Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam
In the model of the nonlocal thermoelastic peak of low-energy ion, the formation of intrinsic stress in the coating deposited from inclined ion beam at the pulsed bias potential with different values of pulse frequency f and duration tₚ is analyzed. The stress in the TiN coating deposited from Ti io...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2018 |
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/137375 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam / A.I. Kalinichenko, S.S. Perepelkin, E.N. Reshetnyak, V.E. Strel’nitskij // Вопросы атомной науки и техники. — 2018. — № 1. — С. 114-117. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-137375 |
|---|---|
| record_format |
dspace |
| spelling |
Kalinichenko, A.I. Perepelkin, S.S. Reshetnyak, E.N. Strel’nitskij, V.E. 2018-06-17T10:41:35Z 2018-06-17T10:41:35Z 2018 Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam / A.I. Kalinichenko, S.S. Perepelkin, E.N. Reshetnyak, V.E. Strel’nitskij // Вопросы атомной науки и техники. — 2018. — № 1. — С. 114-117. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 61.80.Az, 81.65.-b https://nasplib.isofts.kiev.ua/handle/123456789/137375 In the model of the nonlocal thermoelastic peak of low-energy ion, the formation of intrinsic stress in the coating deposited from inclined ion beam at the pulsed bias potential with different values of pulse frequency f and duration tₚ is analyzed. The stress in the TiN coating deposited from Ti ion flux in the mode of the pulsed bias potential at various angles of incidence α and different values of time parameter τ = f tₚ is calculated. It is established that in the region 0.01 < τ < 0.2 the stress σ varies nonmonotonically with increasing α, decreasing up to angles of incidence α ~ 70º with subsequent growth. The calculated curve σ(τ) coincides with the experimental data at U = 1.5 kV and α = 0. У моделі нелокального термопружного піку низькоенергетичного іона проаналізовано формування внутрішніх напружень в покритті, що осаджується з похилого пучка іонів при імпульсному потенціалі зміщення з різними значеннями частоти f і тривалості tₚ імпульсів. Проведено розрахунок напружень в TiN-покритті, що осідає з потоку іонів Ti в режимі імпульсного потенціалу при різних кутах падіння іонів α і різних значеннях часового параметра τ = f tₚ. Установлено, що в області 0,01 < τ < 0,2 при збільшенні α напруга σ змінюється немонотонно, зменшуючись аж до кутів падіння α ~ 70º з наступним ростом, причому при U = 1,5 кВ і α = 0 хід розрахункової кривої σ(τ) збігається з експериментальними даними. В модели нелокального термоупругого пика низкоэнергетического иона проанализировано формирование внутренних напряжений в покрытии, осаждаемом из наклонного пучка ионов при импульсном потенциале смещения с различными значениями частоты f и длительности tₚ импульсов. Проведен расчет напряжений σ в TiN-покрытии, осаждаемом из потока ионов Ti в режиме импульсного потенциала при различных углах падения ионов α и различных значениях временного параметра τ = f tₚ. Установлено, что в области 0,01 < τ <0,2 при увеличении α напряжение σ изменяется немонотонно, уменьшаясь вплоть до углов падения α ~ 70º с последующим ростом, причем при U = 1,5 кВ и α = 0 ход расчетной кривой σ(τ) совпадает с экспериментальными данными. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Физика и технология конструкционных материалов Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam Вплив часових параметрів імпульсного потенціалу зміщення на внутрішню напругу в покритті TiN, що осаджується з похилого пучка іонів Влияние временных параметров импульсного потенциала смещения на внутренние напряжения в покрытии TiN, осаждаемом из наклонного пучка ионов Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam |
| spellingShingle |
Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam Kalinichenko, A.I. Perepelkin, S.S. Reshetnyak, E.N. Strel’nitskij, V.E. Физика и технология конструкционных материалов |
| title_short |
Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam |
| title_full |
Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam |
| title_fullStr |
Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam |
| title_full_unstemmed |
Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam |
| title_sort |
effect of time parameters of pulsed bias potential on intrinsic stress in tin coating deposited from inclined ion beam |
| author |
Kalinichenko, A.I. Perepelkin, S.S. Reshetnyak, E.N. Strel’nitskij, V.E. |
| author_facet |
Kalinichenko, A.I. Perepelkin, S.S. Reshetnyak, E.N. Strel’nitskij, V.E. |
| topic |
Физика и технология конструкционных материалов |
| topic_facet |
Физика и технология конструкционных материалов |
| publishDate |
2018 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Вплив часових параметрів імпульсного потенціалу зміщення на внутрішню напругу в покритті TiN, що осаджується з похилого пучка іонів Влияние временных параметров импульсного потенциала смещения на внутренние напряжения в покрытии TiN, осаждаемом из наклонного пучка ионов |
| description |
In the model of the nonlocal thermoelastic peak of low-energy ion, the formation of intrinsic stress in the coating deposited from inclined ion beam at the pulsed bias potential with different values of pulse frequency f and duration tₚ is analyzed. The stress in the TiN coating deposited from Ti ion flux in the mode of the pulsed bias potential at various angles of incidence α and different values of time parameter τ = f tₚ is calculated. It is established that in the region 0.01 < τ < 0.2 the stress σ varies nonmonotonically with increasing α, decreasing up to angles of incidence α ~ 70º with subsequent growth. The calculated curve σ(τ) coincides with the experimental data at U = 1.5 kV and α = 0.
У моделі нелокального термопружного піку низькоенергетичного іона проаналізовано формування внутрішніх напружень в покритті, що осаджується з похилого пучка іонів при імпульсному потенціалі зміщення з різними значеннями частоти f і тривалості tₚ імпульсів. Проведено розрахунок напружень в TiN-покритті, що осідає з потоку іонів Ti в режимі імпульсного потенціалу при різних кутах падіння іонів α і різних значеннях часового параметра τ = f tₚ. Установлено, що в області 0,01 < τ < 0,2 при збільшенні α напруга σ змінюється немонотонно, зменшуючись аж до кутів падіння α ~ 70º з наступним ростом, причому при U = 1,5 кВ і α = 0 хід розрахункової кривої σ(τ) збігається з експериментальними даними.
В модели нелокального термоупругого пика низкоэнергетического иона проанализировано формирование внутренних напряжений в покрытии, осаждаемом из наклонного пучка ионов при импульсном потенциале смещения с различными значениями частоты f и длительности tₚ импульсов. Проведен расчет напряжений σ в TiN-покрытии, осаждаемом из потока ионов Ti в режиме импульсного потенциала при различных углах падения ионов α и различных значениях временного параметра τ = f tₚ. Установлено, что в области 0,01 < τ <0,2 при увеличении α напряжение σ изменяется немонотонно, уменьшаясь вплоть до углов падения α ~ 70º с последующим ростом, причем при U = 1,5 кВ и α = 0 ход расчетной кривой σ(τ) совпадает с экспериментальными данными.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/137375 |
| citation_txt |
Effect of time parameters of pulsed bias potential on intrinsic stress in TiN coating deposited from inclined ion beam / A.I. Kalinichenko, S.S. Perepelkin, E.N. Reshetnyak, V.E. Strel’nitskij // Вопросы атомной науки и техники. — 2018. — № 1. — С. 114-117. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT kalinichenkoai effectoftimeparametersofpulsedbiaspotentialonintrinsicstressintincoatingdepositedfrominclinedionbeam AT perepelkinss effectoftimeparametersofpulsedbiaspotentialonintrinsicstressintincoatingdepositedfrominclinedionbeam AT reshetnyaken effectoftimeparametersofpulsedbiaspotentialonintrinsicstressintincoatingdepositedfrominclinedionbeam AT strelnitskijve effectoftimeparametersofpulsedbiaspotentialonintrinsicstressintincoatingdepositedfrominclinedionbeam AT kalinichenkoai vplivčasovihparametrívímpulʹsnogopotencíaluzmíŝennânavnutríšnûnapruguvpokrittítinŝoosadžuêtʹsâzpohilogopučkaíonív AT perepelkinss vplivčasovihparametrívímpulʹsnogopotencíaluzmíŝennânavnutríšnûnapruguvpokrittítinŝoosadžuêtʹsâzpohilogopučkaíonív AT reshetnyaken vplivčasovihparametrívímpulʹsnogopotencíaluzmíŝennânavnutríšnûnapruguvpokrittítinŝoosadžuêtʹsâzpohilogopučkaíonív AT strelnitskijve vplivčasovihparametrívímpulʹsnogopotencíaluzmíŝennânavnutríšnûnapruguvpokrittítinŝoosadžuêtʹsâzpohilogopučkaíonív AT kalinichenkoai vliânievremennyhparametrovimpulʹsnogopotencialasmeŝeniânavnutrennienaprâženiâvpokrytiitinosaždaemomiznaklonnogopučkaionov AT perepelkinss vliânievremennyhparametrovimpulʹsnogopotencialasmeŝeniânavnutrennienaprâženiâvpokrytiitinosaždaemomiznaklonnogopučkaionov AT reshetnyaken vliânievremennyhparametrovimpulʹsnogopotencialasmeŝeniânavnutrennienaprâženiâvpokrytiitinosaždaemomiznaklonnogopučkaionov AT strelnitskijve vliânievremennyhparametrovimpulʹsnogopotencialasmeŝeniânavnutrennienaprâženiâvpokrytiitinosaždaemomiznaklonnogopučkaionov |
| first_indexed |
2025-11-27T07:15:35Z |
| last_indexed |
2025-11-27T07:15:35Z |
| _version_ |
1850806308258709504 |
| fulltext |
ISSN 1562-6016. PASТ. 2018. №1(113), p. 114-117.
EFFECT OF TIME PARAMETERS OF PULSED BIAS POTENTIAL
ON INTRINSIC STRESS IN TiN COATING DEPOSITED FROM
INCLINED ION BEAM
A.I. Kalinichenko, S.S. Perepelkin, E.N. Reshetnyak, V.E. Strel’nitskij
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: strelnitskij@kipt.kharkov.ua
In the model of the nonlocal thermoelastic peak of low-energy ion, the formation of intrinsic stress in the coating
deposited from inclined ion beam at the pulsed bias potential with different values of pulse frequency f and duration
tp is analyzed. The stress in the TiN coating deposited from Ti ion flux in the mode of the pulsed bias potential at
various angles of incidence α and different values of time parameter = f tp is calculated. It is established that in the
region 0.01 < < 0.2 the stress σ varies nonmonotonically with increasing α, decreasing up to angles of incidence
~ 70º with subsequent growth. The calculated curve coincides with the experimental data at U = 1.5 kV
and α = 0.
PACS: 61.80.Az, 81.65.-b
INTRODUCTION
Various methods of plasma-ion deposition, which
are used for coatings, are characterized by appearance
of significant intrinsic stresses in coatings. Intrinsic
stress in the coating is one of the key characteristics,
which, in turn, determines a number of other important
physical properties and technological parameters of the
coating – density, hardness, adhesion of coating to the
substrate [1]. In particular, high stresses can lead to the
destruction of deposited coatings. The use of the pulsed
bias potential permits reducing value of arising intrinsic
stress. It is known that, in case of normal incidence, the
intrinsic stress depends considerably on the parameters
of the pulsed potential (duration tp, repetition frequency
f, amplitude U). However, the deposition of coatings on
objects of complex geometric shape requires
investigation of influence of the pulse potential
parameters and the angle of incidence on the intrinsic
stress. The effect of surface orientation was revealed
experimentally [2] and was confirmed by simulation
with the molecular dynamics method [3].
Earlier, we developed the theory of intrinsic stresses
formation in coatings at plasma-ion deposition, based on
the model of the nonlocal thermoelastic peak (NTP) of
the low-energy ion (see, for example, [4–6]). The theory
describes intrinsic stresses arising in the coatings at the
normal incidence of the ion beam as a function of
deposition temperature, species, energy, and charge of
the deposited ions in DC and pulsed potential modes.
Comparison of the results of stress calculations with
experimental data has shown their qualitative agreement
for a number of practically important cases, in
particular, for diamond-like and nitride coatings [5, 6].
The influence of the pulsed potential amplitude on
the value of the intrinsic stress in TiN coatings at
oblique incidence of the ion beam was investigated in
[7]. However, the influence of the time parameter
= ftp on the intrinsic stress value was not investigated.
The parameter characterizes the average flux of
energy of the ion beam.
The purpose of this paper is the investigation
intrinsic stresses in TiN coatings deposited from the
inclined beam of Ti
+
ions, depending on the time
parameter of pulse potential and comparison of the
calculation results with the experimental data.
INTRINSIC STRESS IN COATING
DEPOSITED FROM INCLINED ION BEAM
The use of the NTP model for inclined ion beam
(angle of incidence α ≠ 0) will require the modification
of the formulas, taking into account changes in the
geometric parameters and energy content of the NTP
ions, ion flux density falling on the surface and causing
the change in its mean temperature, the number of point
defects, formed by the primary ion and determining the
deformation of the deposited coating. To take into
account the change in the geometric parameters and the
energy content of the NTP, it is necessary to carry out
the complex of computer experiments using the
SRIM2000 program package [8] simulating cascades of
excited atoms. The analysis of the geometric and energy
characteristics of the resulting model cascades will
allow us to modify the previously developed NTP
model for the oblique incidence of the ion on the
irradiated surface.
Simulation results using the SRIM 2000 software
package have shown that under normal incidence of the
low-energy ion, its NTP can be approximated by the
spherical segment adjacent to the target surface. The
radius of the NTP is determined by the relation:
( , ) ( ) / 2
T
R t E l E R t , (1)
where ( )l E is the average projective range of an ion
with energy E; T
R t is the radius of the “smearing
sphere” of the point thermal source for time t. The NTP
center lies at the middle of the average projected range
of the ion. The analysis of the geometric characteristics
of the cascades of excited atoms generated by the ion at
various energies and incidence angles α has shown that
the radius of the NTP weakly depends on α. But the
position of the NTP with respect to the boundary varies
and is determined by the rotation of the NTP by angle α
around the ion's entry point in the plane determined by
the normal to the target surface and by the ion velocity
vector (Fig. 1).
mailto:strelnitskij@kipt.kharkov.ua
Ti
+
Ti
+
l/2
l/2+RT
O
O'
V
A
C
U
U
M
T
A
R
G
E
T
Fig. 1. Scheme of NTP transformation with the change
of the angle of ion incidence
At the arbitrary incidence angle, the NTP volume is
determined by the expression:
2
34 cos
cos 2
3 3 2 2
l l
V R R R
. (2)
As follows from (2), the volume of the peak decreases
monotonically with increase from 0 to 90º. At
normal incidence α = 0º expression (2) coincides with
the expression for V given in [6].
The energy content of the peak is determined by the
phonon loss of the ion, which now depends on the
angle, and has the form:
( , ) ,
ph
E E E E . (3)
Functions l E and E, are defined using the
SRIM2000 software package. The calculated functions
, ,V t E and ( , )
ph
E E allow us to calculate the
average temperature of the NTP with oblique incidence
of the ion beam
0 0
( , )
, , ,
, ,
ph
E E
T t E T T
CV t E
, (4)
where ρ, C, and T0 are the density, specific heat and
deposition temperature of the coating, respectively. We
note that at temperatures above room temperature, the
dependence of the heat capacity C on temperature can
be neglected, taking it equal to its high-temperature
limit.
The values obtained were used to calculate the
relaxation rate of intrinsic stresses in the coating,
determined by the number of thermally activated
transitions w (E, u, T0, α) in the NTP of the ion:
0, , ,
0 0
0
, , , , , e
c
B
u
k T t E T
w E u T n V t E dt
, (5)
where kB is the Boltzmann constant; n0 is the target
atom concentration; is the vibrational frequency of
the atom;
c
is the lifetime of the NTP, and u is the
activation energy of the defect migration process [5, 6].
When determining the deposition temperature T0 in
the steady-state regime, it is necessary to take into
account the change in the flux density of ions j falling
on the surface. As the first approximation for oblique
incidence, it can be assumed that the ion flux density on
the substrate is varied in proportion to the cosine of the
incidence angle α. Then the value of T0, which depends
on the potential on the substrate U, and the incidence
angle α, is given by:
0 00 1
, ( ) 1 ( )
i i
i i
T U T j Q U Q U , (6)
where
00
T is the temperature of the non-irradiated
substrate;
j = jcosα; is the fitting parameter chosen
from the equality condition of the deposition tem-
perature to the experimentally observed value;
Qi(U) = 0i f i
i U U E ; χi and E0i is the fraction of
ions with charge i (in proton charge units) and the initial
ion energy per unit of charge, respectively; Uf is the
floating potential; U1 is the potential applied to the
substrate between pulses. Summation is carried out over
n charge states of ions (as a rule, n ≤ 5).
Intrinsic stresses are formed as a result of the defect
formation at ion implantation and stress relaxation
during the migration of defects into NTP ions [1, 4–6].
When deriving the formula for stresses, a linear
dependence was assumed between the volume
deformation of the target and the density of long-lived
defects formed as a result of the scattering of the
primary ion by target atoms. The resulting rate at which
defects are introduced into the film is determined by the
difference between the rate of appearance of defects due
to ion implantation and the rate of their loss due to
thermally activated migration. Calculations of the rate
of defect formation lead to the following formula for
calculating of intrinsic stresses in coatings deposited
from the inclined beam of differently charged ions:
1
1
( , ) 1 ( , )
, ,
1 1 ( , ) 1 ( , )
Y
G U G UE
U A
W U W U
,(7)
where EY and Π are the Young's modulus and the
Poisson's ratio of the coating material,
0
( , ) ,
i f i
i
G U i U U E
and
0
, ,
i f i
i
W U w i U U E .
Parameter A, as well as the value of the activation
energy of defect migration u, are determined from the
comparison of the theoretical dependence with the
experimental data for the normal incidence of the ions
α = 0º. The function ,E is determined by the
density of interstitial defects ,E generated by the
primary ion, minus those that are removed during the
ion sputtering of the coating material. Let the total
number of defects created by both the primary ion and
all secondary ions be given by the function ,
total
E ,
and the total number of sputtered atoms is function
,
total
E . Both these functions, as well as the func-
tion ,E , can be obtained using the SRIM2000
software package. Then the part of the stable defects
that is not removed from the material as a result of
sputtering can be determined by the expression:
, , 1 , ,
total total
E E E E . (8)
Formula (7) defines the intrinsic stress that arises in
the coating during deposition of the one-component
beam of charged ions at both the constant ( = 1) and
the pulsed ( < 1) potentials on the substrate.
RESULTS AND DISCUSSION
Calculation of intrinsic stresses in the TiN coating
was carried out at the following values of the para-
meters: u = 0.58 eV, Uf = 20 V, U1 = 0, T00 = 300 K. In
accordance with the experimental conditions, the pulse
frequency f and duration tp were selected from intervals
2.5...12 kHz and 5...20 μs, respectively. The NTP
parameters of Ti ions in the TiN coating material,
necessary for calculating the functions E and
w E were determined using the software package
SRIM2000. The calculations also assumed
j = 0.223 K/V, which corresponded to the average
deposition temperature Т0 (0.12)=400 К in the pulsed
potential mode and the normal incidence of the
deposited beam on the coating surface. The values of
the parameters i and E0i for Ti ions were taken from
the monograph [9].
In Fig. 2 the shape of the function
, , ,
total total
E E E is shown for the case
of Ti ions bombarding the TiN target for different
values of the incidence angle of ions α. The functions
, ,
total total
were calculated using SRIM2000.
0 1 2 E,кeV
0.4
0.8
1
2
3
45
0.2
0.6
Fig. 2. Function ,E for different values of the
incidence angle α of Ti ion, α = 0, 45, 60, 70, 80°
(curves 1–5, respectively)
As can be seen from Fig. 2, the relative decrease in
the number of long-lived defects due to their sputtering
in the case of the normal incidence of the ion is
relatively small and varies slowly from 0.4 to 0.2 in the
ion energy range from 0.2 to 2.5 keV. For qualitative
analysis, it is possible to replace the function ,0E
with constant γ ≈ 0.3. In the accepted approximation,
account of the sputtering at normal incidence changes
the shape of the stress curve E only slightly,
leading only to the renormalization of the fitting
parameter A in expression (7). Thus, the obtained
previously results of calculations of intrinsic stresses in
the TiN coating at normal incidence of the Ti ion beam
[5, 6], in which sputtering is not taken into account,
qualitatively correctly describe the stresses arising at
α = 0 and need only in an insignificant correction. We
note that for the fixed ion energy, the number of
sputtered atoms increases with for α < 70º and
decreases for α > 70º (see Fig. 2).
Fig. 3 displays the dependences in TiN
coatings bombarding by Ti ions for U = 1.5 kV at
different angles of incidence of α, calculated using
formula (7).
,
GPа
10
5
0 0,1 0,2
1
2
5
3
4
Fig. 3. Intrinsic stresses in TiN coating deposited
from Ti ion beam in the pulsed potential mode for
U = 1.5 kV at incidence angles = 0, 45, 60, 70, 80°,
curves 1–5, respectively. The symbols ○ are
experimental points at =0°[10]
It can be seen from Fig. 3 that at α = 0º the
calculated curve coincides qualitatively with the
experimental data [10]. In the region 0.01 < < 0.2, as
the angle of incidence is increased, the stress σ varies
nonmonotonically, decreasing up to angles of incidence
~ 70 with subsequent growth. This behavior is
associated with different influence of processes of
defect formation, sputtering and the deposition
temperature at different angle of incidence of ions.
When approaching the regime of constant potential
( ~ 1), calculations show that the stresses increase
monotonically with increasing angle of incidence,
remaining small enough.
CONCLUSIONS
1. In the framework of the model of the nonlocal
thermoelastic peak, intrinsic stresses in the coating
deposited from the inclined ion beam are analyzed at
different values of angle of incidence α and time
parameter of the pulse bias potential.
2. The calculation of intrinsic stresses in the TiN
coating deposited from the inclined beam Ti
+
at dif-
ferent values of angle of incidence α and time parameter
of the pulse bias potential is carried out.
3. It is shown that in the mode of pulsed bias
potential at α = 0, U = 1.5 kV; and 0 < < 0.25, the
calculated curve coincides qualitatively with the
experimental data.
4. It is established that in the region 0.01 < < 0.2
the stress σ varies nonmonotonically with increasing α,
decreasing up to angles of incidence ~ 70º with
subsequent growth. This behavior is due to different
contributions in σ of deposition temperature and
processes of defect formation and sputtering at different
angles of incidence.
REFERENCES
1. C.A. Davis. A simple model for the formation of
compressive stress in thin films by ion bombardment //
Thin Solid Films. 1993, v. 226, N 2-3, p. 30-34.
2. N. Nelson, R.T. Rakowski, J. Franks,
P. Woolliams, P. Weaver, B.J. Jones. The effect of
substrate geometry and surface orientation on the film
structure of DLC deposited using PECVD // Surface
and Coatings Technology. 2014, v. 254, p. 73-78.
3. Xiaowei Li, Peiling Ke, Kwang-Ryeol Lee,
Aiying Wang. Molecular dynamics simulation for the
influence of incident angles of energetic carbon atoms
on the structure and properties of diamond-like carbon
films // Thin Solid Films. 2014, v. 552, p. 136-140.
4. A.I. Kalinichenko, S.S. Perepelkin, V.E. Strel’-
nitskij. Dependence of intrinsic stress and structure of
ta-C film on ion energy and substrate temperature in
model of the non-local thermoelastic peak // Diamond
& Related Materials. 2010, v. 19, N 4-9, p. 996-998.
5. A.I. Kalinichenko, S.S. Perepelkin, V.E. Strel’-
nitskij. Calculation of intrinsic stresses in the
diamond-like coatings produced by plasma ion deposi
tion tion in modes of DC and pulse bias potentials //
IOP Conf. Series: Materials Science and Engineering.
2015,81012049(5) doi:10.1088/1757-899X/81/1/012049
6. A.I. Kalinichenko. S.A. Kozionov, S.S. Pere-
pelkin, V.E. Strel’nitskij. Intrinsic stresses in coatings
deposited at plasma immersion ion implantation // East
European Journal of Physics. 2014, v. 1, N 4, p. 58-64.
7. A.I. Kalinichenko, S.S. Perepelkin, V.E. Strel’-
nitskij. Influence of incident angle of ion beam on
intrinsic stress in deposited coating // Journal of Surface
Physics and Engineering. 2016, v. 1, N 12, p. 338-345.
8. J.F. Ziegler, J.P. Biersack, U. Littmark. The Stop-
ping and Range of Ions in Solids. New York: Pergamon
Press, 1996, 297 p.
9. I.I. Aksenov, A.A. Andreev, V.A. Belous,
V.E. Strel’nitskij, V.M. Khoroshukh. Vacuum Arc:
Plasma Sources, Coating Deposition, Surface
Modification. Kyiv: “Naukova Dumka”, 2012, 728 p.
10. V.V. Vasyliev, A.A. Luchaninov, E.N. Reshet-
nyak, V.E. Strel’nitskij. Influence of high-voltage pulse
bias potential parameters on the structure and stress of
tin coatings deposited from filtered cathodic-arc plasma
// Proceedings of 12th International Conference
“Interaction of Radiation with Solids”, September
19–22, 2017, Minsk, Belarus, p. 314-316.
Article received 02.11.2017
ВЛИЯНИЕ ВРЕМЕННЫХ ПАРАМЕТРОВ ИМПУЛЬСНОГО ПОТЕНЦИАЛА СМЕЩЕНИЯ
НА ВНУТРЕННИЕ НАПРЯЖЕНИЯ В ПОКРЫТИИ TiN,
ОСАЖДАЕМОМ ИЗ НАКЛОННОГО ПУЧКА ИОНОВ
А.И. Калиниченко, С.С. Перепёлкин, Е.Н. Решетняк, В.Е. Стрельницкий
В модели нелокального термоупругого пика низкоэнергетического иона проанализировано
формирование внутренних напряжений в покрытии, осаждаемом из наклонного пучка ионов при
импульсном потенциале смещения с различными значениями частоты f и длительности tp импульсов.
Проведен расчет напряжений в TiN-покрытии, осаждаемом из потока ионов Ti в режиме импульсного
потенциала при различных углах падения ионов α и различных значениях временного параметра = f tp.
Установлено, что в области 0,01 < <0,2 при увеличении α напряжение изменяется немонотонно,
уменьшаясь вплоть до углов падения ~ 70о с последующим ростом, причем при U = 1,5 кВ и α = 0 ход
расчетной кривой совпадает с экспериментальными данными.
ВПЛИВ ЧАСОВИХ ПАРАМЕТРІВ ІМПУЛЬСНОГО ПОТЕНЦІАЛУ ЗМІЩЕННЯ
НА ВНУТРІШНЮ НАПРУГУ В ПОКРИТТІ TiN,
ЩО ОСАДЖУЄТЬСЯ З ПОХИЛОГО ПУЧКА ІОНІВ
О.І. Калініченко, С.С. Перепьолкін, О.М. Решетняк, В.Є. Стрельницький
У моделі нелокального термопружного піку низькоенергетичного іона проаналізовано формування
внутрішніх напружень в покритті, що осаджується з похилого пучка іонів при імпульсному потенціалі
зміщення з різними значеннями частоти f і тривалості tp імпульсів. Проведено розрахунок напружень в TiN-
покритті, що осідає з потоку іонів Ti в режимі імпульсного потенціалу при різних кутах падіння іонів α і
різних значеннях часового параметра = f tp. Установлено, що в області 0,01 < < 0,2 при збільшенні α
напруга змінюється немонотонно, зменшуючись аж до кутів падіння ~ 70о
з наступним ростом,
причому при U = 1,5 кВ і α = 0 хід розрахункової кривої збігається з експериментальними даними.
|