Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions

We find sharp sufficient conditions for the boundedness of fractional derivatives of a bounded analytic function in a Stolz angle. If F ≠ 0 in the unit disc, the necessary and sufficient conditions for the boundedness of fractional derivatives of its argument in a Stolz angle are established.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2017
Hauptverfasser: Chyzhykov, I., Kosaniak, Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/140567
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions / I. Chyzhykov, Yu. Kosaniak // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 107-118. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-140567
record_format dspace
spelling Chyzhykov, I.
Kosaniak, Yu.
2018-07-10T18:27:54Z
2018-07-10T18:27:54Z
2017
Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions / I. Chyzhykov, Yu. Kosaniak // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 107-118. — Бібліогр.: 15 назв. — англ.
1812-9471
DOI: doi.org/10.15407/mag13.02.107
Mathematics Subject Classification 2000: 30D50
https://nasplib.isofts.kiev.ua/handle/123456789/140567
We find sharp sufficient conditions for the boundedness of fractional derivatives of a bounded analytic function in a Stolz angle. If F ≠ 0 in the unit disc, the necessary and sufficient conditions for the boundedness of fractional derivatives of its argument in a Stolz angle are established.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions
spellingShingle Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions
Chyzhykov, I.
Kosaniak, Yu.
title_short Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions
title_full Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions
title_fullStr Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions
title_full_unstemmed Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions
title_sort asymptotic behavior of fractional derivatives of bounded analytic functions
author Chyzhykov, I.
Kosaniak, Yu.
author_facet Chyzhykov, I.
Kosaniak, Yu.
publishDate 2017
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We find sharp sufficient conditions for the boundedness of fractional derivatives of a bounded analytic function in a Stolz angle. If F ≠ 0 in the unit disc, the necessary and sufficient conditions for the boundedness of fractional derivatives of its argument in a Stolz angle are established.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/140567
citation_txt Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions / I. Chyzhykov, Yu. Kosaniak // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 107-118. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT chyzhykovi asymptoticbehavioroffractionalderivativesofboundedanalyticfunctions
AT kosaniakyu asymptoticbehavioroffractionalderivativesofboundedanalyticfunctions
first_indexed 2025-12-07T16:07:27Z
last_indexed 2025-12-07T16:07:27Z
_version_ 1850866293795717120