Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift

We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2017
Hauptverfasser: Goncharenko, M., Khilkova, L.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/140569
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-140569
record_format dspace
spelling Goncharenko, M.
Khilkova, L.
2018-07-10T18:31:02Z
2018-07-10T18:31:02Z
2017
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ.
1812-9471
DOI: doi.org/10.15407/mag13.02.154
Mathematics Subject Classification 2000: 35Q74
https://nasplib.isofts.kiev.ua/handle/123456789/140569
We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
spellingShingle Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
Goncharenko, M.
Khilkova, L.
title_short Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
title_full Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
title_fullStr Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
title_full_unstemmed Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift
title_sort homogenized model of non-stationary diffusion in porous media with the drift
author Goncharenko, M.
Khilkova, L.
author_facet Goncharenko, M.
Khilkova, L.
publishDate 2017
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/140569
citation_txt Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift / M. Goncharenko, L. Khilkova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 154-172. — Бібліогр.: 35 назв. — англ.
work_keys_str_mv AT goncharenkom homogenizedmodelofnonstationarydiffusioninporousmediawiththedrift
AT khilkoval homogenizedmodelofnonstationarydiffusioninporousmediawiththedrift
first_indexed 2025-12-07T21:16:55Z
last_indexed 2025-12-07T21:16:55Z
_version_ 1850885763618570240