Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asy...
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/140569 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-140569 |
|---|---|
| record_format |
dspace |
| spelling |
Goncharenko, M. Khilkova, L. 2018-07-10T18:31:02Z 2018-07-10T18:31:02Z 2017 Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ. 1812-9471 DOI: doi.org/10.15407/mag13.02.154 Mathematics Subject Classification 2000: 35Q74 https://nasplib.isofts.kiev.ua/handle/123456789/140569 We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
| spellingShingle |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift Goncharenko, M. Khilkova, L. |
| title_short |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
| title_full |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
| title_fullStr |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
| title_full_unstemmed |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift |
| title_sort |
homogenized model of non-stationary diffusion in porous media with the drift |
| author |
Goncharenko, M. Khilkova, L. |
| author_facet |
Goncharenko, M. Khilkova, L. |
| publishDate |
2017 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/140569 |
| citation_txt |
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ. |
| work_keys_str_mv |
AT goncharenkom homogenizedmodelofnonstationarydiffusioninporousmediawiththedrift AT khilkoval homogenizedmodelofnonstationarydiffusioninporousmediawiththedrift |
| first_indexed |
2025-12-07T21:16:55Z |
| last_indexed |
2025-12-07T21:16:55Z |
| _version_ |
1850885763618570240 |