On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature

This note deals with super quasi-Einstein warped product spaces. Here we establish that if M is a super quasi-Einstein warped product space with nonpositive scalar curvature and compact base, then M is simply a Riemannian product space. Next we give an example of super quasi-Einstein space-time. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2017
Hauptverfasser: Pahan, S., Pal, B., Bhattacharyya, A.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/140581
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature / S. Pahan, B. Pal, A. Bhattacharyya // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 353-363. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-140581
record_format dspace
spelling Pahan, S.
Pal, B.
Bhattacharyya, A.
2018-07-10T20:24:05Z
2018-07-10T20:24:05Z
2017
On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature / S. Pahan, B. Pal, A. Bhattacharyya // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 353-363. — Бібліогр.: 12 назв. — англ.
1812-9471
DOI: doi.org/10.15407/mag13.04.353
Mathematics Subject Classification 2000: 53C20, 53B20
https://nasplib.isofts.kiev.ua/handle/123456789/140581
This note deals with super quasi-Einstein warped product spaces. Here we establish that if M is a super quasi-Einstein warped product space with nonpositive scalar curvature and compact base, then M is simply a Riemannian product space. Next we give an example of super quasi-Einstein space-time. In the last section a warped product is defined on it.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature
spellingShingle On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature
Pahan, S.
Pal, B.
Bhattacharyya, A.
title_short On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature
title_full On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature
title_fullStr On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature
title_full_unstemmed On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature
title_sort on compact super quasi-einstein warped product with nonpositive scalar curvature
author Pahan, S.
Pal, B.
Bhattacharyya, A.
author_facet Pahan, S.
Pal, B.
Bhattacharyya, A.
publishDate 2017
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description This note deals with super quasi-Einstein warped product spaces. Here we establish that if M is a super quasi-Einstein warped product space with nonpositive scalar curvature and compact base, then M is simply a Riemannian product space. Next we give an example of super quasi-Einstein space-time. In the last section a warped product is defined on it.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/140581
citation_txt On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature / S. Pahan, B. Pal, A. Bhattacharyya // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 353-363. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT pahans oncompactsuperquasieinsteinwarpedproductwithnonpositivescalarcurvature
AT palb oncompactsuperquasieinsteinwarpedproductwithnonpositivescalarcurvature
AT bhattacharyyaa oncompactsuperquasieinsteinwarpedproductwithnonpositivescalarcurvature
first_indexed 2025-12-07T18:19:30Z
last_indexed 2025-12-07T18:19:30Z
_version_ 1850874601450504192