High pure zirconium
The results of investigations of zirconium refining processes by methods of electron-beam melting and zone recrystallization using high-vacuum technology are presented. It is shown that the applied methods of zirconium refin-ing allow to effectively reduce the content of impurities. Investigation of...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/137380 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | High pure zirconium / M.M. Pylypenko // Вопросы атомной науки и техники. — 2018. — № 1. — С. 3-8. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-137380 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1373802025-02-09T20:20:59Z High pure zirconium Високочистий цирконій Высокочистый цирконий Pylypenko, M.M. Чистые материалы и вакуумные технологии The results of investigations of zirconium refining processes by methods of electron-beam melting and zone recrystallization using high-vacuum technology are presented. It is shown that the applied methods of zirconium refin-ing allow to effectively reduce the content of impurities. Investigation of the properties of the obtained samples of high-purity zirconium and the dependence of these properties on the content of impurities allowed to reveal new features of high-purity zirconium. Викладено результати досліджень процесів рафінування цирконію методами електронно-променевої плавки та зонної перекристалізації із застосуванням високовакуумної техніки. Показано, що ці методи рафі-нування цирконію дозволяють ефективно знизити вміст домішок. Дослідження властивостей отриманих зразків високочистого цирконію і залежності цих властивостей від вмісту домішок дозволили виявити нові особливості високочистого цирконію. Изложены результаты исследований процессов рафинирования циркония методами электронно-лучевой плавки и зонной перекристаллизации с применением высоковакуумной техники. Показано, что применяемые методы рафинирования циркония позволяют эффективно снизить содержание примесей. Исследования свойств полученных образцов высокочистого циркония и зависимости этих свойств от содержания примесей позволили выявить новые особенности высокочистого циркония. 2018 Article High pure zirconium / M.M. Pylypenko // Вопросы атомной науки и техники. — 2018. — № 1. — С. 3-8. — Бібліогр.: 16 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/137380 669.296 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Чистые материалы и вакуумные технологии Чистые материалы и вакуумные технологии |
| spellingShingle |
Чистые материалы и вакуумные технологии Чистые материалы и вакуумные технологии Pylypenko, M.M. High pure zirconium Вопросы атомной науки и техники |
| description |
The results of investigations of zirconium refining processes by methods of electron-beam melting and zone recrystallization using high-vacuum technology are presented. It is shown that the applied methods of zirconium refin-ing allow to effectively reduce the content of impurities. Investigation of the properties of the obtained samples of high-purity zirconium and the dependence of these properties on the content of impurities allowed to reveal new features of high-purity zirconium. |
| format |
Article |
| author |
Pylypenko, M.M. |
| author_facet |
Pylypenko, M.M. |
| author_sort |
Pylypenko, M.M. |
| title |
High pure zirconium |
| title_short |
High pure zirconium |
| title_full |
High pure zirconium |
| title_fullStr |
High pure zirconium |
| title_full_unstemmed |
High pure zirconium |
| title_sort |
high pure zirconium |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2018 |
| topic_facet |
Чистые материалы и вакуумные технологии |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/137380 |
| citation_txt |
High pure zirconium / M.M. Pylypenko // Вопросы атомной науки и техники. — 2018. — № 1. — С. 3-8. — Бібліогр.: 16 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT pylypenkomm highpurezirconium AT pylypenkomm visokočistiicirkoníi AT pylypenkomm vysokočistyicirkonii |
| first_indexed |
2025-11-30T10:39:36Z |
| last_indexed |
2025-11-30T10:39:36Z |
| _version_ |
1850211489810481152 |
| fulltext |
ISSN 1562-6016. PASТ. 2018. №1(113), p. 3-8.
SECTION 1
PURE MATERIALS AND THE VACUUM TECHNOLOGIES
UDC 669.296
HIGH PURE ZIRCONIUM
M.M. Pylypenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
The results of investigations of zirconium refining processes by methods of electron-beam melting and zone re-
crystallization using high-vacuum technology are presented. It is shown that the applied methods of zirconium refin-
ing allow to effectively reduce the content of impurities. Investigation of the properties of the obtained samples of
high-purity zirconium and the dependence of these properties on the content of impurities allowed to reveal new
features of high-purity zirconium.
INTRODUCTION
Pure metals are widely used in important areas of
new technology and the national economy: nuclear
power engineering, microelectronics, space technology,
medicine, as well as fundamental research. The need for
high-purity metals for science is determined by the need
to establish their true properties. With an increase in the
purity of metals, not only their known properties
change, but also new, previously masked by the pres-
ence of impurities.
Optimum combination of nuclear, corrosion, me-
chanical, thermal and other physical and chemical prop-
erties [1–3] make zirconium one of the best materials
for core of light water nuclear reactors with a working
temperature of the coolant to 350…400 °C. However,
impurities in zirconium alloys significantly affect their
structure and properties. The presence in zirconium in
C, Si, P, Mg, K, Ca, O, Na, Cl, F, Ni, H, especially in
complex content, have a negative impact. Even very
small additives effectively affect the physico-
mechanical and physicochemical properties of zirconi-
um, which may cause a change in the mechanical and
corrosion properties of zirconium alloys, as well as
changes in optimal modes of deformation and heat
treatment [46]. In addition, the influence of the total
content of impurities on the properties of zirconium
alloys is also possible. It is also necessary to limit the
content of materials with a high neutron absorption co-
efficient, in particular hafnium (less than 0.01 wt.%) in
zirconium, which is explained by the need to ensure the
efficiency of the operation of the nuclear reactor. In
order to meet the increasing requirements for zirconium
alloys of nuclear reactors, it is necessary to reduce the
concentration of these impurities to the minimum val-
ues.
High-purity zirconium is required both for the crea-
tion of new structural materials with given properties,
and for studies on the detection of new properties inher-
ent in high-purity zirconium.
Technical zirconium is mainly produced by the
metal-thermal reduction of dioxide (ZrO2), the reduction
of chloride (ZrCl4) by magnesium (sodium), or the elec-
trolysis of halides in the melt of alkali metal chlorides.
The content of the main component in technical zirconi-
um is approximately 99.0…99.8%, with the main impu-
rities are, %: О (5…30)·10
-2
; С ~ 5·10
2
; N (1…10)·10
-3
;
Hf, Fе, Ni ~ 10
-2
; А1, Сr, Сu, Ti, Со ~10
-3
[1–3, 7]. The
composition of such a metal does not meet the require-
ments of modern technology and requires additional
refinement. In particular, zirconium for nuclear reactors
should contain a small amount of impurities with a large
absorption of thermal neutrons, as well as impurities
that reduce its technological plasticity and corrosion
resistance (interstitial impurities and a number of metal-
lic impurities) [7–10].
Usually methods of vacuum smelting, transport reac-
tions, etc. are used for additional purification of tech-
nical zirconium. Deep purification of this metal requires
the use of a complex of methods, including chemical
refining at the stage of obtaining zirconium salts and
physical methods [3, 7, 9, 11].
Getting zirconium of high purity is very complicated
by its high chemical activity in relation to interstitial
impurities. The purity that is achieved is determined not
only by the efficiency of the purification method, but
also by the amount of impurities which absorbed by the
metal during the refining process.
The development of new and improved existing zir-
conium alloys is impossible without a deep study of the
processes of obtaining high purity zirconium. In this
regard, it is necessary to study the patterns of behavior
of impurities in the process of obtaining high-purity
zirconium by physical methods and study the influence
of the purity of the metal on its properties.
The conducted research was aimed at physically
substantiating and experimentally investigating the be-
havior of impurities in the process of zirconium refining
by physical methods and determining the effect of zir-
conium purity on its properties.
To achieve this goal the following tasks were
solved: calculate and experimentally investigate the
behavior of impurities in the process of zirconium refin-
ing by electron-beam melting (EBM) and zone recrys-
tallization in high vacuum; obtain high purity zirconium
and investigate the effect of zirconium purity on its
properties.
MATERIALS AND METHODS
For the refining of zirconium were used: melting and
zone recrystallization in an ultra-high vacuum with the
use of electronic heating and a combination of some
methods.
EBM of zirconium is performed on an ultra-high
vacuum installation. For pumping of installation used
two hetero-ion pumps with a pumping speed of 5000 l/s
each, and a titanium sublimation pump. Application of
such a system of vacuum pumping allows to get an ul-
timate vacuum in the installation 1.7·10
-6
Pа [7]. In the
spectrum of the residual gas in installation were absent
heavy hydrocarbons. Refining of zirconium is carried
out in vacuum (1…5)·10
-5
Pa. Refining is conducted in
the regime: heating ⇒ melting ⇒ excerpt of metal in
molten state ⇒ crystallization ⇒ pulling ingot. Zone
recrystallization with an electron-beam heating is car-
ried out in installations with combined pumping systems
[7]. Diffusion pumps are equipped with sorption and
condensation traps; sorption, cryogenic and ion-sorption
pumps which are used to give “oil-free” ultrahigh vacu-
um. Electron-beam zone recrystallization is carried out
in vacuum 1·10
-6
…1·10
-5
Pa. Choice of pumping sys-
tem for different methods of refining determined mainly
by degree of interaction metals in refining conditions
with residual gases of the vacuum environment.
The initial materials used for research: zirconium
obtained by calcium-thermal recovery of zirconium
tetrafluoride (CTZ) and zirconium after iodide refining
(IZr).
RESULTS OF ZIRCONIUM REFINING
ELECTRON-BEAM MELTING
One of the main methods of zirconium refining is
EBM, which allows to obtain pure metal. The process of
EBM consists in the melting of the initial ingot in a
vacuum and its further crystallization.
The EBM process of zirconium is characterized by
the presence of limiting degrees of purification of more
volatile metallic impurities. Calculated minimum
achievable concentrations of impurities in zirconium
after EBM are given in Tabl. 1 [11]. The calculation of
the minimum achievable concentration of impurity was
carried out based on the fact that the distribution coeffi-
cient is equal to 1, according to the formula:
Zr
Me
MeMe
ZrMe
M
M
p
p
C
0
0
min
, (1)
where
0
Zrp and 0
Mep – partial pressure of zirconium va-
por and impurity; Me – coefficient of activity of the
impurity;
ZrM and
MeM – the molecular masses of the
components.
It follows from Tabl. 1 that purification of zirconium
from volatile impurities decreases in a series:
Zn > Be > Mn > Al > Cr > Cu > V > Fe > Cо > Ni > Si.
In the process of EBM, it may be difficult to purify zir-
conium up to the required level from Co, Si, and Ni.
The degree of metal purification can be related to the
loss of the weight of the main component [7]:
0
0
lg1lg
Zr
Zr
W
W
C
C
, (2)
where С0 and С are the initial and final concentrations
of the impurity; 0
ZrW and
ZrW – the initial and final
weight of the main component;
Me
Zr
Zr
MeMe
M
M
p
p
0
0
–
the purification factor. Effective purification is possible
only when .
For the study of the behavior of impurities in zirco-
nium during its refining by the method of the EBM, the
values included in equation (2) were determined. An
estimation of efficiency of purification of zirconium
from impurities was carried out by this method.
Table 1
Minimum estimated concentrations of impurities
in zirconium
Impurity
Coefficient of
activity,
Me
Concentration,
wt.%
Aluminum 0.07 9.1·10
-4
Beryllium 0.38 3.9·10
-5
Vanadium 0.72 1.3·10
-2
Iron 0.052 4.4·10
-2
Cobalt 0.011 3.3·10
-1
Silicon 0.0006 1
Manganese 0.18 1.4·10
-4
Copper 0.088 4.8·10
-3
Nickel 0.004 0.9
Chrome 0.14 2.0·10
-3
Zinc 0.025 1.0·10
-5
Molybdenum,
Niobium,
Hafnium,
Tungsten
– No purification
The content of impurities, which is expected after
the EBM with weight loss of the main element (zirconi-
um) from 1 to 5%, was determined. The analysis of the
results of calculations made it possible to draw a con-
clusion on the efficiency of purification of zirconium
from metallic impurities when it was refined by the
method of EBM. The generalized results of calculations
of the efficiency of purification of zirconium by the
method of EBM are given in Tabl. 2. It can be seen that
when refining zirconium with this method, the metal
impurities Al, Cu, Ti, Be, Fe, Mn, Cr have a purification
factor of more than 250 and are effectively removed
from zirconium; impurities Si, Ni, B have from 1 to
250 and will be removed only if the weight of the base
is lost to 2%, and the impurities Hf, Nb, and Mo, having
< 1, will accumulate in zirconium, so they need to be
removed at earlier stages of purification.
Experimental studies have shown that electron-beam
melting is a very effective process for refining of zirco-
nium. Impurity contents in iodide zirconium after elec-
tron-beam melting are shown in Tabl. 3. In the Table, in
addition to the chemical purity of zirconium, which is
characterized by the total content of impurities, the val-
ue of the residual resistivity ratio
RRR = R(300 K)/R(4.2 K) is given.
From Tabl. 3 it can be seen that the use of EBM
leads to a decrease in the content of impurities in Zr.
The main elements that are not removed from zirconium
during the EBM are Hf, C, and Mo. Comparison with
the estimated concentrations of impurities carried out by
the ratio (2) show that the concentration of Hf, Mo, and
Ti in zirconium is well in line with the calculated val-
ues. However, the content of other metal impurities ex-
ceeds the calculated values, especially for Si, Fe, and
Cr.
Table 2
The efficiency of purification of zirconium by the method of EBM
Coefficient Efficiency Impurities
<1
no purification even if the weight of the base
is lost to 5%
Hf, Mo, Nb
1…250
significant purification if the weight of the
base is lost to 2%
B, Si, Ni
>250
significant purification if the weight of the
base is lost <1%
Al, Cu, Ti, Be, Fe, Mn, Cr
The microhardness of the initial iodide zirconium
was 1200 MPa, and after the EBM it dropped to
800 MPa. The dual remelting of iodide zirconium in an
installation with an oil-free pumping system made it
possible to get a zirconium ingot with a hardness of
640 MPa, a purity of 99.99 wt.%.
Favorable refining conditions in combination with
optimal technology allow to achieve a significant in-
crease in metallurgical purity of zirconium at the EBM.
The generalized results of systematic researches of the
process of CTZ and iodide zirconium refining by the
method of EBM, obtained by the author [12–14], are
characterized by the following data: microhardness of
zirconium decreases from 1200 to 800 MPa, there is a
significant decrease in the concentration of metal and
gas impurities in zirconium, as well as a decrease in the
hardness of samples of zirconium. Moreover, the pa-
rameters of the purity of the double refining of zirconi-
um by the method of EBM are somewhat better.
Changes in the content of metallic impurities in the
CTZ after two EBM are shown in Fig. 1. The content of
interstitial impurities in the CTZ varies from 0.18 to
0.12 wt.% after the first EBM and to 0.1 wt.% after the
second EBM (Fig. 2,а). Brinell hardness of CTZ de-
creases from 2250 to 1750 and 1370 MPa after the first
and second EBM respectively (see Fig. 2,b). The given
data testify to the efficiency of the EBM method when
refining zirconium from impurities [12].
Тable 3
Impurity contents in iodide zirconium
Impurity
The content of impurities, wt.%
Initial After EBM
Oxygen 0.04 0.008…0.013
Nitrogen 0.006 0.004
Carbon 0.035…0.04 0.025
Hydrogen 0.0045 0.001
Iron 0.025 0.008
Aluminum 0.004 0.003
Copper 0.0065 0.0006
Nickel 0.0065 0.004
Chrome 0.005 0.002
Titanium 0.0023 0.0001
Silicon 0.006 0.005
Niobium <0.001 <0.001
Hafnium 0.018 0.018
Calcium 0.006 0.0001
Fluorine 0.003 0.0002
Molybdenum 0.005 <0.001
RRR 30 100
Fig. 1. Changes in the content of metallic impurities in zirconium after two EBM
а
b
Fig. 2. Change in the oxygen content in CTZ and iodide
metal (a) and the change in the hardness of Brinell of
CTZ (b) depending on the number of melting
Further purification of zirconium can be achieved by
using a complex of chemical and physical refining tech-
niques. In particular, in the previous stages, more com-
plete removal of hafnium, nitrogen, carbon, etc. from
zirconium is needed. The removal of volatile metallic
impurities can be achieved by electron beam melting; it
is advisable to add deoxidizing components for the re-
fining of zirconium from oxygen.
ZONE RECRYSTALLIZATION
Of all the refractory metals, zirconium has the least
pressure of the saturated vapor at the melting point,
which allows it to be subjected to multiple zone recrys-
tallization in a vacuum without noticeable evaporation.
Perhaps for this reason, the method of zone melting
(recrystallization) is most often used for deep purifica-
tion of zirconium. The difficulty of zirconium refining
by zone smelting is due to the fact that zirconium, un-
like most other rare metals, has a hexagonal close-
packed lattice (hcp) with large lattice periods and
somewhat increased in comparison with the ideal ratio
of с/а. The solubility of gas impurities in it, especially
the oxygen admixture, is elevated; in addition, it does
not form volatile oxides, which facilitate the removal of
oxygen during the smelting of other refractory rare met-
als. For this reason, the requirements for purity of the
gas environment during refining of zirconium are in-
creasing.
Experimental results of the zone melting of metals
showed the existence of two mechanisms of purification
– zone recrystallization and evaporation. Therefore, it is
possible to obtain higher purity of zirconium by using
the zone melting. During the first passes of zone the
refining occurs mainly by evaporation of volatile metal-
lic impurities (Fе, Ni, А1, Ti, Cr, Si, etc.), removal of
hydrogen and a certain amount of oxygen, carbon and
nitrogen. After that, in zirconium, the main impurities
are carbon, oxygen and hafnium. Next passes of the
zone cause redistribution of impurities (mainly oxygen)
along the sample length. Effective distribution coeffi-
cient K for metal impurities is less than 1 (K < 1); for
oxygen, nitrogen and carbon K > 1.
Application of zone melting allowed to obtain high
degree of purity zirconium. Studies have shown that
zone melting in a higher vacuum ensures a more pure
metal. With the increase in the number of passes of the
zone there is a general increase in the purity of the me-
tal, due to the evaporation of impurities and increase the
distribution of impurities along the sample length. The
holding of six passes of zone in vacuum 6·10
-6
Pa at a
speed displacement of zone 1.2 cm/h it is possible to
obtain a high-purity zirconium: residual resistivity ratio
RRR = 250 and the value of microhardness of 590 MPa.
Contents of oxygen, nitrogen and carbon equal 2.0·10
-3
,
1.7·10
-3
, and 9.0·10
-3
wt.%, respectively, the content of
metallic impurities is less than 10
-5
wt.% [15].
INFLUENCE OF ZIRCONIUM PURITY ON ITS
PROPERTIES
The study of the effect of metal purity on the micro-
structure and the mechanical properties of zirconium
showed a significant effect of the purity of the metal on
the properties.
In the study of microstructure, it was found that the
structure of pure zirconium (RRR ~100) consists of rela-
tively large grains, the size of which is 5…10 mm.
With a decrease in the purity of zirconium, the size of
the grains decreases, and in the case of technical purity
metal (RRR ~7) after annealing the grain size was
0.5…2.0 mm. The microstructure of zirconium with
RRR = 30 is shown in Fig. 3. In all investigated sam-
ples, irrespective of purity, two types of inclusion were
found: needles, located mainly on the borders of the
grains, and rounded inside the grains. With the increase
of zirconium purity, the inclusions diminish from
0.5…1.0 to 0.2 μm, as well as their number decreases.
Fig. 3. Microstructure of zirconium with RRR = 30
The mechanical properties of high purity zirconium
and the effect of purity on the characteristics of strength
and ductility of zirconium were investigated [15, 16].
Increasing the purity of zirconium leads to a decrease in
the values of the ultimate strength and increase the
plasticity (Tabl. 4). The microhardness (Н) of such
samples is also reduced. The properties of metals, in
particular the amount of microhardness, depend to a
large extent on the content of impurities. The depend-
ence of the change in the value of the microhardness of
zirconium on the oxygen content is shown in Fig. 4. It
is seen that the value of the value of microhardness of
zirconium depends on the concentration of oxygen in
the metal. Therefore, according to the value of micro-
hardness, it is possible to determine the purity of the
metal.
Тable 4
Mechanical properties of zirconium of different purity
Relative residual
resistivity RRR
Ultimate tensile
strength В, МPа
Yield strength
0.2, МPа
Elongation
, %
7 400…470 280…320 18.0
30 200 120 28.0
100 130 85 34.0
200 105 25 49.5
Fig. 4. Dependence of microhardness of zirconium on
the oxygen content
CONCLUSIONS
The behavior of metallic impurities and interstitial
impurities during electron beam melting and zone re-
crystallization in high vacuum were investigated. Zirco-
nium of high purity was obtained and the influence of
zirconium purity on its properties was investigated. The
peculiarities of zirconium properties are determined
depending on the content of impurities.
Thus, studies have shown that EBM and zone re-
crystallization in high-vacuum allow to effectively re-
duce the content of impurities in zirconium and to ob-
tain high-purity zirconium.
REFERENCES
1. А.С. Займовский, Е.В. Никулина, Н.Г. Решет-
ников. Циркониевые сплавы в атомной энергетике.
М.: «Энергоатомиздат», 1994, 453 с.
2. D.L. Douglass. The Metallurgy of Zirconium.
Vienna: IAEA, 1971, 466 p.
3. . aseda, M. Isshiki. Purification Process and
Characterization of Ultra High Purity Metals. Berlin:
Springer-Verlag, 2002, 412 p.
4. S.A. Nikulin, A.B. Rozhnov, V.A. Belov,
E.V. Li, V.S. Glazkina. Influence of Chemical Compo-
sition of Zirconium Alloy E110 on Embrittlement Un-
der LOCA Conditions – Part 1: Oxidation Kinetics and
Macrocharacteristics of Structure and Fracture // Jour-
nal of Nuclear Materials. 2011, v. 418, p. 1-7.
5. H.G. Kim, S.Y. Park, M.H. Lee, Y.H. Jeong,
S.D. Kim. Corrosion and Microstructural Characteristics
of Zr-Nb Alloys with Different Nb Content // Journal of
Nuclear Materials. 2008, v. 373, p. 429-432.
6. V.V. Novikov, V.A. Markelov, F.V. Tselishchev,
V.F. Kon’kov, L.P. Sinelnikov, V.L. Panchenko. Struc-
ture-Phase Changes and Corrosion Behavior of E110
and E635 Claddings of Fuels un Water Cooled Reactors
// Journal of Nuclear Science and Technology. 2006,
v. 43, N 9, p. 991-997.
7. Г.Ф. Тихинский, Г.П. Ковтун, В.М. Ажажа.
Получение сверхчистых редких металлов. М.: «Ме-
таллургия», 1986, 160 с.
8. S.A. Nikulin, A.B. Rozhnov, A.Yu. Gusev,
T.A. Nechaykina, S.O. Rogachev, M.Yu. Zadorozhnyy.
Fracture Resistance of Zr-Nb Alloys Under Low-cycle
Fatigue Tests // Journal of Nuclear Materials. 2014,
v. 446, p. 10-14.
9. K. Mimura, M. Kasuga, M. Najno, M. Isshiki.
Purification of Zirconium by Electron-Beam Floating
Zone Melting // Journal of the Japan Institute of Metals.
1995, v. 59, N 11, p. 1124-1129.
10. D. Kaczorowski, V. Chabretou, J. Thomazet,
P.-B. Hoffmann, H.-J. Sell, G. Garner. Corrosion Be-
havior of Alloy M5: Experience // 2008 Water Reactor
Fuel Performance Meeting. Seoul. Korea, 2008, p. 126-
129.
11. М.Л. Коцарь, В.М. Ажажа, М.И. Борисов и
др. Получение чистых циркония и гафния // Высоко-
чистые вещества. 1992, №4, c. 85-92.
12. Н.Н. Пилипенко. Получение циркония
ядерной чистоты // ВАНТ. Серия «Физика радиаци-
онных повреждений и радиационное материалове-
дение». 2008, №2, с. 66-72.
13. Н.Н. Пилипенко. Исследования и разработ-
ки по получению ядерно-чистого циркония и сплава
на его основе // ВАНТ. Серия «Вакуум, чистые ма-
териалы, сверхпроводники». 2009, №6(64), с. 12-18.
14. В.М. Ажажа, С.Д. Лавриненко, Н.Н. Пили-
пенко. Чистые и особо чистые металлы в атомной
энергетике // ВАНТ. Серия «Вакуум, чистые мате-
риалы, сверхпроводники». 2007, №4, с. 3-12.
15. С.Д. Лавриненко, Н.Н. Пилипенко,
П.Н. Вьюгов. Чистые металлы для ядерной энерге-
тики // ВАНТ. Серия «Физика радиационных повре-
ждений и радиационное материаловедение». 2014,
№4(92), с. 72-81.
16. S.D. Lavrynenko, M.M. Pylypenko. Pure Me-
tals for Nuclear Power // SMC Bulletin. 2015, v. 6, N 1,
p. 19-24.
Article received 15.11.2017
ВЫСОКОЧИСТЫЙ ЦИРКОНИЙ
Н.Н. Пилипенко
Изложены результаты исследований процессов рафинирования циркония методами электронно-лучевой
плавки и зонной перекристаллизации с применением высоковакуумной техники. Показано, что применяе-
мые методы рафинирования циркония позволяют эффективно снизить содержание примесей. Исследования
свойств полученных образцов высокочистого циркония и зависимости этих свойств от содержания приме-
сей позволили выявить новые особенности высокочистого циркония.
ВИСОКОЧИСТИЙ ЦИРКОНІЙ
М.М. Пилипенко
Викладено результати досліджень процесів рафінування цирконію методами електронно-променевої
плавки та зонної перекристалізації із застосуванням високовакуумної техніки. Показано, що ці методи рафі-
нування цирконію дозволяють ефективно знизити вміст домішок. Дослідження властивостей отриманих
зразків високочистого цирконію і залежності цих властивостей від вмісту домішок дозволили виявити нові
особливості високочистого цирконію.
|