Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells

The immunophenotypic profile of hematopoietic stem cells (HSC) and hematopoietic precursor cells as well as leukemic stem cells (LSC) has been extensively studied in several laboratories worldwide. The results of our studies suggest that the standard panel for classification of acute leukemias shoul...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Experimental Oncology
Дата:2008
Автори: Gluzman, D.F., Nadgornaya, V.A., Sklyarenko, L.M., Zavelevych, M.P., Koval, S.V., Poludnenko, L.Yu., Ivanovskaya, T.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України 2008
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/139187
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells / D.F. Gluzman, V.A. Nadgornaya, L.M. Sklyarenko, M.P. Zavelevych, S.V. Koval, L.Yu. Poludnenko, T.S. Ivanovskaya // Experimental Oncology. — 2008. — Т. 30, № 2. — С. 102–105. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-139187
record_format dspace
spelling Gluzman, D.F.
Nadgornaya, V.A.
Sklyarenko, L.M.
Zavelevych, M.P.
Koval, S.V.
Poludnenko, L.Yu.
Ivanovskaya, T.S.
2018-06-19T20:05:34Z
2018-06-19T20:05:34Z
2008
Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells / D.F. Gluzman, V.A. Nadgornaya, L.M. Sklyarenko, M.P. Zavelevych, S.V. Koval, L.Yu. Poludnenko, T.S. Ivanovskaya // Experimental Oncology. — 2008. — Т. 30, № 2. — С. 102–105. — Бібліогр.: 25 назв. — англ.
1812-9269
https://nasplib.isofts.kiev.ua/handle/123456789/139187
The immunophenotypic profile of hematopoietic stem cells (HSC) and hematopoietic precursor cells as well as leukemic stem cells (LSC) has been extensively studied in several laboratories worldwide. The results of our studies suggest that the standard panel for classification of acute leukemias should be supplemented with several new markers allowing us to identify more precisely the different forms of the leukemias being of the closely related origin, for example AML M6b and AML M7. The common bipotent LSC in AML M7 of low grade and AML M6b may exist analogous to precursor cell common for megakaryocytopoiesis and erythropoiesis. We have also found the similarity between blast cells in pro-B-ALL [t (4;11), 11q23] and AML M5a [t (9;11), 11q23]. Such similarity of immunophenotype and cytogenetic abnormalities in blast cells in pro-B-ALL and AML M5a may be considered as hint explaining the cases of AML M5a as a recurrence of leukemia in children with originally diagnosed pro-B-ALL.
Иммунофенотипический профиль стволовых лейкемических клеток (СЛК) интенсивно изучают в ряде лабораторий мира. Результаты данного исследования подтверждают, что стандартная панель для классификации острых лейкозов (ОЛ) должна быть дополнена рядом новых маркеров. Это позволяет более точно идентифицировать близкие по происхождению формы ОЛ, например ОМЛ М6b и ОМЛ М7. Предполагается существование общей низкодифференцированной бипотентной ЛСК при ОМЛ М7 и ОМЛ М6b, подобной нормальной общей клетке-предшественнице мегакариоцитопоэза и эритропоэза. Установлено также сходство бластных клеток при про-В-ОЛЛ с перестройкой хромосомного участка 11q23 и транслокацией (4;11) и бластных клеток при ОМЛ М5а c перестройкой того же хромосомного участка 11q23 и транслокацией (9;11). Подобное сходство иммунофенотипа и цитогенетических аномалий при указанных 2 формах ОЛ объясняет появление бластов с фенотипом ОМЛ М5а при рецидиве заболевания у детей, у которых ранее был диагностирован про-В-ОЛЛ.
en
Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
Experimental Oncology
Uncategorized
Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells
Изучение морфоцитохимических и иммунофенотипических признаков стволовых клеток при острых лейкозах
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells
spellingShingle Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells
Gluzman, D.F.
Nadgornaya, V.A.
Sklyarenko, L.M.
Zavelevych, M.P.
Koval, S.V.
Poludnenko, L.Yu.
Ivanovskaya, T.S.
Uncategorized
title_short Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells
title_full Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells
title_fullStr Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells
title_full_unstemmed Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells
title_sort study of morphocytochemical and immunophenotypic features of acute leukemia stem cells
author Gluzman, D.F.
Nadgornaya, V.A.
Sklyarenko, L.M.
Zavelevych, M.P.
Koval, S.V.
Poludnenko, L.Yu.
Ivanovskaya, T.S.
author_facet Gluzman, D.F.
Nadgornaya, V.A.
Sklyarenko, L.M.
Zavelevych, M.P.
Koval, S.V.
Poludnenko, L.Yu.
Ivanovskaya, T.S.
topic Uncategorized
topic_facet Uncategorized
publishDate 2008
language English
container_title Experimental Oncology
publisher Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України
format Article
title_alt Изучение морфоцитохимических и иммунофенотипических признаков стволовых клеток при острых лейкозах
description The immunophenotypic profile of hematopoietic stem cells (HSC) and hematopoietic precursor cells as well as leukemic stem cells (LSC) has been extensively studied in several laboratories worldwide. The results of our studies suggest that the standard panel for classification of acute leukemias should be supplemented with several new markers allowing us to identify more precisely the different forms of the leukemias being of the closely related origin, for example AML M6b and AML M7. The common bipotent LSC in AML M7 of low grade and AML M6b may exist analogous to precursor cell common for megakaryocytopoiesis and erythropoiesis. We have also found the similarity between blast cells in pro-B-ALL [t (4;11), 11q23] and AML M5a [t (9;11), 11q23]. Such similarity of immunophenotype and cytogenetic abnormalities in blast cells in pro-B-ALL and AML M5a may be considered as hint explaining the cases of AML M5a as a recurrence of leukemia in children with originally diagnosed pro-B-ALL. Иммунофенотипический профиль стволовых лейкемических клеток (СЛК) интенсивно изучают в ряде лабораторий мира. Результаты данного исследования подтверждают, что стандартная панель для классификации острых лейкозов (ОЛ) должна быть дополнена рядом новых маркеров. Это позволяет более точно идентифицировать близкие по происхождению формы ОЛ, например ОМЛ М6b и ОМЛ М7. Предполагается существование общей низкодифференцированной бипотентной ЛСК при ОМЛ М7 и ОМЛ М6b, подобной нормальной общей клетке-предшественнице мегакариоцитопоэза и эритропоэза. Установлено также сходство бластных клеток при про-В-ОЛЛ с перестройкой хромосомного участка 11q23 и транслокацией (4;11) и бластных клеток при ОМЛ М5а c перестройкой того же хромосомного участка 11q23 и транслокацией (9;11). Подобное сходство иммунофенотипа и цитогенетических аномалий при указанных 2 формах ОЛ объясняет появление бластов с фенотипом ОМЛ М5а при рецидиве заболевания у детей, у которых ранее был диагностирован про-В-ОЛЛ.
issn 1812-9269
url https://nasplib.isofts.kiev.ua/handle/123456789/139187
citation_txt Study of morphocytochemical and immunophenotypic features of acute leukemia stem cells / D.F. Gluzman, V.A. Nadgornaya, L.M. Sklyarenko, M.P. Zavelevych, S.V. Koval, L.Yu. Poludnenko, T.S. Ivanovskaya // Experimental Oncology. — 2008. — Т. 30, № 2. — С. 102–105. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT gluzmandf studyofmorphocytochemicalandimmunophenotypicfeaturesofacuteleukemiastemcells
AT nadgornayava studyofmorphocytochemicalandimmunophenotypicfeaturesofacuteleukemiastemcells
AT sklyarenkolm studyofmorphocytochemicalandimmunophenotypicfeaturesofacuteleukemiastemcells
AT zavelevychmp studyofmorphocytochemicalandimmunophenotypicfeaturesofacuteleukemiastemcells
AT kovalsv studyofmorphocytochemicalandimmunophenotypicfeaturesofacuteleukemiastemcells
AT poludnenkolyu studyofmorphocytochemicalandimmunophenotypicfeaturesofacuteleukemiastemcells
AT ivanovskayats studyofmorphocytochemicalandimmunophenotypicfeaturesofacuteleukemiastemcells
AT gluzmandf izučeniemorfocitohimičeskihiimmunofenotipičeskihpriznakovstvolovyhkletokpriostryhleikozah
AT nadgornayava izučeniemorfocitohimičeskihiimmunofenotipičeskihpriznakovstvolovyhkletokpriostryhleikozah
AT sklyarenkolm izučeniemorfocitohimičeskihiimmunofenotipičeskihpriznakovstvolovyhkletokpriostryhleikozah
AT zavelevychmp izučeniemorfocitohimičeskihiimmunofenotipičeskihpriznakovstvolovyhkletokpriostryhleikozah
AT kovalsv izučeniemorfocitohimičeskihiimmunofenotipičeskihpriznakovstvolovyhkletokpriostryhleikozah
AT poludnenkolyu izučeniemorfocitohimičeskihiimmunofenotipičeskihpriznakovstvolovyhkletokpriostryhleikozah
AT ivanovskayats izučeniemorfocitohimičeskihiimmunofenotipičeskihpriznakovstvolovyhkletokpriostryhleikozah
first_indexed 2025-11-25T22:54:41Z
last_indexed 2025-11-25T22:54:41Z
_version_ 1850576199724564480
fulltext 102 Experimental Oncology 30, 102–105, 2008 (June) The characterization of leukemic stem cells (LSC) and their potential differences as compared to normal hematopoietic stem cells (HSC) are important for un- derstanding the process of malignant transformation. The multistage process of hematopoiesis result- ing in the appearance of the mature cells of the pe- ripheral blood (erythrocytes, leukocytes, platelets) is maintained by HSC. The existence of the common multipotent hematopoietic stem cell (MHSC) is a fun- damental principle of the modern unipotent scheme of hematopoiesis [1–3]. MHSCs possess the self-renewal abilities, high proliferative potential and are capable for maintaining myelo- and lymphopoiesis. As early as in 1961, Till and McCulloch [4] elaborated the technique for cloning the hematopoietic cells in the spleen of lethally irradiated mouse and gave the first experimental evidence that HSC in fact exist. Since that time, the particular progress has been made in defining the role of factors produced by stromal microenvironment (cytokines and interleukins) in controlling proliferation and differentiation of hematopoietic progenitor cells. The HSC population is a heterogeneous one subdivid- ing into long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs). While ST-HSCs have limited self-renewal ca- pacity giving rise to myeloid and lymphoid lineages within about 8 weeks, LT-HSCs are capable of self-renewal giving rise to long-term bone marrow culture capable of differentiating to myeloid and lymphoid lineages. HSC gives rise to oligolineage-restricted progenitors with limited ability of self-renewal: the common progenitor cell of myelopoiesis and the common progenitor cell of lymphopoiesis. The progenitor cells in turn give rise to the cells with most limited differentiation potential and finally to the functionally mature cells. In the generally recognized scheme of the he- matopoiesis [2], HSC as well as progenitor cells class II and III were depicted as the empty circles. Chertkov and Vorobiov [3] in their scheme of the hematopoiesis predicted that depending on the phase of cell cycle HSC and progenitor cells possess the cytomorphologi- cal features of blasts or lymphocyte-like cells. Cytomorphological and cytochemical features of HSC and hematopoietic progenitors. Besides the analysis of cell population in splenic colonies develo ped in the lethally irradiated mouse upon graf- ting the bone marrow cells and the study of the least differentia ted cells in granulocytic and monocytic- macrophage colonies and clusters in vitro, another approach turned out to be promising. Prof. Butenko in the monograph “Hematopoietic stem cells and leukemia” published in Ukraine [5] presented the cytomorphological features of the presumable “can- didates” for hematopoietic stem cells. In R.E. Kavetsky Institute of Oncology Problems (Kyiv, Ukraine), the cyto- logical and cytochemical study of HSC and progenitor cells has been performed. In particular, the early stages of the embryonic hematopoie sis in human and mouse were studied, especially the early hematopoietic cells in the yolk sac, which later migrate to liver and populate bone marrow, spleen, thymus, and lymph nodes [6]. Earlier we have demonstrated that the hematopoietic progenitor cells of classes II–III (according to Chertkov and Vorobiov’s scheme of hematopoiesis) regarded earlier as morphologically non-distinguishable turned out to possess some marker cytochemical features pertinent to more ma- ture cells of granulocytic lineage (positive peroxidase and chloracetate esterase activity); monocytic-macrophage lineage (high non-specific alpha-naphtyl acetate esterase activity); megakaryocytic lineage (positive acetylcholin es- terase activity) and T-lymphocyte lineage (granular or dot- like acid phosphatase reaction) [6]. Our findings together with the results of several biochemical studies performed in former USSR may be regarded as the retrospective ratio- nale substantiating the use of the cytochemical techniques STUDY OF MORPHOCYTOCHEMICAL AND IMMUNOPHENOTYPIC FEATURES OF ACUTE LEUKEMIA STEM CELLS D.F. Gluzman*, V.A. Nadgornaya, L.M. Sklyarenko, M.P. Zavelevych, S.V. Koval, L.Yu. Poludnenko, T.S. Ivanovskaya R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine The immunophenotypic profile of hematopoietic stem cells (HSC) and hematopoietic precursor cells as well as leukemic stem cells (LSC) has been extensively studied in several laboratories worldwide. The results of our studies suggest that the standard panel for classification of acute leukemias should be supplemented with several new markers allowing us to identify more precisely the different forms of the leukemias being of the closely related origin, for example AML M6b and AML M7. The common bipotent LSC in AML M7 of low grade and AML M6b may exist analogous to precursor cell common for megakaryocytopoiesis and eryth- ropoiesis. We have also found the similarity between blast cells in pro-B-ALL [t (4;11), 11q23] and AML M5a [t (9;11), 11q23]. Such similarity of immunophenotype and cytogenetic abnormalities in blast cells in pro-B-ALL and AML M5a may be considered as hint explaining the cases of AML M5a as a recurrence of leukemia in children with originally diagnosed pro-B-ALL. Key Words: leukemic stem cell, acute leukemia, classification, immunophenotype. Received: February 8, 2008. *Correspondence: Fax: +380 44 258 1656 E-mail: vals@onconet.kiev.ua Abbreviatios used: HSC —hematopoietic stem cells; LSC — leu- kemic stem cells; LT-HSC — long-term HSC; MНSC — multipotent HSC; ST-HSC — short-term HSC. Exp Oncol 2008 30, 2, 102–105 Experimental Oncology 30, 102–105, 2008 (June)30, 102–105, 2008 (June) 103 for delineating the various forms and cytological variants of the acute myeloid and lymphoid leukemias origi nating from the transformation and the clonal proliferation of various types of the hematopoietic progenitor cells. Recently, the immunophenotypic profile of HSC and hematopoietic progenitor cells has been extensively studied. In particular, the phenotype of the pluripotent stem cell is now delineated as CD34+, CD90+, CD172a+, CD173+, CD174+, CD175+, CD176+, CD224+, CD227+, CD239+, HLA-DR+. Accordingly, the phenotype of my e - lo id stem cells is CD33+, CD34+, CD38+, CD117+, CD123+, CD133+, HLA-DR+, TdT+/–, CD13+/–, CD7+/–, CD230+; the phenotype of lymphoid stem cells is CD10+, CD34+, CD38+, CD117+/–, CD124+, CD127+, HLA-DR+, TdT+. In fact, only identified markers are given in the listed phenotypes above, and the exact sets of the phenotypic markers of HSC and hematopoietic progenitor cells in all lineages are still to be elucidated [7, 11–13]. Leukemic stem cells. Leukemias as well as other cancers represent the clonal processes. The leukemic cells infiltrating the bone marrow as well as the leuke- mic cells detected in the blood and in the organs of the body are the descendents of the single cell undergo- ing the malignant transformation (HSC or committed progenitor cell). There are many functional similari- ties between the LSC and solid tumor stem cells. The milestones of the study of HSC and cancer stem cells are summarized chronologically in Table 1. The experimental evidence for the existence of clonogenic or LSC was obtained in 1997 in hete- rotransplantation experiments in SCID mouse with severe combined immunodeficiency (lack of В- and Т-cells) and NOD/SCID (nonobese diabetic x SCID) mouse (in addition to SCID mouse NK cells are la cking, the macrophage activity is not detected neither the complement activation) [12]. Table 1. Milestones of the studies developing the concept of cancer stem cell 1961 Experimental evidence of polypotent hematopoietic stem cells Till and McCulloch, 1961 [4] 1967– 1981 Evidence of CML and AML clonality Fialkow et al., 1967; Fialkow, 1981 [8, 9] 1972– 1973 Elaboration of modern unipotent scheme of hematopoiesis Mathe et al., 1972; Chertkov and Vorobiov, 1973 [2, 3] 1975– 1990 The technology for production of mono- clonal antibodies against lineage-specific and differentiation antigens of leukocytes Kohler, Milstein, 1975 [10] 1988 Use of mouse with severe combined immunodeficiency (SCID) for study- ing human hematopoietic cells Weissman (ref. Passegue et al., 2003) [11] 1989– 1994 Use of SCID mouse and mouse with SCID and non-obese diabetes (NOD/ SCID) for studying leukemic cells Dick et al., 1996 [12] Passegue et al., 2003 [11] Huntly, Gilliland, 2005 [13] 1997 Identification of leukemic stem cell Dick et al., 1996 [12] 2003 Identification of stem cell in breast cancer Al-Hajj et al., 2003 [14] 2004 Identification of human brain tumor initiating cells Singh et al., 2004 [15] 2005 Prostate cancer stem cells Collins and Maitland, 2005 [16] 2005 Epithelial ovarian cancer stem cells Bapat et al., 2005 [17] 2005 Osteogenic sarcoma stem cells Gibbs et al., 2005 [18] 2005 Melanoma stem cells Fang et al., 2005 [19] 2007 Neuroblastoma stem cells Ross, Spengler, 2007 [20] 2008 Lung cancer stem cells Eramo et al., 2008 [21] Upon transplantation of leukemic cells from bone marrow and peripheral blood of AML patients (regard- less FAB type), most leukemic blasts are not capable to proliferate. Only a small subset of leukemic cells in the Table 2. Markers of normal and transformed hematopoietic stem cells and progenitor cells. Antigen Structure and function Normal expression Expression in hematoblastoses CD19 Belongs to IgSF family, takes part in signal transduction controlling B-cell activation and differentiation B-cell progenitors; mature B-cells B-cell leukemias and lymphomas CD34 Sialomucin involved in intercellular adhesion Hematopoietic stem cells and progenitor cells AML and ALL; leukemic stem cells CD38 ADP-ribosyl cyclase; takes part in the control of cell activation and proliferation Progenitor cells of myelopoiesis, T and B cells, monocytes, activated T and B cells, plasma cells Non-clonogenic cells in AML, cells in multiple myeloma CD45RA Common leukocyte antigen, regulator of leukocyte activation В cells, activated T cells, monocytes, macrophages B cell leukemia CD90 (Thy-1) Participate in differentiation of HSC and neuronal cells HSC, Т cells, fibroblasts, stromal cells Blasts in several forms of AML, rare cases of ALL CD123 (IL-3Rα) α-subunit of IL-3 receptor Progenitor cells, endothelial cells, stromal cells Blasts in AML; leukemic stem cells HLA-DR Histocompatibility antigen class II В cells, antigen-presenting cells, progenitor myeloid cells Blasts in various forms of AML except for AML M3, most B cell tumors CD172a SIRP-1α, belongs to Ig superfamily CD34+ HSC, hemopoietic progenitor cells, monocytes, macrophages, granulocytes, dendritic cells –* CD173 Antigen H (glycotop Fucα1−2Galβ1-4GlcNAcβ), progenitor of group A and B antigens Subpopulation of CD34+ HSC, erythrocytes, platelets, endothelial cells –* CD174 Lewis Y antigen Subpopulation of CD34+ HSC, new marker of hemopoietic progenitor cells, epithelial cells –* CD175 Tn antigen (epitope GalNAcα1-, O-linked with serine or threonine Subpopulation of HSC, tumors of epithelial origin AML cell lines (HG-1a, HL-60), K-562, B-cell leukemia (REH, Nalm-6), T-cell leukemia (Jurkat) CD176 TF antigen (epitope Gal β1-3GalNAcα1-, O-linked with serine or threonine Subpopulation of HSC, different types of cancer cells –* CD213a1 Low affinity receptor α1 IL-13 Hemopoietic progenitor cells, subpopulation of peripheral blood leukocytes, B-cells, monocytes, endothelial cells, fibroblasts –* CD224 Ectoenzyme γ-gluta myl transpeptidase HSC, subpopulation of B-cells, CD45RO+ T-cells, macrophages –* CD227 Polymorphic transmembrane epithelial mucine (MUC-1) Subpopulation of HSC, B-cells, monocytes, follicular dendritic cells, glandular and tubular epithelial cells –* CD230 PrP-sialoglycoprotein Hemopoietic progenitor cells, lymphocytes, monocytes, neurons –* CD239 B-CAM glycoprotein, belongs to Ig superfamily Subpopulation of HSC, erythrocytes, endothelial cells, basal membrane epithelial cells –* *Data on expression of CD172a, CD173, CD174, CD175, CD176, CD213a1, CD224, CD227, CD230, CD239 were not found in available literature. 104 Experimental Oncology 30, 102–105, 2008 (June) fraction of CD34+CD38– cells was capable of extensive proliferation (from 0.2 to 1%). The recent data suggest that the majority of AML (except for AML M3) as well as CML develop as a result of mutations accumulated in HSC. Several markers of normal HSC and progenitor cells are expressed also in leukemic cells. The data on the expression, structure, and function of several antigens expressing on the surface of HSC and pro- genitor cells as compared with their expression in vari- ous forms of the malignancies of hematopoietic and lymphoid tissues are summarized in Table 2. The immunophenotype of MHSC and LSC in different leukemias was delineated [11, 12]. In particular, the im- munophenotype of MHSC in normal hematopoiesis has been suggested as CD34+CD38–CD90+CD123–CD117+. The suggested immunophenotype of LSC in acute myelo- genous leukemia is CD34+CD38–CD90–CD123+CD117– CD71–HLA-DR–, while in acute lymphoblastic leukemia the suggested immunophenotype of LSC is CD34+CD38– Lin–CD10–CD19–. Moreover, in contrast to the normal HSC, a universal phenotype for LSC may not exist, and patient-to-patient variations in cell surface antigen ex- pression may be the rule. Various cytological forms of acute myeloid leuke- mia (M0–M7) are believed to originate from a hierarchy of leukemic stem cell classes that differ in self-renewal capacities, molecular and cellular features [12]. The results of our studies suggest that the standard panel for classification of acute leukemias [24] should be supplemented with several new markers allowing us to identify more precisely the different forms of leukemias being of the closely related origin, for example AML M6b (МPО–, HLA-DR+/–, CD34+, CD117–, CD71+, CD33–/+ and CD13–/+, CD36+) vs AML M7 (МPО–, HLA-DR+/–, CD34–/+, CD117–, CD71–/+, CD33+/– or CD13+/–, CD36+/–) (Table 3). We suggest the existence of the common bipotent LSC in AML M7 of low grade and AML M6b, which is analogous to precursor cell common for megakaryocytopoiesis and erythropoiesis. We have also found the similarity between the blast cells in pro-B-ALL [МPО-, HLA-DR+, CD34+ (less than 50% of cells), CD19+ and CD33– (or their co-expression), t (4;11), 11q23] and AML M5a [МPО–, HLA-DR+/–, CD34+/–, CD33+ and CD19– (or their co-expression), t (9;11), 11q23] (Table 4). The similarity of immunophenotype and cytogenetic abnormalities in blast cells in pro-B-ALL and AML M5a seems to be the hint explaining the cases of AML M5a as a recur- rence of leukemia in children with originally diagnosed pro-B-ALL. Moreover, the common LSC for pro-B-ALL and AML M5a further suggest the analogous precursor cell for the normal hematopoiesis. Therefore, the modern concept of LSC allows one to analyze in more depth the mechanisms of leukemic transformation of target cells in acute leukemias of the closely related origin such as AML M6 vs AML M7; AML M5a vs pro-B-ALL. Based on the consistency of CD34+CD38– cell surface immunophenotype in different AML subtypes except for M3 and their similarity to the phenotype of normal HSC, a model of leukemogenesis was proposed [22] suggesting that the transformation genetic events occur in primitive stem cells. According to the alternative point of view, that cells of origin for AML M0–M7 are the lineage committed hematopoietic progenitors [23, 24]. As was stated by Weissman [11], the mechanisms of leukemic transforma- tion involve the increased cell survival, the increased proli- ferative potential, the increased self-renewal capability, the genome instability, and the disordered differentiation. Table 3. Immunophenotype of blasts in AML М6b and AML М7 Acute erythroleukemia (AML М6b) Acute megakaryoblastic leukemia (AML М7) МPО– МPО– HLA-DR+/– HLA-DR+/– CD34+ CD34–/+ CD117– CD117– CD71+ CD71+ CD33– and CD13– CD33+/– or CD13+/– CD36+ CD36+ Table 4. Immunophenotype of blasts in pro-В-ALL and AML М5а Pro-В-ALL AML М5а MPO– MPO– HLA-DR+ HLA-DR+ CD34+ (90–100% cells) CD34+/– (less than 50% cells) CD19+CD33– (co-expression is possible) CD33+CD19– (co-expression is possible) t (4;11), 11q23 t (9;11), 11q23 The recent data on the presumptive target cells for leukemic transformations and the candidates LSC in various hematopoietic malignancies delineated in ac- cordance with the recent WHO classification [25] are summarized in Table 5. Table 5. Candidate LSC in the tumors of hematopoietic and lymphoid tissues [25] Chronic myeloproliferative diseases Chronic myelogenous leukemia Pluripotent bone marrow SC Chronic eosinophilic leukemia Pluripotent SC in case of t (8;13); multipotent HSC or committed eosinophil precursor cell Polycythemia vera Multipotent HSC Chronic idiopathic myelofibrosis Multipotent HSC Essential thrombocytemia Bone marrow SC with variable lineage potential Myelodysplastic/myeloproliferative diseases Chronic myelomonocytic leukemia HSC Atypical chronic myeloid leukemia Bone marrow myeloid SC Juvenile myelomonocytic leukemia Multipotent or pluripotent HSC Myelodysplastic syndromes Refractory anemia (RA) HSC Refractory anemia with ringed sideroblasts (RARS) HSC Refractory cytopenia with multilineage dysplasia (RCMD) Myeloid SC Refractory anemia with excess blast (RAEB) Myeloid SC Unclassifiable Myeloid SC Associated with del (5q)- HSC Acute myeloid leukemias AML with recurrent cytogenetic abnormalities Myeloid SC with potential to granulocytic differentiation AML with 11q23 (MLL) HSC with multilineage potential AML with multilineage dysplasia HSC Therapy-related AML HSC AML not otherwise characterized AML minimally differentiated and AML with maturation Precursor HSC at early stage of myeloid differentiation Acute myelomonocytic leukemia HSC with potential to differentiate into granulocytic and monocytic lineages Acute monoblastic and monocytic leukemia HSC with some commitment to monocytic differentiation Acute erythroid leukemia Multipotent HSC with myeloid potential Acute megakaryoblastic leukemia Precursor cell committed to mega karyo- cytic and possibly erythroid differentiation Acute lymphoblastic leukemias Precursor B-lymphoblastic leukemia/lymphoma Precursor B-lymphoblast Precursor T-lymphoblastic leukemia/lymphoma Precursor T-lymphoblast Experimental Oncology 30, 102–105, 2008 (June)30, 102–105, 2008 (June) 105 CONCLUSION The identification of LSC in specified types and vari- ants of the diseases should be an important task in the routine diagnostic research in leukemia patients. The identification of LSC and gene expression in heteroge- neous forms of hemoblastoses differed by cytological, cytochemical features as well as by immunophenotype is advantageous for studying in depth molecular and genetic mechanisms of leukemogenesis. LSC and not the usual blasts should be regarded as the major targets for the novel therapeutic modalities. REFERENCES 1. Metcalf D, Moore MAS. Haemopoietic Cells. Amster- dam: North Holland Publ Co 1971. 567 p. 2. Mathe G, Dantchev D, Pouillart P, Florentin J. De l’hematologie avec a l’hematologie sans microscope. Nouv Presse Med 1972; 1: 3135–9. 3. Chertkov IL, Vorobiov AI. Present-day concept of he- matopoiesis. Problems of Hematology and Blood Transfusion 1973; 10: 3–13 (in Russian). 4. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal bone marrow cells. Radiat Res 1961; 14: 213–22. 5. Butenko ZA. Hematopoietic Stem Cells and Leukemia. Kiev: Nauk Dumka, 1978. 182 p (in Russian). 6. Gluzman DF. Diagnostic Cytochemistry of Hematoblas- toses. Kiev: Nauk Dumka, 1978. 216 p (in Russian). 7. Zola H, Swart B, Nicholson I, et al. CD molecules 2005: Human cell differentiation molecules. Blood 2005; 106: 3123–6. 8. Fialkow P, Gartler SM, Yoshida A. Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci USA. 1967; 58: 1468–71. 9. Fialkow P. Acute nonlymphocytic leukemia: heterogene- ity of stem cell origin. Blood 1981; 57: 1068–73. 10. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–97. 11. Passegue E, Jamleson CHM, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics. Proc Natl Acad Sci USA 2003; 100: 11842–9. 12. Dick JE. Normal and leukemic stem cells assayed in SCID mice. Semin Immunol 1996; 8: 197–206. 13. Huntly BJD, Gilliland DG. Leukaemia stem cells and the evolution of cancer – stem cells research. Nature Rev Cancer 2005; 5: 311–20. 14. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–8. 15. Singh SK, Hawkins C, Clarke ID, Squire JA, Bajani Y, Hide T, et al. Identification of human brain tumor initiating cells. Nature 2004; 432: 396–401. 16. Collins AT, Berry PA, Hyde C, et al. Prospective iden- tification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946–51. 17. Bapat SA, Mali AM, Koppicar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behav- ior of human epithelial ovarian cancer. Cancer Res 2005; 65: 3025–9. 18. Gibbs CP, Kukekov VG, Reith JD, et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 2005; 7: 967–76. 19. Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem properties in melanomas. Cancer Res 2005; 65: 9328–37. 20. Ross RA, Spengler BA. Human neuroblastoma stem cells. Seminar in Cancer Biology 2007; 17: 241–7. 21. Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differentiation 2008; 15: 504–14. 22. McCulloch E. Stem cells in normal and leukemic he- mopoiesis. (Henry Stratton lecture). Blood 1983; 62: 1–13. 23. Dick JE. Cancer stem cells: lessons from leukemia. Ann Hematol 2006; 85: 48–9. 24. Hope KLJ, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–43. 25. Jaffe ES, Harris NL, Stein H, Vardiman YW. World Health Organization Classification of Tumours. Pathology and Gene tics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2001. 352 p. ИзученИе морфоцИтохИмИческИх И ИммунофенотИпИческИх прИзнаков стволовых клеток прИ острых лейкозах Иммунофенотипический профиль стволовых лейкемических клеток (СЛК) интенсивно изучают в ряде лабораторий мира. Результаты данного исследования подтверждают, что стандартная панель для классификации острых лейкозов (ОЛ) должна быть дополнена рядом новых маркеров. Это позволяет более точно идентифицировать близкие по происхождению формы ОЛ, например ОМЛ М6b и ОМЛ М7. Предполагается существование общей низкодифференцированной бипотентной ЛСК при ОМЛ М7 и ОМЛ М6b, подобной нормальной общей клетке-предшественнице мегакариоцитопоэза и эритропоэза. Установлено также сходство бластных клеток при про-В-ОЛЛ с перестройкой хромосомного участка 11q23 и транслокацией (4;11) и бластных клеток при ОМЛ М5а c перестройкой того же хромосомного участка 11q23 и транслокацией (9;11). Подобное сходство иммунофенотипа и цитогенетических аномалий при указанных 2 формах ОЛ объясняет появление бластов с фенотипом ОМЛ М5а при рецидиве заболевания у детей, у которых ранее был диагностирован про-В-ОЛЛ. Ключевые слова: стволовая лейкемическая клетка, острые лейкозы, классификация, иммунофенотип. Copyright © Experimental Oncology, 2008