Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers

The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these fu...

Full description

Saved in:
Bibliographic Details
Published in:Журнал математической физики, анализа, геометрии
Date:2017
Main Author: Serbenyuk, S.O.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/140565
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-140565
record_format dspace
spelling Serbenyuk, S.O.
2018-07-10T17:02:36Z
2018-07-10T17:02:36Z
2017
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ.
1812-9471
DOI: doi.org/10.15407/mag13.01.057
Mathematics Subject Classification 2000: 39B72, 26A27, 26A30, 11B34, 11K55
https://nasplib.isofts.kiev.ua/handle/123456789/140565
The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these functions. Conditions of monotony and nonmonotony are found. The functional equations system such that the function from the given class of functions is a solution of the system is indicated.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
spellingShingle Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
Serbenyuk, S.O.
title_short Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
title_full Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
title_fullStr Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
title_full_unstemmed Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
title_sort continuous functions with complicated local structure defined in terms of alternating cantor series representation of numbers
author Serbenyuk, S.O.
author_facet Serbenyuk, S.O.
publishDate 2017
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these functions. Conditions of monotony and nonmonotony are found. The functional equations system such that the function from the given class of functions is a solution of the system is indicated.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/140565
citation_txt Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT serbenyukso continuousfunctionswithcomplicatedlocalstructuredefinedintermsofalternatingcantorseriesrepresentationofnumbers
first_indexed 2025-12-07T20:32:49Z
last_indexed 2025-12-07T20:32:49Z
_version_ 1850882989145194496