On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature
This note deals with super quasi-Einstein warped product spaces. Here we establish that if M is a super quasi-Einstein warped product space with nonpositive scalar curvature and compact base, then M is simply a Riemannian product space. Next we give an example of super quasi-Einstein space-time. In...
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/140581 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature / S. Pahan, B. Pal, A. Bhattacharyya // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 353-363. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-140581 |
|---|---|
| record_format |
dspace |
| spelling |
Pahan, S. Pal, B. Bhattacharyya, A. 2018-07-10T20:24:05Z 2018-07-10T20:24:05Z 2017 On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature / S. Pahan, B. Pal, A. Bhattacharyya // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 353-363. — Бібліогр.: 12 назв. — англ. 1812-9471 DOI: doi.org/10.15407/mag13.04.353 Mathematics Subject Classification 2000: 53C20, 53B20 https://nasplib.isofts.kiev.ua/handle/123456789/140581 This note deals with super quasi-Einstein warped product spaces. Here we establish that if M is a super quasi-Einstein warped product space with nonpositive scalar curvature and compact base, then M is simply a Riemannian product space. Next we give an example of super quasi-Einstein space-time. In the last section a warped product is defined on it. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature |
| spellingShingle |
On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature Pahan, S. Pal, B. Bhattacharyya, A. |
| title_short |
On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature |
| title_full |
On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature |
| title_fullStr |
On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature |
| title_full_unstemmed |
On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature |
| title_sort |
on compact super quasi-einstein warped product with nonpositive scalar curvature |
| author |
Pahan, S. Pal, B. Bhattacharyya, A. |
| author_facet |
Pahan, S. Pal, B. Bhattacharyya, A. |
| publishDate |
2017 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
This note deals with super quasi-Einstein warped product spaces. Here we establish that if M is a super quasi-Einstein warped product space with nonpositive scalar curvature and compact base, then M is simply a Riemannian product space. Next we give an example of super quasi-Einstein space-time. In the last section a warped product is defined on it.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/140581 |
| citation_txt |
On Compact Super Quasi-Einstein Warped Product with Nonpositive Scalar Curvature / S. Pahan, B. Pal, A. Bhattacharyya // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 4. — С. 353-363. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT pahans oncompactsuperquasieinsteinwarpedproductwithnonpositivescalarcurvature AT palb oncompactsuperquasieinsteinwarpedproductwithnonpositivescalarcurvature AT bhattacharyyaa oncompactsuperquasieinsteinwarpedproductwithnonpositivescalarcurvature |
| first_indexed |
2025-12-07T18:19:30Z |
| last_indexed |
2025-12-07T18:19:30Z |
| _version_ |
1850874601450504192 |