Early age corrosion of mild steel in aggressive media
Effect of exposure time, section type and solution concentration on mild steel early age corrosion was studied. Steel specimens section types were box, tube and corner. They were subjected to 3.5%; 5.0% and 7.0% NaCl solutions. It was established that solution concentration effects the corrosion unt...
Saved in:
| Published in: | Фізико-хімічна механіка матеріалів |
|---|---|
| Date: | 2012 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-механічний інститут ім. Г.В. Карпенка НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/140208 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Early age corrosion of mild steel in aggressive media / A.U. Ozturk, E. Gucuyen, R.T. Erdem, Seker S.// Фізико-хімічна механіка матеріалів. — 2012. — Т. 48, № 2. — С. 91-96. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-140208 |
|---|---|
| record_format |
dspace |
| spelling |
Ozturk, A.U. Gucuyen, E. Erdem, R.T. Seker, S. 2018-06-23T16:23:11Z 2018-06-23T16:23:11Z 2012 Early age corrosion of mild steel in aggressive media / A.U. Ozturk, E. Gucuyen, R.T. Erdem, Seker S.// Фізико-хімічна механіка матеріалів. — 2012. — Т. 48, № 2. — С. 91-96. — Бібліогр.: 11 назв. — англ. 0430-6252 https://nasplib.isofts.kiev.ua/handle/123456789/140208 Effect of exposure time, section type and solution concentration on mild steel early age corrosion was studied. Steel specimens section types were box, tube and corner. They were subjected to 3.5%; 5.0% and 7.0% NaCl solutions. It was established that solution concentration effects the corrosion until reaching the saturation value. Вивчено вплив тривалості експозиції, типу сталевого профілю та концентрації розчину на ранню стадію корозії вуглецевої сталі. Використано сталеві зразки у вигляді куба, трубки та кутника. Досліджували в 3,5-, 5,0- та 7,0%-их розчинах NaCl. Встановлено, що після досягнення граничної концентрації розчину хлориду натрію подальше збільшення вмісту солі не впливає на корозію сталі. Изучено влияние продолжительности экспозиции, типа стального профиля и концентрации раствора на раннюю стадию коррозии углеродистой стали. Использованы стальные образцы в виде куба, трубки и угольника. Исследовали в 3,5-, 5,0- и 7,0%-ых растворах NaCl. Установлено, что после достижения предельной концентрации раствора хлорида натрия, последующее увеличение содержания соли не влияет на коррозию стали. en Фізико-механічний інститут ім. Г.В. Карпенка НАН України Фізико-хімічна механіка матеріалів Early age corrosion of mild steel in aggressive media Ранняя стадия коррозии углеродистой стали в агрессивной среде Рання стадія корозії вуглецевої сталі в агресивному середовищі Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Early age corrosion of mild steel in aggressive media |
| spellingShingle |
Early age corrosion of mild steel in aggressive media Ozturk, A.U. Gucuyen, E. Erdem, R.T. Seker, S. |
| title_short |
Early age corrosion of mild steel in aggressive media |
| title_full |
Early age corrosion of mild steel in aggressive media |
| title_fullStr |
Early age corrosion of mild steel in aggressive media |
| title_full_unstemmed |
Early age corrosion of mild steel in aggressive media |
| title_sort |
early age corrosion of mild steel in aggressive media |
| author |
Ozturk, A.U. Gucuyen, E. Erdem, R.T. Seker, S. |
| author_facet |
Ozturk, A.U. Gucuyen, E. Erdem, R.T. Seker, S. |
| publishDate |
2012 |
| language |
English |
| container_title |
Фізико-хімічна механіка матеріалів |
| publisher |
Фізико-механічний інститут ім. Г.В. Карпенка НАН України |
| format |
Article |
| title_alt |
Ранняя стадия коррозии углеродистой стали в агрессивной среде Рання стадія корозії вуглецевої сталі в агресивному середовищі |
| description |
Effect of exposure time, section type and solution concentration on mild steel early age corrosion was studied. Steel specimens section types were box, tube and corner. They were subjected to 3.5%; 5.0% and 7.0% NaCl solutions. It was established that solution concentration effects the corrosion until reaching the saturation value.
Вивчено вплив тривалості експозиції, типу сталевого профілю та концентрації розчину на ранню стадію корозії вуглецевої сталі. Використано сталеві зразки у вигляді куба, трубки та кутника. Досліджували в 3,5-, 5,0- та 7,0%-их розчинах NaCl. Встановлено, що після досягнення граничної концентрації розчину хлориду натрію подальше збільшення вмісту солі не впливає на корозію сталі.
Изучено влияние продолжительности экспозиции, типа стального профиля и концентрации раствора на раннюю стадию коррозии углеродистой стали. Использованы стальные образцы в виде куба, трубки и угольника. Исследовали в 3,5-, 5,0- и 7,0%-ых растворах NaCl. Установлено, что после достижения предельной концентрации раствора хлорида натрия, последующее увеличение содержания соли не влияет на коррозию стали.
|
| issn |
0430-6252 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/140208 |
| citation_txt |
Early age corrosion of mild steel in aggressive media / A.U. Ozturk, E. Gucuyen, R.T. Erdem, Seker S.// Фізико-хімічна механіка матеріалів. — 2012. — Т. 48, № 2. — С. 91-96. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT ozturkau earlyagecorrosionofmildsteelinaggressivemedia AT gucuyene earlyagecorrosionofmildsteelinaggressivemedia AT erdemrt earlyagecorrosionofmildsteelinaggressivemedia AT sekers earlyagecorrosionofmildsteelinaggressivemedia AT ozturkau rannââstadiâkorroziiuglerodistoistalivagressivnoisrede AT gucuyene rannââstadiâkorroziiuglerodistoistalivagressivnoisrede AT erdemrt rannââstadiâkorroziiuglerodistoistalivagressivnoisrede AT sekers rannââstadiâkorroziiuglerodistoistalivagressivnoisrede AT ozturkau rannâstadíâkorozíívuglecevoístalívagresivnomuseredoviŝí AT gucuyene rannâstadíâkorozíívuglecevoístalívagresivnomuseredoviŝí AT erdemrt rannâstadíâkorozíívuglecevoístalívagresivnomuseredoviŝí AT sekers rannâstadíâkorozíívuglecevoístalívagresivnomuseredoviŝí |
| first_indexed |
2025-11-25T23:07:50Z |
| last_indexed |
2025-11-25T23:07:50Z |
| _version_ |
1850578769098571776 |
| fulltext |
91
Ô³çèêî-õ³ì³÷íà ìåõàí³êà ìàòåð³àë³â. – 2012. – ¹ 2. – Physicochemical Mechanics of Materials
EARLY AGE CORROSION OF MILD STEEL IN AGGRESSIVE MEDIA
A. U. OZTURK, E. GUCUYEN R. T. ERDEM, S. SEKER
Department of Civil Engineering, Celal Bayar University, Manisa, Turkey
Effect of exposure time, section type and solution concentration on mild steel early age
corrosion was studied. Steel specimens section types were box, tube and corner. They
were subjected to 3.5%; 5.0% and 7.0% NaCl solutions. It was established that solution
concentration effects the corrosion until reaching the saturation value.
Keywords: corrosion, mild steel, section type, NaCl.
Experimental analyzes for various purposes have become significant in studies
for the last couple of decades. Engineering problems of combining cities by long span
bridges or constructing the highest skyscrapers in the world have two different sides.
The problems seem to be such a naked structural analysis, which can be solved with
engineering analysis programs by using computers of great capacities.
In fact, these problems are not as the same as they seem to be. They have another
side which may have more ruinous effects during service life of a structure in the case
of being ignored. This side includes durability problems of structures. These problems
may effect the structural stability and reliability day by day. Corrosion is one of dura-
bility problems concerned with the aggressive media having inverse effects on struc-
tures. Corrosion can be defined as deterioration of a material with chemical reactions
resulting between the material and the aggressive media. The chemical reactions may
occur on the surface of materials leading to the weight and section loss.
Corrosion is one of the most misunderstood and mischaracterized forms of mate-
rial degradation. Consequently, corrosion analysis and mitigation methods tend to be
some of the most misapplied. In many cases corrosion is the life-limiting factor of a
structural component [1].
Corrosion problems can be met at any time during service life. Engineers must be
ready for these undesirable conditions providing a good material selection and proper
precaution methods. Thus, some production problems may occur during construction
of structures comprising steel sections. Similar corrosion effects are studied in [2–9].
Nowadays, engineers face with associated pitfalls of corrosion. To decrease the
destructive effects of corrosion reactions, some laboratory test methods must be per-
formed to examine the service life performance of steel structural elements considering
that apart from structures which extend some way into the splash zone, the results ob-
tained from small-scale specimens are generally considered to be directly applicable to
full-scale structures [5].The laboratory tests must simulate the almost real field condi-
tions in order to determine exact results.
Corresponding author: A. U. OZTURK, e-mail: augurozturk@bayar.edu.tr
92
Current laboratory tests and new required tests designed in the future bring capa-
cities and knowledge desired in order to overcome corrosion and its destructive effects.
Proper material selection and effective precaution methods as a result of good
simulated tests are always necessary for structural stability and reliability.
Most of the laboratory experiments are about the marine environments that are
recognized to be very corrosive for mild and low alloy steels. For economic reasons, such
steels are still the preferred materials for offshore structures, ship hulls, sheet piling and
harbor-side facilities [5]. Seawater, because of its variability is not easily simulated in
the laboratory for corrosion-testing purposes. A 3.5% NaCl solution is used frequently
for this purpose and is known to be more aggressive toward carbon steel than natural
seawater [10]. This indicates the importance, particularly for engineering design
considerations, of understanding the factors that control immersion corrosion of steel
as a function of water salinity. It was found that steel corroded nearly four times faster
in a 3.5% NaCl solution than in natural seawater for an exposure time of 21 days [11].
Corrosion resistance of mild steel samples varying with section types was determined.
Aggressive media having destructive corrosion effects were formed by three different
NaCl solutions (3.5%; 5.0% and 7.0%) and only distilled water. Corrosion rates and
weight loss were determined at early ages such as 10; 30; 60 and 90 days.
Experimental. The problem gets serious when corrosion effect on steel structures
is seen by naked eye. To realize and determine the corrosion behavior of mild steel ele-
ments under aggressive media, three different section types according to section geo-
metry were selected. Mild steel sample properties are given in Table 1. Density value
for each section type is 7.85 g/cm3.
Table 1. Mild steel sample characteristics
Section type Dimensions, mm Initial weight, g Surface area, mm2
Box (B) 50×20×110 455.3
50 × 110 × 40 = 22000
46 × 110 × 40 = 20240
ΣA = 42240
Tube (C) ∅60×30×110 427.5
π × 60 × 110 = 20735
π × 54 × 110 = 18661
ΣA = 39396
Corner (L) 50×50×40–110 399.5
50 × 110 × 20 = 11000
46 × 110 × 20 = 10120
ΣA = 21120
Cycle activities were applied to observe the corrosion effect in the experimental
part. Corrosion cycles include three different parts. First of all, mild steel samples were
submerged into the NaCl solutions and distilled water in order to simulate an aggres-
sive corrosion media during 12 h. In the second part, samples were put into drying
oven at 60°C for about thirty minutes. In the last part, cooling was performed in the la-
boratory conditions approximately between 20 and 22°C. After that the weight losses
in steel samples were measured to determine the corrosion rate. These corrosion cycles
detailed below were repeated for 90 days.
The steel samples were subjected to corrosive media containing NaCl solutions
with concentrations 0%; 3.5%; 5.0% and 7.0% respectively. The solution properties are
given in Table 2.
93
Table 2. Solution properties
Solution Initial solution NaCl concentration, % pH value
Distilled water D 0 7.1
3.5% NaCl N3.5 3.5 6.8
5.0% NaCl N5.0 5.0 6.5
7.0% NaCl N7.0 7.0 6.3
All experiment sets were named with some initials. As an example, a set compri-
sing tube steel samples and 5.0% NaCl solution was named as “CN5”. The symbols
“C” and “N5” indicate section type (tube) and 5.0% NaCl solution. There were 12 ex-
periment sets including 9 samples as seen in Table 3.
Table 3. Experiment set definitions
Experiment set definition Experiment set initial
Box sections in distilled water BD
Tube sections in distilled water CD
Corner sections in distilled water LD
Box sections in 3.5% NaCl solution BN3.5
Box sections in 5.0% NaCl solution BN5
Box sections in 7.0% NaCl solution BN7
Tube sections in 3.5% NaCl solution CN3.5
Tube sections in 5.0% NaCl solution CN5
Tube sections in 7.0% NaCl solution CN7
Corner sections in 3.5% NaCl solution LN3.5
Corner sections in 5.0% NaCl solution LN5
Corner sections in 7.0% NaCl solution LN7
Results and discussion. Corrosion effect is inevitable for steel structures and it
can be minimized by taking early measurements. Thus, service life of a structure gets
longer and less maintenance costs are needed.
Indeed, improper design and production of steel structures brings some durability
and stability problems in service life. Corrosion negatively affects such structures.
These structures lose their thickness, body symmetry and weight in the process of time.
In addition corroded parts are responsible for density loss in the sections of steel struc-
tures.
Corrosion tests were done on steel samples to investigate the corrosion rate chan-
ging dependence on time and section type for different solution concentrations (Fig. 1).
Weight losses increase in time according to corrosion process. Additionally the effect
of section types on corrosion resistance was observed and maximum weight loss was
see in box sections.
The minimum weight loss values were seen for samples submerged in distilled
water, the maximum ones were obtained for samples in 7.0% NaCl solutions. Similarly
to Fig. 1 the section type effects on time varying corrosion ratios were investigated for
mentioned solutions and the results are given in Fig. 2.
94
Fig. 1. Weight losses by time for different section types in: a – distilled water;
b – 3.5% NaCl; c – 5.0% NaCl; d – 7.0% NaCl. – corner; – tube; – box.
Fig. 2. Corrosion rates by time for different section types in: a – distilled water;
b – 3.5% NaCl; c – 5.0% NaCl; d – 7.0% NaCl. – corner; – tube; – box.
95
Although all NaCl solutions effect the corrosion in comparison with the distilled
water, the solution concentration cannot present a distinctive effect on corrosion at the
saturation limit. The effect of 7.0% NaCl solution is almost the same as the effect of
5.0% NaCl solution (Fig. 3).
The box sections were most affected by corrosion accordingly to both mass losses
and corrosion rates. The solution effects on time varying corrosion rates were investi-
gated for box sections as seen in Fig. 3. The solution effects on corrosion rate can be
seen not only for box sections but also for all section types.
Fig. 3. Corrosion rates by time for box sections:
– distilled water; solid line – 3.5% NaCl; – 5.0% NaCl; – 7.0% NaCl.
CONCLUSION
Although it is easy to recognize corrosion of every steel construction detail, it is
important to forecast its corrosion resistance before construction work. There are seve-
ral methods to simulate the early age corrosion of steel details. Corrosion resistance of
mild steel specimens with different sections types was investigated. Specimens were
subjected to NaCl solutions of different concentration. Corrosion in distilled water was
also taken into consideration. It was established that steel corrosion rate increases by
solution concentration whereas decreases within the exposure time. The maximum cor-
rosion rate values were obtained for box section samples. This study might be enhanced
further by using different sections and solution concentration in different conditions.
РЕЗЮМЕ. Вивчено вплив тривалості експозиції, типу сталевого профілю та кон-
центрації розчину на ранню стадію корозії вуглецевої сталі. Використано сталеві зразки у
вигляді куба, трубки та кутника. Досліджували в 3,5-, 5,0- та 7,0%-их розчинах NaCl.
Встановлено, що після досягнення граничної концентрації розчину хлориду натрію по-
дальше збільшення вмісту солі не впливає на корозію сталі.
РЕЗЮМЕ. Изучено влияние продолжительности экспозиции, типа стального профи-
ля и концентрации раствора на раннюю стадию коррозии углеродистой стали. Использо-
ваны стальные образцы в виде куба, трубки и угольника. Исследовали в 3,5-, 5,0- и
7,0%-ых растворах NaCl. Установлено, что после достижения предельной концентрации
раствора хлорида натрия, последующее увеличение содержания соли не влияет на корро-
зию стали.
96
1. Guthrie J., Battat B., and Grethlein C. Accelerated Corrosion Testing // The AMPTIAC
Quarterly. – 2010. – 6(3). – P. 11–15.
2. Melchers R. E. and Chernov B. B. Corrosion loss of mild steel in high temperature hard
freshwater // Corr. Sci. – 2010. – 52, Issue 2. – P. 449–454.
3. Han L. and Song S. A measurement system based on electrochemical frequency modulation
technique for monitoring the early corrosion of mild steel in seawater // Ibid. – 2008.
– 50, Issue 6. – P. 1551–1557.
4. Melchers R. E. Modelling immersion corrosion of structural steels in natural fresh and
brackish waters // Ibid. – 2006. – 48, Issue 12. – P. 4174–4201.
5. Melchers R. E. Corrosion uncertainty modelling for steel structures // J. Constructional Steel
Research. – 1999. – 52, Issue 1. – P. 3–19.
6. The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadia-
zole: Structure–activity correlation / M. Lebrini, F. Bentiss, H. Vezin, and M. Lagrenée
// Corr. Sci. – 2005. – 48, Issue 5. – P. 1279–1291.
7. Experimental and theoretical study for corrosion inhibition of mild steel in normal hydro-
chloric acid solution by some new macrocyclic polyether compounds / M. Lebrini, M. Lag-
renée, H. Vezin, M. Traisnel, and F. Bentiss // Ibid. – 2007. – 49, Issue 5. – P. 2254–2269.
8. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl / A. Pardo, M. C. Me-
rino, A. E. Coy, V. Arrabal, F. Viejo, and E. Matykina // Ibid. – 2008. – 50, Issue 3.
– P. 823–834.
9. Effect of ozone on corrosion behavior of mild steel in seawater / J. Liao, K. Kishimoto,
M. Yao, Y. Mori, and M. Ikai // Ibid. – 2012. – 55, Issue 2. – P. 205–212.
10. Jones D. A. // Principles and Prevention of Corrosion. – Upper Saddle River. – NJ, Prentice
Hall, 1996.
11. Möller H., Boshoff E. T., and Froneman H. // J. of the South African Institute of Mining and
Metallurgy. – 2006. – 106. – P. 585–592.
Received 23.01.2012
|