Spherical Quadrilaterals with Three Non-integer Angles

A spherical quadrilateral is a bordered surface homeomorphic to a closed disk, with four distinguished boundary points called corners, equipped with a Riemannian metric of constant curvature 1, except at the corners, and such that the boundary arcs between the corners are geodesic. We discuss the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2016
Hauptverfasser: Eremenko, A., Gabrielov, A., Tarasov, V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/140551
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Spherical Quadrilaterals with Three Non-integer Angles / A. Eremenko, A. Gabrielov, V. Tarasov // Журнал математической физики, анализа, геометрии. — 2016. — Т. 12, № 2. — С. 134-167. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A spherical quadrilateral is a bordered surface homeomorphic to a closed disk, with four distinguished boundary points called corners, equipped with a Riemannian metric of constant curvature 1, except at the corners, and such that the boundary arcs between the corners are geodesic. We discuss the problem of classification of these quadrilaterals and perform the classification up to isometry in the case that one corner of a quadrilateral is integer (i.e., its angle is a multiple of π) while the angles at its other three corners are not multiples of π. The problem is equivalent to classification of Heun's equations with real parameters and unitary monodromy, with the trivial monodromy at one of its four singular point.
ISSN:1812-9471