On the Form of Dispersive Shock Waves of the Korteweg-de Vries Equation
We show that the long-time behavior of solutions to the Korteweg{de Vries shock problem can be described as a slowly modulated one-gap solution in the dispersive shock region. The modulus of the elliptic function (i.e., the spectrum of the underlying Schrödinger operator) depends only on the size of...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2016 |
| Main Authors: | Egorova, I., Gladka, Z., Teschl, G. |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2016
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/140545 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the Form of Dispersive Shock Waves of the Korteweg-de Vries Equation / I. Egorova, Z. Gladka , G. Teschl // Журнал математической физики, анализа, геометрии. — 2016. — Т. 12, № 1. — С. 3-16. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the Form of Dispersive Shock Waves of the Korteweg-de Vries Equation
by: I. Egorova, et al.
Published: (2016) -
Uniqueness of the solution of the Riemann-Hilbert problem for a rarefaction wave of the Korteweg-de Vries equation
by: K. N. Andreev, et al.
Published: (2017) -
On the Long-Time Asymptotics for the Korteweg–de Vries Equation with Steplike Initial Data Associated with Rarefaction Waves
by: K. Andreiev, et al.
Published: (2017) -
Conservation Laws of Discrete Korteweg-de Vries Equation
by: Rasin, O.G., et al.
Published: (2005) -
The Korteweg–De Vries Equation with Forcing Involving Products of Eigenfunctions
by: Fokas, A. S., et al.
Published: (2023)