The choice of silicon nanostructures for CH₄ detection: ab-initio calculation

The paper focuses on the ab initio theoretical study of the silicon nanostructures’ sensitivity to adsorption of CH₄ molecules. The electronic properties of porous silicon, silicon nanoclusters in a vacuum, silicon nanowires, and nanoscale silicon film are examined. The analysis of results shows tha...

Full description

Saved in:
Bibliographic Details
Published in:Наносистеми, наноматеріали, нанотехнології
Date:2014
Main Authors: Balabai, R.M., Merzlikin, P.V.
Format: Article
Language:English
Published: Інститут металофізики ім. Г.В. Курдюмова НАН України 2014
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/140654
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The choice of silicon nanostructures for CH₄ detection: ab-initio calculation / R.M. Balabai, P.V. Merzlikin // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2014. — Т. 12, № 4. — С. 743-750. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-140654
record_format dspace
spelling Balabai, R.M.
Merzlikin, P.V.
2018-07-13T08:56:08Z
2018-07-13T08:56:08Z
2014
The choice of silicon nanostructures for CH₄ detection: ab-initio calculation / R.M. Balabai, P.V. Merzlikin // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2014. — Т. 12, № 4. — С. 743-750. — Бібліогр.: 13 назв. — англ.
1816-5230
PACS: 07.07.Df, 68.43.Bc, 68.47.Fg, 71.15.-m, 73.20.-r, 73.22.Dj, 82.47.Rs
https://nasplib.isofts.kiev.ua/handle/123456789/140654
The paper focuses on the ab initio theoretical study of the silicon nanostructures’ sensitivity to adsorption of CH₄ molecules. The electronic properties of porous silicon, silicon nanoclusters in a vacuum, silicon nanowires, and nanoscale silicon film are examined. The analysis of results shows that silicon nanofilm is most sensitive to CH₄ adsorption as compared with nanoclusters, nanowires, and porous silicon.
Роботу присвячено теоретичному дослідженню методами з перших принципів чутливости кремнійових наноструктур щодо адсорбції молекул CH₄. Вивчалися електронні властивості наступних наноструктур: пористий кремній, нанокластери кремнію у вакуумі, кремнійові нанодроти та наномасштабна плівка. Аналіз результатів показує, що нанорозмірна кремнійова плівка найбільш чутлива до процесу адсорбції в порівнянні з іншими досліджуваними об’єктами.
Работа посвящена теоретическому исследованию методами из первых принципов чувствительности кремниевых наноструктур к адсорбции молекул CH₄. Изучались электронные свойства таких наноструктур: пористый кремний, нанокластеры кремния в вакууме, кремниевые нанопроволоки и наномасштабная плёнка. Анализ результатов показывает, что наноразмерная кремниевая плёнка наиболее чувствительна к процессу адсорбции по сравнению с другими исследуемыми объектами.
en
Інститут металофізики ім. Г.В. Курдюмова НАН України
Наносистеми, наноматеріали, нанотехнології
The choice of silicon nanostructures for CH₄ detection: ab-initio calculation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The choice of silicon nanostructures for CH₄ detection: ab-initio calculation
spellingShingle The choice of silicon nanostructures for CH₄ detection: ab-initio calculation
Balabai, R.M.
Merzlikin, P.V.
title_short The choice of silicon nanostructures for CH₄ detection: ab-initio calculation
title_full The choice of silicon nanostructures for CH₄ detection: ab-initio calculation
title_fullStr The choice of silicon nanostructures for CH₄ detection: ab-initio calculation
title_full_unstemmed The choice of silicon nanostructures for CH₄ detection: ab-initio calculation
title_sort choice of silicon nanostructures for ch₄ detection: ab-initio calculation
author Balabai, R.M.
Merzlikin, P.V.
author_facet Balabai, R.M.
Merzlikin, P.V.
publishDate 2014
language English
container_title Наносистеми, наноматеріали, нанотехнології
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
format Article
description The paper focuses on the ab initio theoretical study of the silicon nanostructures’ sensitivity to adsorption of CH₄ molecules. The electronic properties of porous silicon, silicon nanoclusters in a vacuum, silicon nanowires, and nanoscale silicon film are examined. The analysis of results shows that silicon nanofilm is most sensitive to CH₄ adsorption as compared with nanoclusters, nanowires, and porous silicon. Роботу присвячено теоретичному дослідженню методами з перших принципів чутливости кремнійових наноструктур щодо адсорбції молекул CH₄. Вивчалися електронні властивості наступних наноструктур: пористий кремній, нанокластери кремнію у вакуумі, кремнійові нанодроти та наномасштабна плівка. Аналіз результатів показує, що нанорозмірна кремнійова плівка найбільш чутлива до процесу адсорбції в порівнянні з іншими досліджуваними об’єктами. Работа посвящена теоретическому исследованию методами из первых принципов чувствительности кремниевых наноструктур к адсорбции молекул CH₄. Изучались электронные свойства таких наноструктур: пористый кремний, нанокластеры кремния в вакууме, кремниевые нанопроволоки и наномасштабная плёнка. Анализ результатов показывает, что наноразмерная кремниевая плёнка наиболее чувствительна к процессу адсорбции по сравнению с другими исследуемыми объектами.
issn 1816-5230
url https://nasplib.isofts.kiev.ua/handle/123456789/140654
citation_txt The choice of silicon nanostructures for CH₄ detection: ab-initio calculation / R.M. Balabai, P.V. Merzlikin // Наносистеми, наноматеріали, нанотехнології: Зб. наук. пр. — К.: РВВ ІМФ, 2014. — Т. 12, № 4. — С. 743-750. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT balabairm thechoiceofsiliconnanostructuresforch4detectionabinitiocalculation
AT merzlikinpv thechoiceofsiliconnanostructuresforch4detectionabinitiocalculation
AT balabairm choiceofsiliconnanostructuresforch4detectionabinitiocalculation
AT merzlikinpv choiceofsiliconnanostructuresforch4detectionabinitiocalculation
first_indexed 2025-11-24T23:50:19Z
last_indexed 2025-11-24T23:50:19Z
_version_ 1850501015526178816
fulltext 743 PACS numbers: 07.07.Df, 68.43.Bc, 68.47.Fg, 71.15.-m, 73.20.-r, 73.22.Dj, 82.47.Rs The Choice of Silicon Nanostructures for CH4 Detection: Ab Initio Calculation R. M. Balabai and P. V. Merzlikin Kryvyi Rih Pedagogical Institute SHEI ‘Kryvyi Rih National University’, 54 Gagarin Ave., 50086 Kryvyi Rih, Ukraine The paper focuses on the ab initio theoretical study of the silicon nanostruc- tures’ sensitivity to adsorption of CH4 molecules. The electronic properties of porous silicon, silicon nanoclusters in a vacuum, silicon nanowires, and na- noscale silicon film are examined. The analysis of results shows that silicon nanofilm is most sensitive to CH4 adsorption as compared with nanoclusters, nanowires, and porous silicon. Роботу присвячено теоретичному дослідженню методами з перших прин- ципів чутливости кремнійових наноструктур щодо адсорбції молекул CH4. Вивчалися електронні властивості наступних наноструктур: порис- тий кремній, нанокластери кремнію у вакуумі, кремнійові нанодроти та наномасштабна плівка. Аналіз результатів показує, що нанорозмірна кремнійова плівка найбільш чутлива до процесу адсорбції в порівнянні з іншими досліджуваними об’єктами. Работа посвящена теоретическому исследованию методами из первых принципов чувствительности кремниевых наноструктур к адсорбции мо- лекул CH4. Изучались электронные свойства таких наноструктур: пори- стый кремний, нанокластеры кремния в вакууме, кремниевые нанопро- волоки и наномасштабная плёнка. Анализ результатов показывает, что наноразмерная кремниевая плёнка наиболее чувствительна к процессу адсорбции по сравнению с другими исследуемыми объектами. Key words: silicon, nanostructure, CH4 molecules, ab initio calculations. (Received 17 July, 2014) 1. INTRODUCTION Gas sensors are widely used in various fields of human activity. In par- Наносистеми, наноматеріали, нанотехнології Nanosystems, Nanomaterials, Nanotechnologies 2014, т. 12, № 4, сс. 743–750  2014 ІÌÔ (Іíñòèòóò ìåòàëîôіçèêè іì. Ã. Â. Êóðäþìîâà ÍÀÍ Óêðàїíи) Надруковано в Óкраїні. Ôотокопіювання дозволено тільки відповідно до ліцензії 744 R. M. BALABAI and P. V. MERZLIKIN ticular, the harmful gases (such as CH4, CO2, NO2 and others) sensors are in large demand. There are observed trends in reduction of gas sen- sors and searching for new materials to create them. Thus, much attention is devoted to the sensory properties of carbon nanostructures—nanotubes and graphene [1, 2, 3]. The authors of [1] experimentally documented the changing of electrical resistance of the examined nanotubes after adsorption of CH4 and CO2 gas molecules. It has been noted that this sensor has good sensitivity and short response time. However, after CO2 adsorption, the sensor has not been fully re- covered. The authors explain the change in conductivity by the shift of the valence band of nanotubes, which leads to appearing of the p-type semiconductor. The authors of [2] experimentally investigated the sensory proper- ties of graphene on the adsorption of vapours of ethanol, methanol, chloroform and other gases. In addition to changes in electrical re- sistance (which is different for different gases by value and by sign), the shift of the noise spectra of graphene has been observed. Therefore, by fixing these two options, one can achieve a high selectivity of single- transistor graphene sensor and use it to define a wide range of gases. In Ref. [3], the sensory properties of nanopatterned graphene on ad- sorption of NO2 have been experimentally examined. The nanopat- terned samples showed sensitivities for NO2 of more than one order of magnitude higher than for non-patterned graphene. The NO2 concen- trations as low as 300 ppt. were detected with an ultimate detection limit of tens of ppt. Another area of research covers the sensory properties of nanocrys- talline oxides ZnO, SnO2, In2O3, TiO2 and its composites [4, 5]. Thus, in Ref. [4], it has been experimentally demonstrated the role of quantum dots of SnO2 in detecting low concentrations of methane (CH4) at a relatively low temperature of 150C with high response (S3.5%) and response time below 1 min. These SnO2 nanoparticles exhibited a strong sensing response to CH4 in comparison to the an- nealed sample. The paper [5] experimentally investigates the sensory properties of ZnO nanoparticles on atmospheric gases N2, O2 and CO2. In addition to changing the electrical conductivity, the changes of examined material photoluminescence under the influence of gases were observed. It has been detected relationship between air pressure and photolumines- cence. Two-dimensional semiconductors are also interesting for gas sens- ing [6, 7]. In Ref. [6], it has been investigated the sorption ability of Ge20Se80 thin films applied as active layers of quartz crystal microbal- ance (QCM) for NO2 gas sensing. It has been experimentally demon- strated that the introduced gas molecules interact electrostatically with the chalcogen atoms of the host material and initiate some degree THE CHOICE OF SILICON NANOSTRUCTURES FOR CH4 DETECTION 745 of structural changes in it. Authors of [7] investigated the role of quantum confinement on the performance of H2 sensors based on two-dimensional InAs membranes. They found the strong thickness dependence, with 100 enhance- ment in the sensor response as the thickness is reduced from 48 to 8 nm. Other promising materials for the construction of gas sensors are nanowires. In paper [8], the analysis of researches in this area, the classification of sensor materials, the methods of synthesis and com- parison of sensory properties are given. This group of materials can be divided into nanowires of metal oxides, polymer nanowires, metal nan- owires and silicon nanowires. Silicon-based gas sensors are of great interest because they may be easily integrated to electronic circuits [8]. Thus, we can distinguish the following main lines of gas sensors evo- lution: reduction of the size, the transition to the nanoscale and in- creasing of selectivity and sensitivity. In addition to the empirical se- lection of sensor parameters, theoretical studies are effective for bet- ter understanding the nature of sensory properties, and may indicate directions for improving gas sensor. 2. MODELS AND METHODS OF CALCULATION The aim of this work was the ab initio theoretical study of the silicon nanostructures sensitivity to adsorption of CH4 molecules. All calcula- tions were performed using the author’s source code [9], which imple- ments the Car–Parrinello quantum-mechanical dynamics, the density functional theory with local density approximation [10, 11], and norm- conserving ab initio pseudopotential of Bachelet–Hamann–Schlüter [12]. The ground states of the electron-nuclear systems were detected by means of the self-consistent solution of the Kohn–Sham equations, be- cause electronic variables only were determined with the atomic cores fixed. Following Kohn–Sham approach, electronic density was written down in terms of occupied orthonormal one-particle wave functions: 2 ( ) ( ) i i n  r r . (1) The point on the surface of potential energy in the Born– Oppenheimer approximation was determined as a minimum energy functional with regard to the wave functions:                         2 * 2 { },{ },{ } ( ) ( ) { ( )},{ },{ } 2 i j i i j i E R d U n R m r r r r , (2) 746 R. M. BALABAI and P. V. MERZLIKIN where { } j R are coordinates of atomic cores; { }   are any external in- fluences on the system. In the generally accepted formulation, minimization of the energy functional (2) with respect to one-particle orbitals with additional or- thonormal constraint on the one-particle orbitals ( ) i  r results in the Kohn–Sham one-particle equations: 2 2 ( ) ( ) 2 ( ) i i i U m n             r r r . (3) The distribution of electrons along the energy zones for -state was found by means of numerical calculation of derivative 0 lim E N E     (where N is a number of the allowed states for the E interval of en- ergy). The one-particle energy spectrum was obtained from calculation of the eigenvalues of the Kohn–Sham matrix. In accordance with ide- ology of the electronic density functional, the occupied states at abso- lute zero temperature were defined (states of valence zone and states in the gap zone, which are related to the defects). It allowed defining po- sition of Fermi level, based on the last occupied state, their number be- ing half the number of electrons (due to ignoring the spin of the elec- tron). Attention should be paid to the fact that the -point for super- lattice calculations has the meaning of the Baldereschi mean-value point [13], which represents all vectors in the Brillouin zone. 3. RESULTS OF CALCULATION AND THEIR DISCUSSION The atomic basis of the unit cell, which reproduces artificial transla- tional symmetry of the system, consisted of 64 silicon atoms. By set- ting the different vacuum gap widths in the directions of the coordi- nate axes, various nanostructures of silicon were simulated: porous silicon, silicon nanoclusters in a vacuum, silicon nanowires and na- noscale silicon film. Coordinates of the atomic basis have not been op- timized. We investigated the changes in the electronic structure of these materials after the adsorption of CH4 molecules. Figure 1 shows the partial valence electrons density distribution in the studied systems for a range of 0.7–0.8 of the maximum value. For all of nanostructures, the rearrangement of the electronic density af- ter the gas molecules adsorption may be seen. The appearance of charge jumper between molecules and silicon nanostructures is observed. The analysis of the intensities of these interactions shows that silicon nan- ofilm is the most sensitive to the adsorption process; in this case, the highest values of the electron density are located around the adsorbed molecule. One can also observe the influence of the molecule to the dis- tribution of electronic density inside the nanostructure. THE CHOICE OF SILICON NANOSTRUCTURES FOR CH4 DETECTION 747 For example, in nanoclusters (see Fig. 1) in the absence of adsorbed molecules, the electronic distribution was symmetric with respect to the centre of the cluster, but, after the adsorption, it takes asymmetric Fig. 1. The valence-electrons’ density distribution in different examined nanostructures. The valence electrons density in the range of 0.7–0.8 of its maximum value is shown. 748 R. M. BALABAI and P. V. MERZLIKIN shapes’ stretched in the direction of the adsorbed molecules. Fig. 2. Density of states for -point of Brillouin zone for different examined nanostructures. The x-axis shows energy in atomic units. The y-axis shows number of states. THE CHOICE OF SILICON NANOSTRUCTURES FOR CH4 DETECTION 749 A similar internal reorganization of the electronic density is ob- served for nanowires. The valence-electrons’ density of allowed states in the energy range is shown in Fig. 2. The low-populated states (states occupied by one electron) at the bottom of the energy range are states of the molecule CH4, and the states in the upper part of the range belong to the silicon nanostructures. The analysis of these distributions shows that, with such graph resolution, it is difficult to determine the details of the changes in the part of the range, corresponding to silicon nanostruc- tures. Nevertheless, it can be detected that the most of the spectrum is concentrated near the Fermi level (i.e., the right boundary of the ener- gy range of occupied states). Moreover, this effect is most emphasized for the porous silicon and silicon nanofilm. The distribution of low-populated states in the lower part of energy range is different for different types of nanostructures. This may indi- cate that the adsorption of the molecule occurs either by physical or by chemical way. In addition, looking to the degree of changes in the elec- tronic structure, we assume that the adsorption on silicon nanoclusters and nanowires is carried out by physical principles and on porous sili- con—by chemical principles. Therefore, nanoscale silicon film is most sensitive to the adsorption process: its electronic spectrum changes most significantly. The ex- pansion of occupied-states’ range and the emergence of local states at the top of the energy range of occupied states are observed. The chang- es of a similar nature, but less noticeable, are present in other exam- ined nanostructures. The observed transformations of the electronic spectrum, leading to a conductivity-type changing of silicon nanostructures, may be used for the construction of gas sensors. 4. CONCLUSIONS Ab initio calculations show that silicon nanostructures change their electronic properties because of gas molecules adsorption, which leads to change of the material conductivity. These changes are most inten- sive in silicon nanofilm compared to nanoclusters, nanowires and po- rous silicon. Thus, nanoscale silicon films may be used to construct CH4 sensors. The still actual issue is studying the selectivity of this type of sensors. REFERENCES 1. A. Firouzi, International Conference on Nanotechnology and Biosensors (2010). 2. S. Rumyantsev, Nano Letters, 12, No. 5: 2294 (2012). 750 R. M. BALABAI and P. V. MERZLIKIN 3. A. Cagliani, eprint arXiv:1403.4791 (2014). 4. A. Das, J. Mater. Chem. C, 2: 164 (2014). 5. M. Ghosh, J. Appl. Phys., 110: 054309 (2011). 6. P. Chen, eprint arXiv:1205.6441 [cond-mat.mtrl-sci] (2012). 7. J. Nah, J. Phys. Chem. C, 116, No. 17: 9750 (2012). 8. Y. Dan, eprint arXiv:0804.4828 (2008). 9. R. M. Balabai, Obchyslyuvalni Metody iz Pershykh Pryntsypiv u Fizytsi Tverdoho Tila: Kvantovo-Mekhanichna Molekulyarna Dynamika (Kryvyi Rih: Vydavnychyi Dim: 2009) (in Ukrainian). 10. R. Car, Phys. Rev. Let., 55, No. 22: 2471 (1985). 11. D. Marx and J. Hutter, NIC Series. Vol. 3. Modern Methods and Algorithms of Quantum Chemistry: Proceedings (Second Edition) (Ed. J. Grotendorst) (Julich: John von Neumann Institute for Computing: 2000), pp. 329–477; ISBN 3-00- 005834-6. 12. G. Bachelet, Phys. Rev. B, 26: 4199 (1982). 13. J. Hutter, Introduction to Ab Initio Molecular Dynamics. Lecture Notes (Zur- ich: Physical Chemistry Institute–University of Zurich: 2002).