Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these fu...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2017 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/140565 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-140565 |
|---|---|
| record_format |
dspace |
| spelling |
Serbenyuk, S.O. 2018-07-10T17:02:36Z 2018-07-10T17:02:36Z 2017 Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ. 1812-9471 DOI: doi.org/10.15407/mag13.01.057 Mathematics Subject Classification 2000: 39B72, 26A27, 26A30, 11B34, 11K55 https://nasplib.isofts.kiev.ua/handle/123456789/140565 The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these functions. Conditions of monotony and nonmonotony are found. The functional equations system such that the function from the given class of functions is a solution of the system is indicated. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
| spellingShingle |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers Serbenyuk, S.O. |
| title_short |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
| title_full |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
| title_fullStr |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
| title_full_unstemmed |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers |
| title_sort |
continuous functions with complicated local structure defined in terms of alternating cantor series representation of numbers |
| author |
Serbenyuk, S.O. |
| author_facet |
Serbenyuk, S.O. |
| publishDate |
2017 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
The paper is devoted to one infinite parametric class of continuous functions with complicated local structure such that these functions are defined in terms of alternating Cantor series representation of numbers. The main attention is given to differential, integral and other properties of these functions. Conditions of monotony and nonmonotony are found. The functional equations system such that the function from the given class of functions is a solution of the system is indicated.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/140565 |
| citation_txt |
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 57-81. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT serbenyukso continuousfunctionswithcomplicatedlocalstructuredefinedintermsofalternatingcantorseriesrepresentationofnumbers |
| first_indexed |
2025-12-07T20:32:49Z |
| last_indexed |
2025-12-07T20:32:49Z |
| _version_ |
1850882989145194496 |