Решение задачи ограничения пространств неопределенности

Показано, что понятие простого подпространства пространства неопределенности, построенное формальными методами теории математических структур Н. Бурбаки, не является решением задачи ограничения, поскольку не удовлетворяет требованию преемственности в развитии математического аппарата неопределенност...

Full description

Saved in:
Bibliographic Details
Date:2006
Main Author: Дидук, Н.Н.
Format: Article
Language:Russian
Published: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2006
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/13880
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Решение задачи ограничения пространств неопределенности / Н.Н. Дидук // Систем. дослідж. та інформ. технології. — 2006. — № 1. — С. 106-118. — Бібліогр.: 7 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Показано, что понятие простого подпространства пространства неопределенности, построенное формальными методами теории математических структур Н. Бурбаки, не является решением задачи ограничения, поскольку не удовлетворяет требованию преемственности в развитии математического аппарата неопределенности. Для получения конструкции подпространств, удовлетворяющих этому требованию, к простым подпространствам применяется аппарат равномерных версий. Рассмотрены примеры равномерных подпространств. It is shown that the notion of the simple subspace of an uncertainty space, which is constructed using the formal methods of Bourbaki’s theory of mathematical structures, cannot be a restriction problem solution because it does not meet the demand for succession in the development of the uncertainty mathematical apparatus. To construct the subspaces that meet the demand, the even versions apparatus is applied to simple subspaces. Examples of even subspaces are considered. Показано, що поняття простого підпростору простору невизначеності, яке побудоване формальними методами теорії математичних структур Н. Бурбакі, не є рішенням задачі обмеження, оскільки не відповідає вимозі спадкоємності у розвитку математичного апарату невизначеності. Для одержання конструкції підпросторів, що відповідають цій вимозі, до простих підпросторів застосовується апарат рівномірних версій. Розглянуто приклади рівномірних підпросторів.
ISSN:1681–6048