
FA was taken into account by multiplying linear heat
rates (calculated for axial segments) by the volume
power-density irregularity coefficient 1.6 [14].
RESULTS
Using the “Reactor simulator” code which is an
universal instrument for modeling of WWER-1000
operation, first of all stability of neutron flux and power
release processes in a core during a 4-year reactor
campaign, under reactor power maneuvering conditions
according to N = 100 % → N = 80 % → N = 100% daily
loading cycle, has been studied.
For reactor power control programs I, II, and III,
core averaged coolant temperature <tW>, second circuit
in let steam pressure p2 and core inlet coolant
temperature tW,0 were kept constant, respectively. Based
on the requirement
limAO = 0.05, the duration of reactor
power maneuvering permissible for different power
control programs, has been found. It was obtained that
AO and the axial profile of neutrons stay stable during
7, 1, and 6 months for programs I, II, and III,
respectively (Tabl. 1).
Тable1
Permissible duration of reactor power maneuvering
Reactor power control
program
Duration, months
I (<tW> = const) 7
II (p2 = const) 1
III (tW,0 = const) 6
The calculated AО dependence on time for reactor
power control program I (<tW> = const) is shown in
Fig. 1.
Fig. 1. Axial offset dependence on time for WWER-1000
power control program I
It can be seen that the amplitude of АО change in
creases when the duration of reactor power
maneuvering with <tW> = const increases also, though
AO stays in the permissible ranges: [–5; 2.5] and
[–5; 4] for N = 100 and 80%, respectively [12].
The calculated AО dependence on time for reactor
power control program II (p2 = const) is shown in Fig. 2.
It can be seen that the amplitude of АО change
exceeds the permissible range when the duration of
reactor power maneuvering with p2 = const exceeds one
month, though the value of AO returns to permissible
values and goes on staying in the permissible range after
a reactor has been transferred from the mode of variable
loading to the stationary mode.
Fig. 2. Axial offset dependence on time for
WWER-1000 power control program II
The calculated AО dependence on time for reactor
power control program III (tW,0 = const) is shown in
Fig. 3.
Fig. 3. Axial offset dependence on time for
WWER-1000 power control program III
As it follows from Fig. 3, the amplitude of АО
change increases when the duration of reactor power
maneuvering with tW,0 = const increases also, though
AO stays in its permissible ranges.
Using the “Femaxi” code, other
components *(B and *)
of the objective function J,
for reactor power control programs with <tW> = const,
p2 = const, and tW,0 = const, have been found. The
calculated dependence of burn up B on time for
programs I, II, and III is shown in Fig. 4.
Fig. 4. Burn up dependence on time for WWER-1000
power control program I (<tW>=const), II (p2=const),
and III (tW,0 =const)
It can be seen that the dependences of burn up on
time for programs I and III are practically similar, while
program II is characterized by a slightly greater value of
burn up.
The calculated dependence of cladding damage
parameter ω on time for programs I, II, and III is shown
in Fig. 5.
Fig. 5. Cladding damage parameter dependence on
time for WWER-1000 power control program I
(<tW>=const), II (p2=const), and III (tW,0 =const)
So, the dependences of cladding damage parameter
ω on time for programs I and III are similar also, but
program II is characterized by a greater valueof ω.
Having found stable operating regimes for a
WWER-1000 operated under daily variable loading
according to power control programs I, II, and III, the
problem of control program optimization during a
4-year campaign was solved by minimization of J
functional.
If the duration of reactor power maneuvering is one
month, and further a WWER-1000 is operated under
stationary loading conditions during 11 months, then the
reactor peration will be optimal, from the point of view
of both safety and efficiency, when 11 transitions
between power control programs are made (Fig. 6).
Fig. 6. Schedule of transitions between power control
programs for one month of power maneuvering
Also the solutions of the objective function J have
been found for the following WWER-1000 loading
scenarios during a 4-year reactor campaign:
– 2 months of reactor power maneuvering, 10
months under stationary loading conditions (scenario 1);
– 3 months of reactor power maneuvering, 9 months
under stationary loading conditions (scenario 2);
– 4 months of reactor power maneuvering, 8 months
under stationary loading conditions (scenario 3);
– 5 months of reactor power maneuvering, 7 months
under stationary loading conditions (scenario 4);
– 6 months of reactor power maneuvering, 6 months
under stationary loading conditions (scenario 5).
Considering these loading scenarios, for a reactor
under transient operating conditions according to
N = 100% →N= 80% →N =100% daily loading cycle,
the calculated optimal number of transitions between
power control programs I and III, is shown in Tabl. 2.
Тable 2
The optimal number of transitions between
programs I and III
Scenario 1 2 3 4 5
Number of
transitions
38 65 69 75 107
Program II is not considered in Tabl. 2 because the
permissible duration of WWER-1000 power
maneuvering for this program is one month only.
CONCLUSIONS
As optimization of WWER-1000 power control
program switching is one of important directions for
improvement of both safety and efficiency of reactor
operation under transient operating conditions according
to the daily loading cycle N = 100% → N = 80%
→N = 100%, the optimization task in switching
between reactor power control programs has been
solved based on accounting for disturbances of axial
offset as a measure of neutron flux stability in a core,
nuclear fuel burnup as a measure of fuel operation
efficiency, as well as cladding damage parameter as a
measure of both safety and efficiency of nuclear fuel
operation.
The duration of reactor power maneuvering
permissible from the point of view of AO stability, for
reactor power control programs I (<tW> = const), II
(p2 = const), and III (tW,0 = const) is 7, 1, and 6 months,
respectively.
If the duration of WWER-1000 reactor power mane
uvering is 1 month only, then the reactor operation will
be optimal, fromthe point of view of both safety and
efficiency, when 11 transitions between power control
programs I, II, and III are made.
If the duration of WWER-1000 reactor power
maneuvering is 2, 3, 4, 5, and 6 months, then the reactor
operation will be optimal, from the point of view of
both safety and efficiency, when 38, 65, 69, 75, and 107
transitions between power control programs I and III are
made, respectively.
REFERENCES
1. N.I. Vlasenko. A long-term evaluation of nuclear
power engineering development in Ukraine // Proc. of
the XX nd Int. Conf. on Physics of Radiative Effects and
Radiative Study of Materials, Alushta, NSС “Kharkov
Institute of Physics and Technology”. 2012, p. 7-8.
2. H. Zhou, S.N. Pelykh, T.V. Foshch, O.B. Maksy-
mova. An improved method for automated control of
the WWER-1000 power maneuvering // Problems of
Atomic Science and Technology. Series “Physics of
Radiation Effect and Radiation Materials Science”.
2017, N 5(111), p. 57-64.
3. F.Y. Оvchinnikov, V.V. Semenov. The operating
regimes of water-water power reactors. М.: “Energo-
atomizdat”, 1988, 359 p.
4. S.N. Pelykh, M.V. Maksimov, V.E. Baskakov.
Grounds of WWER-1000 fuel cladding life control //
Annals of Nuclear Energy. 2013, N 58, p. 188-197.
5. S.N. Pelykh, M.V. Maksimov, G.T. Parks. A
method for WWER-1000 fuel rearrangement
optimization taking into account both fuel cladding
durability and burnup // Nuclear Engineering and
Design. 2013, v. 257, N 4, p. 53-60.
6. S.N. Pelykh. Grounds of WWER fuel element
behavior control. Saarbrücken: “Palmarium Academic
Publishing”, 2013, 160 p.
7. O.V. Sosnin, B.V. Gorev, A.F. Nikitenko. The
energy variant of creep theory. Novosibirsk: “The
Siberian Branch of USSR Academy of Sciences”, 1986,
95 p.
8. S.N. Pelykh, M.V. Maksimov, M.V. Nikolsky.
A method for minimization of cladding failure
parameter accumulation probability in WWER fuel
elements // Problems of Atomic Science and
Technology. Series “Physics of Radiation Effect and
Radiation Materials Science”. 2014, N 4, p. 108-116.
http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2013_2.html
http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2013_2.html
http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2013_2.html
http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2013_2.html
9. S.N. Pelykh, E.O. Odrekhovska, O.B. Maksy-
mova. Search for the best power control program at
NPP with WWER-1000 using gradient descent method
// Automation of technological and businessprocesses.
2016, v. 8, N 3, p. 36-40.
10. V.D. Shmelev, Y.G. Dragunov, V.P. Denisov.
The WWER Active Cores for Nuclear Stations. М.:
“Аka-demkniga”, 2004, 220 p.
11. М. Suzuki. Light Water Reactor Fuel Analysis
Code FEMAXI-V (Ver.1). JAERI-Data/Code 2000-030.
Tokai: “Japan Atomic Energy Research Institute”, 2000,
285 p.
12. P.Е. Philimonov, V.V. Мамichev, S.P. Averya-
nova. The “Reactor simulator” code for modeling of
Maneuvering WWER-1000 regimes // Аtomnaya
Energiya. 1998, N 6, p. 560-563 (in Russian).
13. М. Suzuki. Моdelling of Light-water Reactor
Fuel Element Behaviour in Different Loading Regimes.
Оdessа: “Аstroprint”, 2010, 248 p.
14. S.N. Pelykh, M.V. Maksimov, S.D. Ryabchikov.
The prediction problems of WWER fuel element
cladding failure theory // Nuclear Engineering and
Design. 2016, v. 302, Part A (June), p. 46-55.
15. R.Y. Vorobyev. Albums of neutron-physical
characteristics of the reactor core, Unit 5, Zaporizhzhya
NPP. Campaigns 20−23. Energodar: “Zaporizhzhya
NPP”, 2011, 323 p.
16. S.N. Pelykh, M.V. Maksimov. Cladding rupture
life control methods for a power-cycling WWER-1000
nuclear unit // Nuclear Engineering and Design. 2011,
v. 241, p. 2956-2963.
Article received 20.11.2017
ОПТИМИЗАЦИЯ ПЕРЕКЛЮЧЕНИЯ ПРОГРАММ РЕГУЛИРОВАНИЯ МОЩНОСТИ
ВВЭР-1000 В ПЕРЕХОДНЫХ РЕЖИМАХ ЭКСПЛУАТАЦИИ
Х. Чжоу, С.Н. Пелых, Е.А. Одреховская, О.Б. Максимова
Статья посвячена решению научно-технической проблемы безопаcрного переключения статических
программ регулирования ядерного энергоблока с ВВЭР-1000 в переменных режимах нагружения, чтобы
минимизировать влияние отклонений внешних и внутренних эксплуатационных параметров, а также
повысить безопасность и эффективность эксплуатации реактора. Задача оптимизации переключений
статических программ регулирования решена путем нахождения экстремума целевой функции, что
позволяет безопасно переключать режимы эксплуатации энергетического оборудования в предусмотренном
интервале изменения нагрузки. Изучена возможность переключения статических программ регулирования
в течение 4-годичной кампании реактора. Рассматривая различные программы регулирования мощности
ядерного энергоблока с ВВЭР-1000 в переменном режиме нагружения, решена задача оптимизации выбора
программы на протяжении 4-годичной кампании.
ОПТИМІЗАЦІЯ ПЕРЕМИКАННЯ ПРОГРАМ РЕГУЛЮВАННЯ ПОТУЖНОСТІ
ВВЕР-1000 У ПЕРЕХІДНИХ РЕЖИМАХ ЕКСПЛУАТАЦІЇ
Х. Чжоу, С.М. Пелих, Є.О. Одреховська, О.Б. Максимова
Стаття присвячена вирішенню науково-технічної проблеми безпечного перемикання статичних програм
регулювання ядерного енергоблоку з ВВЕР-1000 у змінних режимах навантаження, щоб мінімізувати вплив
відхилень зовнішніх і внутрішніх експлуатаційних параметрів, а також підвищити безпеку і ефективність
експлуатації реактора. Завдання оптимізації перемикань статичних програм регулювання вирішене шляхом
знаходження екстремуму цільової функції, що дозволяє безпечно перемикати режими експлуатації
енергетичного обладнання в передбаченому інтервалі зміни навантаження. Вивчена можливість
перемикання статичних програм регулювання протягом 4-річної кампанії реактора. Розглядаючи різні
програми регулювання потужності ядерного енергоблоку з ВВЕР-1000 у змінному режимі навантаження,
вирішена задача оптимізації вибору програми протягом 4-річної кампанії.
|